User:WikiSysop: Difference between revisions
From CSDMS
No edit summary |
|||
Line 1: | Line 1: | ||
{{Signup information member | {{Signup information member | ||
|First name member=Albert | |First name member=Albert | ||
|Last name member=Kettner | |Last name member=Kettner | ||
|Institute member=University of Colorado | |Institute member=University of Colorado |
Revision as of 14:32, 19 December 2012
Albert Kettner, (he/his), website username login: WikiSysop
![]() |
|
Member of the following CSDMS groups
- Terrestrial Working Group
- Coastal Working Group
- Education and Knowledge Transfer (EKT) Working Group
- Cyberinformatics and Numerics Working Group
- Hydrology Focus Research Group
- Carbonate Focus Research Group"Carbonate Focus Research Group" is not in the list (Terrestrial Working Group, Coastal Working Group, Marine Working Group, Education and Knowledge Transfer (EKT) Working Group, Cyberinformatics and Numerics Working Group, Hydrology Focus Research Group, Chesapeake Focus Research Group, Critical Zone Focus Research Group, Human Dimensions Focus Research Group, Geodynamics Focus Research Group, ...) of allowed values for the "Working group member" property.
Signed up for the mailing list:
I'm part of the CSDMS Integration Facility
List of models that do not hand out the source code
Program | Description | Developer | Status |
---|---|---|---|
1D Hillslope MCMC | Monte Carlo chain of 1D non-linear diffusion hillslope model to find most likely boundary conditions | Hurst, Martin | ![]() |
1D Hillslope MCMC | , | ![]() |
|
1D Hillslope MCMC | , | ![]() |
|
1D Hillslope MCMC | , | ![]() |
|
1D Particle-Based Hillslope Evolution Model | 1D probabilistic, particle-based model of hillslope evolution for studying hillslope equilibration and response to perturbations. | Calvert, Jacob | ![]() |
1D Particle-Based Hillslope Evolution Model | , | ![]() |
|
1D Particle-Based Hillslope Evolution Model | , | ![]() |
|
1D Particle-Based Hillslope Evolution Model | , | ![]() |
|
1DBreachingTurbidityCurrent | 1D Breaching Turbidity current model for generating continuous turbidity currents | Eke, Esther | ![]() |
1DBreachingTurbidityCurrent | , | ![]() |
|
1DBreachingTurbidityCurrent | , | ![]() |
|
1DBreachingTurbidityCurrent | , | ![]() |
|
2DFLOWVEL | Tidal & wind-driven coastal circulation routine | Slingerland, Rudy | ![]() |
2DFLOWVEL | , | ![]() |
|
2DFLOWVEL | , | ![]() |
|
2DFLOWVEL | , | ![]() |
|
ACADIA | A finite element formulation of the non-conservative form of the vertically integrated advection/diffusion/reaction (ADR) equation | Gentleman, Wendy | ![]() |
ACADIA | , | ![]() |
|
ACADIA | , | ![]() |
|
ACADIA | , | ![]() |
|
ADCIRC | Coastal Circulation and Storm Surge Model | Luettich, Rick | ![]() |
ADCIRC | , | ![]() |
|
ADCIRC | , | ![]() |
|
ADCIRC | , | ![]() |
|
ADI-2D | Read note in extended description. Advection Diffusion Implicit (ADI) method for solving 2D diffusion equation | Pelletier, Jon | ![]() |
ADI-2D | , | ![]() |
|
ADI-2D | , | ![]() |
|
ADI-2D | , | ![]() |
|
ALFRESCO | Alaskan Frame‐based Ecosystem Code | Bennett, Alec | ![]() |
ALFRESCO | , | ![]() |
|
ALFRESCO | , | ![]() |
|
ALFRESCO | , | ![]() |
|
AR2-sinuosity | Generates planforms for single-thread channel using a second-order autoregressive model | Limaye, Ajay | ![]() |
AR2-sinuosity | , | ![]() |
|
AR2-sinuosity | , | ![]() |
|
AR2-sinuosity | , | ![]() |
|
AR2-sinuosity | , | ![]() |
|
AR2-sinuosity | , | ![]() |
|
AR2-sinuosity | , | ![]() |
|
AR2-sinuosity | , | ![]() |
|
ATS (The Advanced Terrestrial Simulator) | The Advanced Terrestrial Simulator (formerly sometimes known as the Arctic Terrestrial Simulator) is a code for solving ecosystem-based, integrated, distributed hydrology. | Coon, Ethan | ![]() |
ATS (The Advanced Terrestrial Simulator) | , | ![]() |
|
ATS (The Advanced Terrestrial Simulator) | , | ![]() |
|
ATS (The Advanced Terrestrial Simulator) | , | ![]() |
|
ATS (The Advanced Terrestrial Simulator) | , | ![]() |
|
Acronym1 | E-book: program for computing bedload transport in gravel rivers. | Parker, Gary | ![]() |
Acronym1 | , | ![]() |
|
Acronym1 | , | ![]() |
|
Acronym1 | , | ![]() |
|
Acronym1 | , | ![]() |
|
Acronym1D | E-book: program for computing bedload transport in gravel rivers over time. | Parker, Gary | ![]() |
Acronym1D | , | ![]() |
|
Acronym1D | , | ![]() |
|
Acronym1D | , | ![]() |
|
Acronym1D | , | ![]() |
|
Acronym1R | E-book: program for computing bedload transport in gravel rivers with a Manning-Strickler relation for flow resistance. | Parker, Gary | ![]() |
Acronym1R | , | ![]() |
|
Acronym1R | , | ![]() |
|
Acronym1R | , | ![]() |
|
Acronym1R | , | ![]() |
|
AeoLiS | AeoLiS is a process-based model for simulating aeolian sediment transport in situations where supply-limiting factors are important, like in coastal environments. | Hoonhout, Bas | ![]() |
AeoLiS | , | ![]() |
|
AeoLiS | , | ![]() |
|
AeoLiS | , | ![]() |
|
AgDegBW | E-book: Calculator for aggradation and degradation of a river reach using a backwater formulation. | Parker, Gary | ![]() |
AgDegBW | , | ![]() |
|
AgDegBW | , | ![]() |
|
AgDegBW | , | ![]() |
|
AgDegBW | , | ![]() |
|
AgDegNormGravMixPW | E-book: calculator for aggradation and degradation of sediment mixtures in gravel-bed streams | Parker, Gary | ![]() |
AgDegNormGravMixPW | , | ![]() |
|
AgDegNormGravMixPW | , | ![]() |
|
AgDegNormGravMixPW | , | ![]() |
|
AgDegNormGravMixPW | , | ![]() |
|
AgDegNormGravMixSubPW | E-book: calculator for evolution of upward-concave bed profiles in rivers carrying sediment mixtures in subsiding basins. | Parker, Gary | ![]() |
AgDegNormGravMixSubPW | , | ![]() |
|
AgDegNormGravMixSubPW | , | ![]() |
|
AgDegNormGravMixSubPW | , | ![]() |
|
AgDegNormGravMixSubPW | , | ![]() |
|
AgDegNormal | E-book: illustration of calculation of aggradation and degradation of a river reach using the normal flow approximation. | Parker, Gary | ![]() |
AgDegNormal | , | ![]() |
|
AgDegNormal | , | ![]() |
|
AgDegNormal | , | ![]() |
|
AgDegNormal | , | ![]() |
|
AgDegNormalFault | E-book: Illustration of calculation of aggradation and degradation of a river reach using the normal flow approximation; with an extension for calculation of the response to a sudden fault along the reach. | Parker, Gary | ![]() |
AgDegNormalFault | , | ![]() |
|
AgDegNormalFault | , | ![]() |
|
AgDegNormalFault | , | ![]() |
|
AgDegNormalFault | , | ![]() |
|
AgDegNormalGravMixHyd | E-book: A module that calculates the evolution of a gravel bed river under an imposed cycled hydrograph. | Parker, Gary | ![]() |
AgDegNormalGravMixHyd | , | ![]() |
|
AgDegNormalGravMixHyd | , | ![]() |
|
AgDegNormalGravMixHyd | , | ![]() |
|
AgDegNormalGravMixHyd | , | ![]() |
|
AgDegNormalSub | E-book: Program to calculate the evolution of upward-concave bed profiles in rivers carrying uniform sediment in subsiding basins. | Parker, Gary | ![]() |
AgDegNormalSub | , | ![]() |
|
AgDegNormalSub | , | ![]() |
|
AgDegNormalSub | , | ![]() |
|
AgDegNormalSub | , | ![]() |
|
AlluvStrat | Rules-based model to generate a 2-dimensional cross section of alluvial stratigraphy based on fluvial processes | Wickert, Andy | ![]() |
AlluvStrat | , | ![]() |
|
AlluvStrat | , | ![]() |
|
AlluvStrat | , | ![]() |
|
AlluvStrat | , | ![]() |
|
Alpine3D | 3D model of alpine surface processes | Bavay, Mathias | ![]() |
Alpine3D | , | ![]() |
|
Alpine3D | , | ![]() |
|
Alpine3D | , | ![]() |
|
Anuga | ANUGA is a hydrodynamic modelling tool that allows users to model realistic flow problems in complex 2D geometries. | Habili, Nariman | ![]() |
Anuga | , | ![]() |
|
Anuga | , | ![]() |
|
Anuga | , | ![]() |
|
AnugaSed | Add-on package to ANUGA with modules for sediment transport and vegetation drag | Perignon, Mariela | ![]() |
AnugaSed | , | ![]() |
|
AnugaSed | , | ![]() |
|
AnugaSed | , | ![]() |
|
AnugaSed | , | ![]() |
|
ApsimX | The Agricultural Production Systems sIMulator (APSIM) | Holzworth, Dean | ![]() |
ApsimX | , | ![]() |
|
ApsimX | , | ![]() |
|
ApsimX | , | ![]() |
|
AquaTellUs | Fluvial-dominated delta sedimentation model | Overeem, Irina | ![]() |
AquaTellUs | , | ![]() |
|
AquaTellUs | , | ![]() |
|
AquaTellUs | , | ![]() |
|
ArcDelRCM | an Arctic-delta reduced-complexity model that can reproduce the 2-m ramp feature ubiquitous to Arctic deltas | Chan, Ngai-Ham (Erik) | ![]() |
ArcDelRCM | , | ![]() |
|
ArcDelRCM | , | ![]() |
|
ArcDelRCM | , | ![]() |
|
Area-Slope Equation Calculator | Pixel scale Area-Slope equation calculator | Cohen, Sagy | ![]() |
Area-Slope Equation Calculator | , | ![]() |
|
Area-Slope Equation Calculator | , | ![]() |
|
Area-Slope Equation Calculator | , | ![]() |
|
Auto marsh | Cellula automata model for salt marsh evolution with variable soil resistance under wind waves attack | Leonardi, Nicoletta | ![]() |
Auto marsh | , | ![]() |
|
Auto marsh | , | ![]() |
|
Auto marsh | , | ![]() |
|
Avulsion | Stream avulsion model | Hutton, Eric | ![]() |
Avulsion | , | ![]() |
|
Avulsion | , | ![]() |
|
Avulsion | , | ![]() |
|
BEDLOAD | Bedload transport model | Slingerland, Rudy | ![]() |
BEDLOAD | , | ![]() |
|
BEDLOAD | , | ![]() |
|
BEDLOAD | , | ![]() |
|
BITM | Barrier Island Translation model | Masetti, Riccardo | ![]() |
BITM | , | ![]() |
|
BITM | , | ![]() |
|
BITM | , | ![]() |
|
BITM | , | ![]() |
|
BOM | Bergen Ocean Model | Berntsen, Jarle | ![]() |
BOM | , | ![]() |
|
BOM | , | ![]() |
|
BOM | , | ![]() |
|
BRaKE | Computes evolution of a bedrock river longitudinal profile in the presence of large, hillslope-derived blocks. | Shobe, Charles | ![]() |
BRaKE | , | ![]() |
|
BRaKE | , | ![]() |
|
BRaKE | , | ![]() |
|
BTLESS | Regional Ecological Model for Coastal Wetlands | Reyes, Enrique | ![]() |
BTLESS | , | ![]() |
|
BTLESS | , | ![]() |
|
BTLESS | , | ![]() |
|
BTLESS | , | ![]() |
|
BackwaterCalculator | E-book: program for backwater calculations in open channel flow | Parker, Gary | ![]() |
BackwaterCalculator | , | ![]() |
|
BackwaterCalculator | , | ![]() |
|
BackwaterCalculator | , | ![]() |
|
BackwaterCalculator | , | ![]() |
|
BackwaterWrightParker | E-book: calculator for backwater curves in sand-bed streams, including the effects of both skin friction and form drag due to skin friction | Parker, Gary | ![]() |
BackwaterWrightParker | , | ![]() |
|
BackwaterWrightParker | , | ![]() |
|
BackwaterWrightParker | , | ![]() |
|
BackwaterWrightParker | , | ![]() |
|
Badlands | Basin and landscape dynamics | Salles, Tristan | ![]() |
Badlands | , | ![]() |
|
Badlands | , | ![]() |
|
Badlands | , | ![]() |
|
Barrier Inlet Environment (BRIE) Model | Coastal barrier island transgression model | Nienhuis, Jaap | ![]() |
Barrier Inlet Environment (BRIE) Model | , | ![]() |
|
Barrier Inlet Environment (BRIE) Model | , | ![]() |
|
Barrier Inlet Environment (BRIE) Model | , | ![]() |
|
Barrier3D | A spatially explicit model of coastal barrier evolution | Reeves, Ian | ![]() |
Barrier3D | , | ![]() |
|
Barrier3D | , | ![]() |
|
Barrier3D | , | ![]() |
|
BarrierBMFT | Barrier-Bay-Marsh-Forest Transect Coupled Model Framework | Reeves, Ian | ![]() |
BarrierBMFT | , | ![]() |
|
BarrierBMFT | , | ![]() |
|
BarrierBMFT | , | ![]() |
|
BarrierBMFT | , | ![]() |
|
BatTri | A graphical Matlab interface to the C language 2-D quality finite element grid generator Triangle. | Shewchuk, Jonathan | ![]() |
BatTri | , | ![]() |
|
BatTri | , | ![]() |
|
BatTri | , | ![]() |
|
Bedrock Erosion Model | Read note in extended description. Knickpoint propagation in the 2D sediment-flux-driven bedrock erosion model | Pelletier, Jon | ![]() |
Bedrock Erosion Model | , | ![]() |
|
Bedrock Erosion Model | , | ![]() |
|
Bedrock Erosion Model | , | ![]() |
|
Bedrock Fault Scarp | This is a two-dimensional numerical model that computes the topographic evolution of the facet slope in the footwall of an active normal fault. | Tucker, Greg | ![]() |
Bedrock Fault Scarp | , | ![]() |
|
Bedrock Fault Scarp | , | ![]() |
|
Bedrock Fault Scarp | , | ![]() |
|
BedrockAlluvialTransition | E-book: calculator for aggradation and degradation with a migrating bedrock-alluvial transition at the upstream end. | Parker, Gary | ![]() |
BedrockAlluvialTransition | , | ![]() |
|
BedrockAlluvialTransition | , | ![]() |
|
BedrockAlluvialTransition | , | ![]() |
|
BedrockAlluvialTransition | , | ![]() |
|
Bifurcation | Flow-partitioning and avulsion in a river delta bifurcation | Salter, Gerard | ![]() |
Bifurcation | , | ![]() |
|
Bifurcation | , | ![]() |
|
Bifurcation | , | ![]() |
|
Bing | Submarine debris flows | Hutton, Eric | ![]() |
Bing | , | ![]() |
|
Bing | , | ![]() |
|
Bing | , | ![]() |
|
Bio | Biogenic mixing of marine sediments | Hutton, Eric | ![]() |
Bio | , | ![]() |
|
Bio | , | ![]() |
|
Bio | , | ![]() |
|
BlockLab | BlockLab computes landscape evolution in the presence of large blocks of rock on hillslopes and in channels. | Shobe, Charles | ![]() |
BlockLab | , | ![]() |
|
BlockLab | , | ![]() |
|
BlockLab | , | ![]() |
|
CAESAR Lisflood | Caesar Lisflood is a morphodynamic / Landscape evolution model that simulates erosion and deposition in river catchments and reaches over time scales from hours to 1000's of years. | Coulthard, Tom | ![]() |
CAESAR Lisflood | , | ![]() |
|
CAESAR Lisflood | , | ![]() |
|
CAESAR Lisflood | , | ![]() |
|
CAESAR Lisflood | , | ![]() |
|
CAESAR Lisflood | , | ![]() |
|
CAESAR Lisflood | , | ![]() |
|
CAESAR Lisflood | , | ![]() |
|
CAM-CARMA | A GCM for Titan that incorporates aerosols | Larson, Eric | ![]() |
CAM-CARMA | , | ![]() |
|
CAM-CARMA | , | ![]() |
|
CAM-CARMA | , | ![]() |
|
CASCADE | Large scale SPM based on irregular spatial discretization | Braun, Jean | ![]() |
CASCADE | , | ![]() |
|
CASCADE | , | ![]() |
|
CASCADE | , | ![]() |
|
CASCADE | , | ![]() |
|
CBIRM | Coupled Barrier Island-Resort Model | McNamara, Dylan | ![]() |
CBIRM | , | ![]() |
|
CBIRM | , | ![]() |
|
CBIRM | , | ![]() |
|
CBIRM | , | ![]() |
|
CBOFS2 | The Second Generation Chesapeake Bay Operational Forecast System (CBOFS2): A ROMS‐Based Modeling System | Lanerolle, Lyon | ![]() |
CBOFS2 | , | ![]() |
|
CBOFS2 | , | ![]() |
|
CBOFS2 | , | ![]() |
|
CELLS | Landscape simulation model | Sklar, Fred | ![]() |
CELLS | , | ![]() |
|
CELLS | , | ![]() |
|
CELLS | , | ![]() |
|
CELLS | , | ![]() |
|
CEM | Coastline evolution model | Murray, A. Brad | ![]() |
CEM | , | ![]() |
|
CEM | , | ![]() |
|
CEM | , | ![]() |
|
CHILD | Landscape Evolution Model | Tucker, Greg | ![]() |
CHILD | , | ![]() |
|
CHILD | , | ![]() |
|
CHILD | , | ![]() |
|
CICE | Los Alamos sea ice model | Hunke, Elizabeth | ![]() |
CICE | , | ![]() |
|
CICE | , | ![]() |
|
CICE | , | ![]() |
|
CLUMondo | The CLUMondo model is a spatially explicit and dynamics land system change model | Verburg, Peter | ![]() |
CLUMondo | , | ![]() |
|
CLUMondo | , | ![]() |
|
CLUMondo | , | ![]() |
|
CMFT | Coupled salt Marsh - tidal Flat Transect model | Mariotti, Giulio | ![]() |
CMFT | , | ![]() |
|
CMFT | , | ![]() |
|
CMFT | , | ![]() |
|
CMIP | Data component provides monthly mean temperature for Permafrost Region 1902-2100 | Overeem, Irina | ![]() |
CMIP | , | ![]() |
|
CMIP | , | ![]() |
|
CMIP | , | ![]() |
|
COAWST | COAWST: A Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System | Warner, John | ![]() |
COAWST | , | ![]() |
|
COAWST | , | ![]() |
|
COAWST | , | ![]() |
|
COLT Restorations | Geomorphic and carbon evolution of a bay-marsh-forest coastal transect with restorations | Barksdale, Mary Bryan | ![]() |
COLT Restorations | , | ![]() |
|
COLT Restorations | , | ![]() |
|
COLT Restorations | , | ![]() |
|
COLT Restorations | , | ![]() |
|
CREST | The Coupled Routing and Excess STorage (CREST) model is a distributed hydrologic model developed to simulate the spatial and temporal variation of atmospheric, land surface, and subsurface water fluxes and storages by cell-to-cell simulation. | Wang, Jiahu | ![]() |
CREST | , | ![]() |
|
CREST | , | ![]() |
|
CREST | , | ![]() |
|
CSt ASMITA | Aggregate scale morphodynamic model of integrated coastal systems | Niedoroda, Alan | ![]() |
CSt ASMITA | , | ![]() |
|
CSt ASMITA | , | ![]() |
|
CSt ASMITA | , | ![]() |
|
CSt ASMITA | , | ![]() |
|
CVFEM Rift2D | multi-physics numerical model that simulates rock deformation, fluid flow, solute transport and heat transfer in response to ice sheet loading of multiple cycles | Zhang, Yipeng | ![]() |
CVFEM Rift2D | , | ![]() |
|
CVFEM Rift2D | , | ![]() |
|
CVFEM Rift2D | , | ![]() |
|
CVPM | Multidimensional heat-transfer modeling system for permafrost with advanced unfrozen water physics | Clow, Gary | ![]() |
CVPM | , | ![]() |
|
CVPM | , | ![]() |
|
CVPM | , | ![]() |
|
CWatM | Community Water Model (CWatM) is a hydrological model simulating the water cycle daily at global and local levels, historically and into the future | Peter, Burek | ![]() |
CWatM | , | ![]() |
|
CWatM | , | ![]() |
|
CWatM | , | ![]() |
|
Caesar | Cellular landscape evolution model | Coulthard, Tom | ![]() |
Caesar | , | ![]() |
|
Caesar | , | ![]() |
|
Caesar | , | ![]() |
|
CarboCAT | Carbonate cellular automatacyclicity | Burgess, Peter | ![]() |
CarboCAT | , | ![]() |
|
CarboCAT | , | ![]() |
|
CarboCAT | , | ![]() |
|
CarboLOT | Population-ecology based model of shallow-ocean benthic carbonate accumulation | Jenkins, Chris | ![]() |
CarboLOT | , | ![]() |
|
CarboLOT | , | ![]() |
|
CarboLOT | , | ![]() |
|
CarboLOT | , | ![]() |
|
CellularFanDelta | Coarse-grained delta dynamics and stratigraphy | Wolinsky, Matthew | ![]() |
CellularFanDelta | , | ![]() |
|
CellularFanDelta | , | ![]() |
|
CellularFanDelta | , | ![]() |
|
CellularFanDelta | , | ![]() |
|
Channel-Oscillation | Read note in extended description. Simulates Oscillations in arid alluvial channels | Pelletier, Jon | ![]() |
Channel-Oscillation | , | ![]() |
|
Channel-Oscillation | , | ![]() |
|
Channel-Oscillation | , | ![]() |
|
ChannelProfiler | The ChannelProfiler extracts and plots channel networks from a landlab grid. | Barnhart, Katy | ![]() |
ChannelProfiler | , | ![]() |
|
ChannelProfiler | , | ![]() |
|
ChannelProfiler | , | ![]() |
|
ChesROMS | Chesapeake Bay ROMS Community Model (ChesROMS), special case of ROMS | Long, Wen | ![]() |
ChesROMS | , | ![]() |
|
ChesROMS | , | ![]() |
|
ChesROMS | , | ![]() |
|
Chi analysis tools | Tool for examining channel profiles in chi-elevation space using the integral method of channel analysis | Mudd, Simon | ![]() |
Chi analysis tools | , | ![]() |
|
Chi analysis tools | , | ![]() |
|
Chi analysis tools | , | ![]() |
|
ChiFinder | Calculate Chi Indices | Hobley, Daniel | ![]() |
ChiFinder | , | ![]() |
|
ChiFinder | , | ![]() |
|
ChiFinder | , | ![]() |
|
ChiFinder | , | ![]() |
|
ChiFinder | , | ![]() |
|
ChiFinder | , | ![]() |
|
ChiFinder | , | ![]() |
|
ChiFinder | , | ![]() |
|
Cliffs | Numerical model to compute tsunami propagation and runup on land in the shallow-water approximation | Tolkova, Elena | ![]() |
Cliffs | , | ![]() |
|
Cliffs | , | ![]() |
|
Cliffs | , | ![]() |
|
CoAStal Community-lAnDscape Evolution (CASCADE) model | A coupled landscape and human-dynamics modeling framework for barrier evolution | Anarde, Katherine | ![]() |
CoAStal Community-lAnDscape Evolution (CASCADE) model | , | ![]() |
|
CoAStal Community-lAnDscape Evolution (CASCADE) model | , | ![]() |
|
CoAStal Community-lAnDscape Evolution (CASCADE) model | , | ![]() |
|
CoAStal Community-lAnDscape Evolution (CASCADE) model | , | ![]() |
|
CoAStal Community-lAnDscape Evolution (CASCADE) model | , | ![]() |
|
CoAStal Community-lAnDscape Evolution (CASCADE) model | , | ![]() |
|
CoAStal Community-lAnDscape Evolution (CASCADE) model | , | ![]() |
|
CoAStal Community-lAnDscape Evolution (CASCADE) model | , | ![]() |
|
CoastMorpho2D | Long term 2D morphodynamics of coastal areas | Mariotti, Giulio | ![]() |
CoastMorpho2D | , | ![]() |
|
CoastMorpho2D | , | ![]() |
|
CoastMorpho2D | , | ![]() |
|
Coastal Dune Model | Evolution of Coastal Foredunes | Durán Vinent, Orencio | ![]() |
Coastal Dune Model | , | ![]() |
|
Coastal Dune Model | , | ![]() |
|
Coastal Dune Model | , | ![]() |
|
Coastal Landscape Transect Model (CoLT) | Geomorphic and carbon evolution of a bay-marsh-forest coastal transect | Valentine, Kendall | ![]() |
Coastal Landscape Transect Model (CoLT) | , | ![]() |
|
Coastal Landscape Transect Model (CoLT) | , | ![]() |
|
Coastal Landscape Transect Model (CoLT) | , | ![]() |
|
Compact | Sediment compaction | Hutton, Eric | ![]() |
Compact | , | ![]() |
|
Compact | , | ![]() |
|
Compact | , | ![]() |
|
CosmoLand | 2-D model tracking cosmogenic nuclides and mixing in landslide terrain | Yanites, Brian | ![]() |
CosmoLand | , | ![]() |
|
CosmoLand | , | ![]() |
|
CosmoLand | , | ![]() |
|
Coupled1D | Read note in extended description. Coupled 1D bedrock-alluvial channel evolution | Pelletier, Jon | ![]() |
Coupled1D | , | ![]() |
|
Coupled1D | , | ![]() |
|
Coupled1D | , | ![]() |
|
CrevasseFlow | The module calculates crevasse splay morphology and water discharge outflow of a crevasse splay. | Chen, Yunzhen | ![]() |
CrevasseFlow | , | ![]() |
|
CrevasseFlow | , | ![]() |
|
CrevasseFlow | , | ![]() |
|
CrevasseFlow | , | ![]() |
|
Cross Shore Sediment Flux | Cross-Shore Sediment Flux Equations | Ortiz, Alejandra | ![]() |
Cross Shore Sediment Flux | , | ![]() |
|
Cross Shore Sediment Flux | , | ![]() |
|
Cross Shore Sediment Flux | , | ![]() |
|
CruAKTemp | cruAKtemp is a data component to access a subsample of CRU NCEP data temperature for Alaska | Stewart, Scott | ![]() |
CruAKTemp | , | ![]() |
|
CruAKTemp | , | ![]() |
|
CruAKTemp | , | ![]() |
|
CruAKTemp | , | ![]() |
|
CryoGrid3 | CryoGrid 3 is a simple land-surface scheme dedicated to modeling of ground temperatures in permafrost environments. | Westermann, Sebastian | ![]() |
CryoGrid3 | , | ![]() |
|
CryoGrid3 | , | ![]() |
|
CryoGrid3 | , | ![]() |
|
Cyclopath | A 2D/3D model of carbonate cyclicity | Burgess, Peter | ![]() |
Cyclopath | , | ![]() |
|
Cyclopath | , | ![]() |
|
Cyclopath | , | ![]() |
|
D'Alpaos model | Tidal network and marsh model | D'Alpaos, Andrea | ![]() |
D'Alpaos model | , | ![]() |
|
D'Alpaos model | , | ![]() |
|
D'Alpaos model | , | ![]() |
|
D'Alpaos model | , | ![]() |
|
DECAL | Aeolian dune landscape model | Baas, Andreas | ![]() |
DECAL | , | ![]() |
|
DECAL | , | ![]() |
|
DECAL | , | ![]() |
|
DECAL | , | ![]() |
|
DELTA | Simulates circulation and sedimentation in a 2D turbulent plane jet and resulting delta growth | Slingerland, Rudy | ![]() |
DELTA | , | ![]() |
|
DELTA | , | ![]() |
|
DELTA | , | ![]() |
|
DFMFON | Spatially-Explicit Mangrove-Mudflat Dynamic Model | Beselly, Sebrian | ![]() |
DFMFON | , | ![]() |
|
DFMFON | , | ![]() |
|
DFMFON | , | ![]() |
|
DFMFON | , | ![]() |
|
DFMFON | , | ![]() |
|
DFMFON | , | ![]() |
|
DFMFON | , | ![]() |
|
DHSVM | DHSVM is a distributed hydrologic model that explicitly represents the effects of topography and vegetation on water fluxes through the landscape. | DHSVM, Administrator | ![]() |
DHSVM | , | ![]() |
|
DHSVM | , | ![]() |
|
DHSVM | , | ![]() |
|
DLBRM | Distributed Large Basin Runoff Model | Croley, Thomas | ![]() |
DLBRM | , | ![]() |
|
DLBRM | , | ![]() |
|
DLBRM | , | ![]() |
|
DR3M | Distributed Routing Rainfall-Runoff Model--version II | U.S., Geological Survey | ![]() |
DR3M | , | ![]() |
|
DR3M | , | ![]() |
|
DR3M | , | ![]() |
|
DROG3D | 3-DIMENSIONAL DROGUE TRACKING ALGORITHM FOR A FINITE ELEMENT GRID WITH LINEAR FINITE ELEMENTS | Blanton, Brian | ![]() |
DROG3D | , | ![]() |
|
DROG3D | , | ![]() |
|
DROG3D | , | ![]() |
|
Dakotathon | A Python API for the Dakota iterative systems analysis toolkit. | Piper, Mark | ![]() |
Dakotathon | , | ![]() |
|
Dakotathon | , | ![]() |
|
Dakotathon | , | ![]() |
|
Dakotathon | , | ![]() |
|
DbSEABED Data Component | A CSDMS data component used to download the marine substrates datasets from the dbSEABED system. | Gan, Tian | ![]() |
DbSEABED Data Component | , | ![]() |
|
DbSEABED Data Component | , | ![]() |
|
DbSEABED Data Component | , | ![]() |
|
DbSEABED Data Component | , | ![]() |
|
Delft3D | 3D hydrodynamic and sediment transport model | Delft3D, Support | ![]() |
Delft3D | , | ![]() |
|
Delft3D | , | ![]() |
|
Delft3D | , | ![]() |
|
DeltaBW | E-book: Calculator for evolution of long profile of a river ending in a 1D migrating delta, using a backwater formulation. | Parker, Gary | ![]() |
DeltaBW | , | ![]() |
|
DeltaBW | , | ![]() |
|
DeltaBW | , | ![]() |
|
DeltaBW | , | ![]() |
|
DeltaClassification | Geometry classification of delta islands | Perignon, Mariela | ![]() |
DeltaClassification | , | ![]() |
|
DeltaClassification | , | ![]() |
|
DeltaClassification | , | ![]() |
|
DeltaNorm | E-book: Calculator for evolution of long profile of a river ending in a 1D migrating delta, using the normal flow approximation. | Parker, Gary | ![]() |
DeltaNorm | , | ![]() |
|
DeltaNorm | , | ![]() |
|
DeltaNorm | , | ![]() |
|
DeltaNorm | , | ![]() |
|
DeltaRCM | River delta formation and evolution model with channel dynamics | Liang, Man | ![]() |
DeltaRCM Vegetation | Delta-building model DeltaRCM expanded to include vegetation | Lauzon, Rebecca | ![]() |
DeltaRCM Vegetation | , | ![]() |
|
DeltaRCM Vegetation | , | ![]() |
|
DeltaRCM Vegetation | , | ![]() |
|
DeltaRCM | , | ![]() |
|
DeltaRCM | , | ![]() |
|
DeltaRCM | , | ![]() |
|
DeltaSIM | Process-response model simulating the evolution and stratigraphy of fluvial dominated deltaic systems | Hoogendoorn, Bob | ![]() |
DeltaSIM | , | ![]() |
|
DeltaSIM | , | ![]() |
|
DeltaSIM | , | ![]() |
|
Demeter | Demeter - A Land Use and Land Cover Change Disaggregation Model | Vernon, Chris | ![]() |
Demeter | , | ![]() |
|
Demeter | , | ![]() |
|
Demeter | , | ![]() |
|
DepDistTotLoadCalc | E-book: Illustration of calculation of depth-discharge relation, bed load transport, suspended load transport and total bed material load for a large, low-slope sand-bed river. | Parker, Gary | ![]() |
DepDistTotLoadCalc | , | ![]() |
|
DepDistTotLoadCalc | , | ![]() |
|
DepDistTotLoadCalc | , | ![]() |
|
DepDistTotLoadCalc | , | ![]() |
|
DepressionFinderAndRouter | Find depressions on a topographic surface. | Hobley, Dan | ![]() |
DepressionFinderAndRouter | , | ![]() |
|
DepressionFinderAndRouter | , | ![]() |
|
DepressionFinderAndRouter | , | ![]() |
|
DepressionFinderAndRouter | , | ![]() |
|
DepressionFinderAndRouter | , | ![]() |
|
DepressionFinderAndRouter | , | ![]() |
|
DepressionFinderAndRouter | , | ![]() |
|
DepressionFinderAndRouter | , | ![]() |
|
DepthDependentDiffuser | Soil depth-dependent linear hillslope diffuser | Glade, Rachel | ![]() |
DepthDependentDiffuser | , | ![]() |
|
DepthDependentDiffuser | , | ![]() |
|
DepthDependentDiffuser | , | ![]() |
|
DepthDependentDiffuser | , | ![]() |
|
DepthDependentTaylorDiffuser | This component implements a depth-dependent Taylor series diffusion rule, combining concepts of Ganti et al. (2012) and Johnstone and Hilley (2014). | Glade, Rachel | ![]() |
DepthDependentTaylorDiffuser | , | ![]() |
|
DepthDependentTaylorDiffuser | , | ![]() |
|
DepthDependentTaylorDiffuser | , | ![]() |
|
DetachmentLtdErosion | Simulate detachment limited sediment transport. | Adams, Jordan | ![]() |
DetachmentLtdErosion | , | ![]() |
|
DetachmentLtdErosion | , | ![]() |
|
DetachmentLtdErosion | , | ![]() |
|
DetachmentLtdErosion | , | ![]() |
|
Detrital Thermochron | Code for estimating long-term exhumation histories and spatial patterns of short-term erosion from the detrital thermochronometric data. | Avdeev, Boris | ![]() |
Detrital Thermochron | , | ![]() |
|
Detrital Thermochron | , | ![]() |
|
Detrital Thermochron | , | ![]() |
|
Diffusion | Diffusion of marine sediments due to waves, bioturbation | Hutton, Eric | ![]() |
Diffusion | , | ![]() |
|
Diffusion | , | ![]() |
|
Diffusion | , | ![]() |
|
Dionisos | 3D basin-scale stratigraphic model | Granjeon, Didier | ![]() |
Dionisos | , | ![]() |
|
Dionisos | , | ![]() |
|
Dionisos | , | ![]() |
|
Dionisos | , | ![]() |
|
Dorado | A Python package for simulating passive particle transport in shallow-water flows | Hariharan, Jayaram | ![]() |
Dorado | , | ![]() |
|
Dorado | , | ![]() |
|
Dorado | , | ![]() |
|
DrEICH algorithm | Algorithm for extracting channel networks from high resolution topographic data | Clubb, Fiona | ![]() |
DrEICH algorithm | , | ![]() |
|
DrEICH algorithm | , | ![]() |
|
DrEICH algorithm | , | ![]() |
|
Drainage Density | Component for calculating drainage density in Landlab given a channel network | Shobe, Charles | ![]() |
Drainage Density | , | ![]() |
|
Drainage Density | , | ![]() |
|
Drainage Density | , | ![]() |
|
Drainage Density | , | ![]() |
|
DredgeSlotBW | E-book: calculator for aggradation and degradation of sediment mixtures in gravel-bed streams subject to cyclic hydrographs. | Parker, Gary | ![]() |
DredgeSlotBW | , | ![]() |
|
DredgeSlotBW | , | ![]() |
|
DredgeSlotBW | , | ![]() |
|
DredgeSlotBW | , | ![]() |
|
DynEarthSol3D | DynEarthSol3D is a finite element solver that models the momentum balance and the heat transfer of elasto-visco-plastic material in the Lagrangian form. | Tan, Eh | ![]() |
DynEarthSol3D | , | ![]() |
|
DynEarthSol3D | , | ![]() |
|
DynEarthSol3D | , | ![]() |
|
DynQual | DynQual: the dynamical surface water quality model | Jones, Edward | ![]() |
DynQual | , | ![]() |
|
DynQual | , | ![]() |
|
DynQual | , | ![]() |
|
ECSimpleSnow | A simple snow model | Wang, Kang | ![]() |
ECSimpleSnow | , | ![]() |
|
ECSimpleSnow | , | ![]() |
|
ECSimpleSnow | , | ![]() |
|
EF5 | Ensemble Framework For Flash Flood Forecasting | Flamig, Zac | ![]() |
EF5 | , | ![]() |
|
EF5 | , | ![]() |
|
EF5 | , | ![]() |
|
ELCIRC | Eulerian-Lagrangian CIRCulation | Zhang, Yinglong | ![]() |
ELCIRC | , | ![]() |
|
ELCIRC | , | ![]() |
|
ELCIRC | , | ![]() |
|
ENTRAIN | Simulates critical shear stress of median grain sizes | Slingerland, Rudy | ![]() |
ENTRAIN | , | ![]() |
|
ENTRAIN | , | ![]() |
|
ENTRAIN | , | ![]() |
|
ENTRAINH | Simulates critical shields theta for median grain sizes | Slingerland, Rudy | ![]() |
ENTRAINH | , | ![]() |
|
ENTRAINH | , | ![]() |
|
ENTRAINH | , | ![]() |
|
ERA5 Data Component | A CSDMS data component used to download the ECMWF Reanalysis v5 (ERA5) datasets | Gan, Tian | ![]() |
ERA5 Data Component | , | ![]() |
|
ERA5 Data Component | , | ![]() |
|
ERA5 Data Component | , | ![]() |
|
ERA5 Data Component | , | ![]() |
|
ESCAPE | parallel global-scale landscape evolution model | Salles, Tristan | ![]() |
ESCAPE | , | ![]() |
|
ESCAPE | , | ![]() |
|
ESCAPE | , | ![]() |
|
Ecopath with Ecosim | Ecopath with Ecosim (EwE) is an ecological modeling software suite for personal computers | Christensen, Villy | ![]() |
Ecopath with Ecosim | , | ![]() |
|
Ecopath with Ecosim | , | ![]() |
|
Ecopath with Ecosim | , | ![]() |
|
Elv-GST | Numerical 1D research code Elv applied to gravel-sand transitions | Blom, Astrid | ![]() |
Elv-GST | , | ![]() |
|
Elv-GST | , | ![]() |
|
Elv-GST | , | ![]() |
|
Eolian Dune Model | Read note in extended description. Werner's model for eolian dune formation and evolution | Pelletier, Jon | ![]() |
Eolian Dune Model | , | ![]() |
|
Eolian Dune Model | , | ![]() |
|
Eolian Dune Model | , | ![]() |
|
Equilibrium Calculator | Equilibrium solver of Self-formed, Single-thread, Sand-bed Rivers | Viparelli, Enrica | ![]() |
Equilibrium Calculator | , | ![]() |
|
Equilibrium Calculator | , | ![]() |
|
Equilibrium Calculator | , | ![]() |
|
Erode | Fluvial landscape evolution model | Peckham, Scott | ![]() |
Erode | , | ![]() |
|
Erode | , | ![]() |
|
Erode | , | ![]() |
|
Erode-D8-Local | Fluvial Landscape Evolution Model | Peckham, Scott | ![]() |
Erode-D8-Local | , | ![]() |
|
Erode-D8-Local | , | ![]() |
|
Erode-D8-Local | , | ![]() |
|
Erode-D8-Local | , | ![]() |
|
ErosionDeposition | Landlab component for fluvial erosion/deposition. | Shobe, Charles | ![]() |
ErosionDeposition | , | ![]() |
|
ErosionDeposition | , | ![]() |
|
ErosionDeposition | , | ![]() |
|
ErosionDeposition | , | ![]() |
|
EstuarineMorphologyEstimator | Empirical Assessment Tool for Bathymetry, Flow Velocity and Salinity in Estuaries Based on Tidal Amplitude and Remotely-Sensed Imagery | Leuven, Jasper | ![]() |
EstuarineMorphologyEstimator | , | ![]() |
|
EstuarineMorphologyEstimator | , | ![]() |
|
EstuarineMorphologyEstimator | , | ![]() |
|
ExponentialWeatherer | Exponential soil production function in the style of Ahnert (1976) | Glade, Rachel | ![]() |
ExponentialWeatherer | , | ![]() |
|
ExponentialWeatherer | , | ![]() |
|
ExponentialWeatherer | , | ![]() |
|
ExponentialWeatherer | , | ![]() |
|
ExponentialWeatherer | , | ![]() |
|
ExponentialWeatherer | , | ![]() |
|
ExponentialWeatherer | , | ![]() |
|
ExponentialWeatherer | , | ![]() |
|
FACET | Floodplain and Channel Evaluation Tool (FACET) | Lamont, Samuel | ![]() |
FACET | , | ![]() |
|
FACET | , | ![]() |
|
FACET | , | ![]() |
|
FACET | , | ![]() |
|
FLDTA | Simulates flow characteristics based on gradually varied flow equation | Slingerland, Rudy | ![]() |
FLDTA | , | ![]() |
|
FLDTA | , | ![]() |
|
FLDTA | , | ![]() |
|
FTCS1D-NonLinear | Read note in extended description. Forward Time Centered Space (FTCS) method for 1D nonlinear diffusion equation | Pelletier, Jon | ![]() |
FTCS1D-NonLinear | , | ![]() |
|
FTCS1D-NonLinear | , | ![]() |
|
FTCS1D-NonLinear | , | ![]() |
|
FTCS2D | Read note in extended description. Forward Time Centered Space (FTCS) method for 2D diffusion equation | Pelletier, Jon | ![]() |
FTCS2D | , | ![]() |
|
FTCS2D | , | ![]() |
|
FTCS2D | , | ![]() |
|
FTCS2D-TerraceDiffusion | Read note in extended description. Forward Time Centered Space (FTCS) method for 2D Terrace diffusion | Pelletier, Jon | ![]() |
FTCS2D-TerraceDiffusion | , | ![]() |
|
FTCS2D-TerraceDiffusion | , | ![]() |
|
FTCS2D-TerraceDiffusion | , | ![]() |
|
FUNDY | a 3-D diagnostic model for continental shelf circulation studies | Naimie, Christopher | ![]() |
FUNDY | , | ![]() |
|
FUNDY | , | ![]() |
|
FUNDY | , | ![]() |
|
FUNWAVE | Fully Nonlinear Boussinesq Wave Model | Kirby, Jim | ![]() |
FUNWAVE | , | ![]() |
|
FUNWAVE | , | ![]() |
|
FUNWAVE | , | ![]() |
|
FVCOM | The Unstructured Grid Finite Volume Coastal Ocean Model | Chen, Changsheng | ![]() |
FVCOM | , | ![]() |
|
FVCOM | , | ![]() |
|
FVCOM | , | ![]() |
|
FVshock | Finite Volume two-dimensional shock-capturing model. | Canestrelli, Alberto | ![]() |
FVshock | , | ![]() |
|
FVshock | , | ![]() |
|
FVshock | , | ![]() |
|
FallVelocity | E-book: Particle fall velocity calculator | Parker, Gary | ![]() |
FallVelocity | , | ![]() |
|
FallVelocity | , | ![]() |
|
FallVelocity | , | ![]() |
|
FallVelocity | , | ![]() |
|
FastscapeEroder | Compute fluvial erosion using stream power theory (“fastscape” algorithm) | Hobley, Daniel | ![]() |
FastscapeEroder | , | ![]() |
|
FastscapeEroder | , | ![]() |
|
FastscapeEroder | , | ![]() |
|
FastscapeEroder | , | ![]() |
|
FastscapeEroder | , | ![]() |
|
FastscapeEroder | , | ![]() |
|
FastscapeEroder | , | ![]() |
|
FastscapeEroder | , | ![]() |
|
FillinPitsFlatsDEM | Read note in extended description. Filling in pits and flats in a DEM | Pelletier, Jon | ![]() |
FillinPitsFlatsDEM | , | ![]() |
|
FillinPitsFlatsDEM | , | ![]() |
|
FillinPitsFlatsDEM | , | ![]() |
|
FineSed3D | A turbulence-resolving numerical model for fine sediment transport in bottom boundary layer | Cheng, Zhen | ![]() |
FineSed3D | , | ![]() |
|
FineSed3D | , | ![]() |
|
FineSed3D | , | ![]() |
|
FireGenerator | This component generates a random fire event or fire time series from the Weibull statistical distribution. | Adams, Jordan | ![]() |
FireGenerator | , | ![]() |
|
FireGenerator | , | ![]() |
|
FireGenerator | , | ![]() |
|
FireGenerator | , | ![]() |
|
Flex1D | Read note in extended description. Fourier filtering in 1D while solving the flexure equation | Pelletier, Jon | ![]() |
Flex1D | , | ![]() |
|
Flex1D | , | ![]() |
|
Flex1D | , | ![]() |
|
Flex2D | Read note in extended description. Fourier filtering in 2D while solving the flexure equation | Pelletier, Jon | ![]() |
Flex2D | , | ![]() |
|
Flex2D | , | ![]() |
|
Flex2D | , | ![]() |
|
Flex2D-ADI | Read note in extended description. Solving the flexure equation applying Advection Diffusion Implicit (ADI) method | Pelletier, Jon | ![]() |
Flex2D-ADI | , | ![]() |
|
Flex2D-ADI | , | ![]() |
|
Flex2D-ADI | , | ![]() |
|
Flexure | Deform the lithosphere with 1D or 2D flexure. | Hutton, Eric | ![]() |
Flexure | , | ![]() |
|
Flexure | , | ![]() |
|
Flexure | , | ![]() |
|
Flexure | , | ![]() |
|
FlowAccumulator | Component to accumulate flow and calculate drainage area. | Barnhart, Katy | ![]() |
FlowAccumulator | , | ![]() |
|
FlowAccumulator | , | ![]() |
|
FlowAccumulator | , | ![]() |
|
FlowAccumulator | , | ![]() |
|
FlowAccumulator | , | ![]() |
|
FlowAccumulator | , | ![]() |
|
FlowAccumulator | , | ![]() |
|
FlowAccumulator | , | ![]() |
|
FlowDirectorD8 | Single-path (steepest direction) flow direction with diagonals on rasters. | Barnhart, Katy | ![]() |
FlowDirectorD8 | , | ![]() |
|
FlowDirectorD8 | , | ![]() |
|
FlowDirectorD8 | , | ![]() |
|
FlowDirectorD8 | , | ![]() |
|
FlowDirectorDinf | Flow direction on a raster grid by the D infinity method. | Barnhart, Katy | ![]() |
FlowDirectorDinf | , | ![]() |
|
FlowDirectorDinf | , | ![]() |
|
FlowDirectorDinf | , | ![]() |
|
FlowDirectorDinf | , | ![]() |
|
FlowDirectorDinf | , | ![]() |
|
FlowDirectorDinf | , | ![]() |
|
FlowDirectorDinf | , | ![]() |
|
FlowDirectorDinf | , | ![]() |
|
FlowDirectorMFD | Multiple-path flow direction with or without out diagonals. | Barnhart, Katy | ![]() |
FlowDirectorMFD | , | ![]() |
|
FlowDirectorMFD | , | ![]() |
|
FlowDirectorMFD | , | ![]() |
|
FlowDirectorMFD | , | ![]() |
|
FlowDirectorMFD | , | ![]() |
|
FlowDirectorMFD | , | ![]() |
|
FlowDirectorMFD | , | ![]() |
|
FlowDirectorMFD | , | ![]() |
|
FlowDirectorSteepest | Single-path (steepest direction) flow direction without diagonals. | Barnhart, Katy | ![]() |
FlowDirectorSteepest | , | ![]() |
|
FlowDirectorSteepest | , | ![]() |
|
FlowDirectorSteepest | , | ![]() |
|
FlowDirectorSteepest | , | ![]() |
|
FlowDirectorSteepest | , | ![]() |
|
FlowDirectorSteepest | , | ![]() |
|
FlowDirectorSteepest | , | ![]() |
|
FlowDirectorSteepest | , | ![]() |
|
FluidMud | Wave-phase resolving numerical model for fluid mud transport | Hsu, Tian-Jian | ![]() |
FluidMud | , | ![]() |
|
FluidMud | , | ![]() |
|
FluidMud | , | ![]() |
|
FluidMud | , | ![]() |
|
Fourier-Bessel-integration | Read note in extended description. Numerical integration of Fourier-Bessel terms | Pelletier, Jon | ![]() |
Fourier-Bessel-integration | , | ![]() |
|
Fourier-Bessel-integration | , | ![]() |
|
Fourier-Bessel-integration | , | ![]() |
|
FractionalNoises1D | Read note in extended description. 1D fractional-noise generation with Fourier-filtering method | Pelletier, Jon | ![]() |
FractionalNoises1D | , | ![]() |
|
FractionalNoises1D | , | ![]() |
|
FractionalNoises1D | , | ![]() |
|
FractionalNoises2D | Read note in extended description. 2D Gaussian fractional-noise generation with Fourier-filtering method | Pelletier, Jon | ![]() |
FractionalNoises2D | , | ![]() |
|
FractionalNoises2D | , | ![]() |
|
FractionalNoises2D | , | ![]() |
|
FractureGridGenerator | Create a 2D grid with randomly generated fractures. | Tucker, Greg | ![]() |
FractureGridGenerator | , | ![]() |
|
FractureGridGenerator | , | ![]() |
|
FractureGridGenerator | , | ![]() |
|
FractureGridGenerator | , | ![]() |
|
FractureGridGenerator | , | ![]() |
|
FractureGridGenerator | , | ![]() |
|
FractureGridGenerator | , | ![]() |
|
FractureGridGenerator | , | ![]() |
|
Frost Model | Frost model predicts the likelihood of occurrence of permafrost in the land surface based on the monthly temperature distribution | Overeem, Irina | ![]() |
Frost Model | , | ![]() |
|
Frost Model | , | ![]() |
|
Frost Model | , | ![]() |
|
Frost Model | , | ![]() |
|
FuzzyReef | Fuzzy logic model to model microbial reef development | Parcell, William | ![]() |
FuzzyReef | , | ![]() |
|
FuzzyReef | , | ![]() |
|
FuzzyReef | , | ![]() |
|
FuzzyReef | , | ![]() |
|
FwDET | Calculate floodwater depth based on an inundation polygon (e.g. from remote sensing) and a DEM | Cohen, Sagy | ![]() |
FwDET | , | ![]() |
|
FwDET | , | ![]() |
|
FwDET | , | ![]() |
|
GENESIS | GENEralized model for SImulating Shoreline change | Gravens, Mark | ![]() |
GENESIS | , | ![]() |
|
GENESIS | , | ![]() |
|
GENESIS | , | ![]() |
|
GENESIS | , | ![]() |
|
GEOMBEST | Geomorphic Model of Barrier, Estuarine, and Shoreface Translations | Moore, Laura | ![]() |
GEOMBEST | , | ![]() |
|
GEOMBEST | , | ![]() |
|
GEOMBEST | , | ![]() |
|
GEOMBEST++ | Geomorphic model of barrier, estaurine, and shoreface translations plus dynamic marsh plus waves | Lauzon, Rebecca | ![]() |
GEOMBEST++ | , | ![]() |
|
GEOMBEST++ | , | ![]() |
|
GEOMBEST++ | , | ![]() |
|
GEOMBEST++ | , | ![]() |
|
GEOMBEST++Seagrass | Geomorphic Model of Barrier, Estuarine, and Shoreface Translations + Marsh + Seagrass | Reeves, Ian | ![]() |
GEOMBEST++Seagrass | , | ![]() |
|
GEOMBEST++Seagrass | , | ![]() |
|
GEOMBEST++Seagrass | , | ![]() |
|
GEOMBEST++Seagrass | , | ![]() |
|
GEOMBEST-Plus | 2D cross-shore geomorphological model of barrier island and marsh response to sea level rise. | Walters, David | ![]() |
GEOMBEST-Plus | , | ![]() |
|
GEOMBEST-Plus | , | ![]() |
|
GEOMBEST-Plus | , | ![]() |
|
GEOMBEST-Plus | , | ![]() |
|
GEOtop | Distributed hydrological model, water and energy budgets | Rigon, Riccardo | ![]() |
GEOtop | , | ![]() |
|
GEOtop | , | ![]() |
|
GEOtop | , | ![]() |
|
GFlex | Multiple solution methods for isostasy and lithospheric flexure | Wickert, Andy | ![]() |
GFlex | , | ![]() |
|
GFlex | , | ![]() |
|
GFlex | , | ![]() |
|
GIPL | GIPL(Geophysical Institute Permafrost Laboratory) is an implicit finite difference one-dimensional heat flow numerical model. | Jafarov, Elchin | ![]() |
GIPL | , | ![]() |
|
GIPL | , | ![]() |
|
GIPL | , | ![]() |
|
GISKnickFinder | This python code can be used to find knickpoints and extract information about streams, it utilizes built-in functions of ArcGIS. | Rengers, Francis | ![]() |
GISKnickFinder | , | ![]() |
|
GISKnickFinder | , | ![]() |
|
GISKnickFinder | , | ![]() |
|
GISKnickFinder | , | ![]() |
|
GISS AOM | GISS Atmosphere-Ocean Model | Rind, David | ![]() |
GISS AOM | , | ![]() |
|
GISS AOM | , | ![]() |
|
GISS AOM | , | ![]() |
|
GISS GCM ModelE | GISS GCM ModelE | Schmidt, Gavin | ![]() |
GISS GCM ModelE | , | ![]() |
|
GISS GCM ModelE | , | ![]() |
|
GISS GCM ModelE | , | ![]() |
|
GLUDM | Global future agricultural land use dynamics model | Cohen, Sagy | ![]() |
GLUDM | , | ![]() |
|
GLUDM | , | ![]() |
|
GLUDM | , | ![]() |
|
GNE | Set of biogeochemical sub-models that predicts river export | Seitzinger, Sybil | ![]() |
GNE | , | ![]() |
|
GNE | , | ![]() |
|
GNE | , | ![]() |
|
GOLEM | Landscape evolution model | Tucker, Greg | ![]() |
GOLEM | , | ![]() |
|
GOLEM | , | ![]() |
|
GOLEM | , | ![]() |
|
GPM | Sedimentary process modeling software | Tetzlaff, Daniel | ![]() |
GPM | , | ![]() |
|
GPM | , | ![]() |
|
GPM | , | ![]() |
|
GPM | , | ![]() |
|
GRLP | Evolves gravel-bed river long profiles | Wickert, Andrew | ![]() |
GRLP | , | ![]() |
|
GRLP | , | ![]() |
|
GRLP | , | ![]() |
|
GSDCalculator | E-book: Calculator for statistical characteristics of grain size distributions. | Parker, Gary | ![]() |
GSDCalculator | , | ![]() |
|
GSDCalculator | , | ![]() |
|
GSDCalculator | , | ![]() |
|
GSDCalculator | , | ![]() |
|
GSFLOW | Ground-water and Surface-water FLOW model | Markstrom, Steve | ![]() |
GSFLOW | , | ![]() |
|
GSFLOW | , | ![]() |
|
GSFLOW | , | ![]() |
|
GSFLOW-GRASS | Quickly generates input files for and runs GSFLOW, and visualizes the output | Wickert, Andrew | ![]() |
GSFLOW-GRASS | , | ![]() |
|
GSFLOW-GRASS | , | ![]() |
|
GSFLOW-GRASS | , | ![]() |
|
GSFLOW-GRASS | , | ![]() |
|
GSSHA | Coupled distributed engineering hydrology, sediment, contaminant fate/transport | Ogden, Fred | ![]() |
GSSHA | , | ![]() |
|
GSSHA | , | ![]() |
|
GSSHA | , | ![]() |
|
GSSHA | , | ![]() |
|
GST-extendedmodel | Extended GST model: combination of an analytical GST migration model combined with closure relations based on the assumption of quasi-equilibrium conditions | Blom, Astrid | ![]() |
GST-extendedmodel | , | ![]() |
|
GST-extendedmodel | , | ![]() |
|
GST-extendedmodel | , | ![]() |
|
Gc2d | Glacier / ice sheet evolution model | Kessler, Mark | ![]() |
Gc2d | , | ![]() |
|
Gc2d | , | ![]() |
|
Gc2d | , | ![]() |
|
GeoClaw | Depth-averaged fluid dynamics for modeling geophysical flows and wave propagation | LeVeque, Randall | ![]() |
GeoClaw | , | ![]() |
|
GeoClaw | , | ![]() |
|
GeoClaw | , | ![]() |
|
GeoFlood | Computational model for overland flooding | Kyanjo, Brian | ![]() |
GeoFlood | , | ![]() |
|
GeoFlood | , | ![]() |
|
GeoFlood | , | ![]() |
|
GeoFlood | , | ![]() |
|
GeoTiff Data Component | A CSDMS data component for accessing data and metadata from a GeoTIFF file, through either a local filepath or a remote URL.. | Piper, Mark | ![]() |
GeoTiff Data Component | , | ![]() |
|
GeoTiff Data Component | , | ![]() |
|
GeoTiff Data Component | , | ![]() |
|
GeoTiff Data Component | , | ![]() |
|
Glimmer-CISM | Dynamic thermo-mechanical ice sheet model | Hagdorn, Magnus | ![]() |
Glimmer-CISM | , | ![]() |
|
Glimmer-CISM | , | ![]() |
|
Glimmer-CISM | , | ![]() |
|
Gospl | Global Scalable Paleo Landscape Evolution | Salles, Tristan | ![]() |
Gospl | , | ![]() |
|
Gospl | , | ![]() |
|
Gospl | , | ![]() |
|
Gospl | , | ![]() |
|
Gospl | , | ![]() |
|
Gospl | , | ![]() |
|
Gospl | , | ![]() |
|
GrainHill | Cellular automaton model of hillslope evolution | Tucker, Gregory | ![]() |
GrainHill | , | ![]() |
|
GrainHill | , | ![]() |
|
GrainHill | , | ![]() |
|
GravelSandTransition | E-book: Calculator for evolution of long profile of river with a migrating gravel-sand transition and subject to subsidence or base level rise. | Parker, Gary | ![]() |
GravelSandTransition | , | ![]() |
|
GravelSandTransition | , | ![]() |
|
GravelSandTransition | , | ![]() |
|
GravelSandTransition | , | ![]() |
|
GreenAmptInfiltrationModel | The Green-Ampt method of infiltration estimation. | Jiang, Peishi | ![]() |
GreenAmptInfiltrationModel | , | ![]() |
|
GreenAmptInfiltrationModel | , | ![]() |
|
GreenAmptInfiltrationModel | , | ![]() |
|
GreenAmptInfiltrationModel | , | ![]() |
|
GridMET Data Component | A CSDMS data component for fetching and caching gridMET meteorological data. | McDonald, Rich | ![]() |
GridMET Data Component | , | ![]() |
|
GridMET Data Component | , | ![]() |
|
GridMET Data Component | , | ![]() |
|
GridMET Data Component | , | ![]() |
|
GroundwaterDupuitPercolator | The GroundwaterDupuitPercolator solves the Boussinesq equation for flow in an unconfined aquifer over an impermeable aquifer base and calculates groundwater return flow to the surface. | Litwin, David | ![]() |
GroundwaterDupuitPercolator | , | ![]() |
|
GroundwaterDupuitPercolator | , | ![]() |
|
GroundwaterDupuitPercolator | , | ![]() |
|
GroundwaterDupuitPercolator | , | ![]() |
|
GroundwaterDupuitPercolator | , | ![]() |
|
GroundwaterDupuitPercolator | , | ![]() |
|
GroundwaterDupuitPercolator | , | ![]() |
|
GroundwaterDupuitPercolator | , | ![]() |
|
GullyErosionProfiler1D | This model is designed to simulate longitudinal profiles with headward advancing headcuts. | Rengers, Francis | ![]() |
GullyErosionProfiler1D | , | ![]() |
|
GullyErosionProfiler1D | , | ![]() |
|
GullyErosionProfiler1D | , | ![]() |
|
Gvg3Dp | 3D Numerical Simulation of Turbidity Currents | Nasr Azadani, Mohamad Mehdi | ![]() |
Gvg3Dp | , | ![]() |
|
Gvg3Dp | , | ![]() |
|
Gvg3Dp | , | ![]() |
|
Gvg3Dp | , | ![]() |
|
HAMSOM | 3D free surface and baroclinic hydrodynamic model | Mayer, Dr. Bernhard | ![]() |
HAMSOM | , | ![]() |
|
HAMSOM | , | ![]() |
|
HAMSOM | , | ![]() |
|
HBV | HBV model is a rainfall-runoff model | Craven, John | ![]() |
HBV | , | ![]() |
|
HBV | , | ![]() |
|
HBV | , | ![]() |
|
HEBEM | Hydrologically Enhanced Basin Evolution Model | Niemann, Jeffrey | ![]() |
HEBEM | , | ![]() |
|
HEBEM | , | ![]() |
|
HEBEM | , | ![]() |
|
HEBEM | , | ![]() |
|
HIM | Hallberg Isopycnal Model | Hallberg, Robert | ![]() |
HIM | , | ![]() |
|
HIM | , | ![]() |
|
HIM | , | ![]() |
|
HSPF | a comprehensive package for simulation of watershed hydrology and water quality for both conventional and toxic organic pollutants | Bicknell, Bob | ![]() |
HSPF | , | ![]() |
|
HSPF | , | ![]() |
|
HSPF | , | ![]() |
|
HYPE | Hydrological model for simulation of water and water quality over time | SMHI, -- | ![]() |
HYPE | , | ![]() |
|
HYPE | , | ![]() |
|
HYPE | , | ![]() |
|
HYPE | , | ![]() |
|
HackCalculator | Calculate Hack parameters. | Barnhart, Katy | ![]() |
HackCalculator | , | ![]() |
|
HackCalculator | , | ![]() |
|
HackCalculator | , | ![]() |
|
HackCalculator | , | ![]() |
|
HackCalculator | , | ![]() |
|
HackCalculator | , | ![]() |
|
HackCalculator | , | ![]() |
|
HackCalculator | , | ![]() |
|
HexWatershed | A mesh independent flow direction model for hydrologic models | Liao, Chang | ![]() |
HexWatershed | , | ![]() |
|
HexWatershed | , | ![]() |
|
HexWatershed | , | ![]() |
|
Hilltop and hillslope morphology extraction | Tools for extracting hilltops and analysing hillslope morphology | Hurst, Martin | ![]() |
Hilltop and hillslope morphology extraction | , | ![]() |
|
Hilltop and hillslope morphology extraction | , | ![]() |
|
Hilltop and hillslope morphology extraction | , | ![]() |
|
Hilltop flow routing | Algorithm for directly measuring hillslope length from high resolution topographic data | Grieve, Stuart | ![]() |
Hilltop flow routing | , | ![]() |
|
Hilltop flow routing | , | ![]() |
|
Hilltop flow routing | , | ![]() |
|
Hogback | Evolution of a hogback | Glade, Rachel | ![]() |
Hogback | , | ![]() |
|
Hogback | , | ![]() |
|
Hogback | , | ![]() |
|
HyLands | The HyLands model simulates the impact of bedrock landslides on topographic evolution and sediment dynamics. | Campforts, Benjamin | ![]() |
HyLands | , | ![]() |
|
HyLands | , | ![]() |
|
HyLands | , | ![]() |
|
HyLands | , | ![]() |
|
HyLands | , | ![]() |
|
HyLands | , | ![]() |
|
HyLands | , | ![]() |
|
HydroCNHS | HydroCNHS, a Python Package of Hydrological Model for Coupled Natural–Human Systems | Lin, Chung-Yi | ![]() |
HydroCNHS | , | ![]() |
|
HydroCNHS | , | ![]() |
|
HydroCNHS | , | ![]() |
|
HydroPy | A global hydrological model useful for assessment of the land surface water balance. | Stacke, Tobias | ![]() |
HydroPy | , | ![]() |
|
HydroPy | , | ![]() |
|
HydroPy | , | ![]() |
|
HydroPy | , | ![]() |
|
HydroPy | , | ![]() |
|
HydroPy | , | ![]() |
|
HydroPy | , | ![]() |
|
HydroPy | , | ![]() |
|
HydroRaVENS | Linear-reservoir hydrological model with snowpack and evapotranspiration | Wickert, Andrew | ![]() |
HydroRaVENS | , | ![]() |
|
HydroRaVENS | , | ![]() |
|
HydroRaVENS | , | ![]() |
|
HydroRaVENS | , | ![]() |
|
HydroTrend | Climate driven hydrological transport model | Kettner, Albert | ![]() |
HydroTrend | , | ![]() |
|
HydroTrend | , | ![]() |
|
HydroTrend | , | ![]() |
|
Hydromad | Hydrological Model Assessment and Development | Guillaume, Joseph | ![]() |
Hydromad | , | ![]() |
|
Hydromad | , | ![]() |
|
Hydromad | , | ![]() |
|
Hyper | 2D Turbidity Current model | Imran, Jasim | ![]() |
Hyper | , | ![]() |
|
Hyper | , | ![]() |
|
Hyper | , | ![]() |
|
IDA | An implementation of the Implicit Drainage Area method (regular and hybrid versions) for calculating drainage area from flow directions using parallel iterative solvers. | Richardson, Alan | ![]() |
IDA | , | ![]() |
|
IDA | , | ![]() |
|
IDA | , | ![]() |
|
IHydroSlide3D | iHydroSlide3D: the integrated Hydrological processes and 3-Dimensional landSlide prediction model | Chen, Guoding | ![]() |
IHydroSlide3D | , | ![]() |
|
IHydroSlide3D | , | ![]() |
|
IHydroSlide3D | , | ![]() |
|
ILAMB | The International Land Model Benchmarking (ILAMB) toolkit | Collier, Nathan | ![]() |
ILAMB | , | ![]() |
|
ILAMB | , | ![]() |
|
ILAMB | , | ![]() |
|
ISSM | Ice Sheet System Model (ISSM) | Larour, Eric | ![]() |
ISSM | , | ![]() |
|
ISSM | , | ![]() |
|
ISSM | , | ![]() |
|
Ice-sheet-Glacier-reconstruction | Read note in extended description. Sandpile method for ice-sheet and glacier reconstruction | Pelletier, Jon | ![]() |
Ice-sheet-Glacier-reconstruction | , | ![]() |
|
Ice-sheet-Glacier-reconstruction | , | ![]() |
|
Ice-sheet-Glacier-reconstruction | , | ![]() |
|
IceFlow | 2D semi-implicit shallow ice approximation glacier model | Wickert, Andy | ![]() |
IceFlow | , | ![]() |
|
IceFlow | , | ![]() |
|
IceFlow | , | ![]() |
|
IceFlow | , | ![]() |
|
Iceages | Read note in extended description. Stochastic-resonance subroutine of Pleistocene ice ages | Pelletier, Jon | ![]() |
Iceages | , | ![]() |
|
Iceages | , | ![]() |
|
Iceages | , | ![]() |
|
Icepack | Icepack is a Python package for simulating the flow of glaciers and ice sheets, as well as for solving glaciological data assimilation problems. | Shapero, Daniel | ![]() |
Icepack | , | ![]() |
|
Icepack | , | ![]() |
|
Icepack | , | ![]() |
|
IncrementalDebrisFlowVolumeAnalyzer | Estimate incremental volume changes (erosion and deposition) along the path of a debris flow. | Guido, Lauren | ![]() |
IncrementalDebrisFlowVolumeAnalyzer | , | ![]() |
|
IncrementalDebrisFlowVolumeAnalyzer | , | ![]() |
|
IncrementalDebrisFlowVolumeAnalyzer | , | ![]() |
|
IncrementalDebrisFlowVolumeAnalyzer | , | ![]() |
|
Inflow | Steady-state hyperpycnal flow model | Hutton, Eric | ![]() |
Inflow | , | ![]() |
|
Inflow | , | ![]() |
|
Inflow | , | ![]() |
|
Instructed Glacier Model | The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling through mass conservation to predict the evolution of glaciers, icefields, or ice sheets | Jouvet, Guillaume | ![]() |
Instructed Glacier Model | , | ![]() |
|
Instructed Glacier Model | , | ![]() |
|
Instructed Glacier Model | , | ![]() |
|
KWAVE | A model representing infiltration, interception, and runoff using the kinematic wave approximation | McGuire, Luke | ![]() |
KWAVE | , | ![]() |
|
KWAVE | , | ![]() |
|
KWAVE | , | ![]() |
|
Kirwan marsh model | Ecomorphoydamic model of marsh elevation and channel evolution | Kirwan, Matthew | ![]() |
Kirwan marsh model | , | ![]() |
|
Kirwan marsh model | , | ![]() |
|
Kirwan marsh model | , | ![]() |
|
Kirwan marsh model | , | ![]() |
|
KnickZone-Picker | Matlab-based scripts to extract topometrics for catchments and identify river knickpoints. | Bookhagen, Bodo | ![]() |
KnickZone-Picker | , | ![]() |
|
KnickZone-Picker | , | ![]() |
|
KnickZone-Picker | , | ![]() |
|
KnickZone-Picker | , | ![]() |
|
Kudryavtsev Model | Permafrost Active Layer Thickness Model based on Kudryavtsev's parametrization | Overeem, Irina | ![]() |
Kudryavtsev Model | , | ![]() |
|
Kudryavtsev Model | , | ![]() |
|
Kudryavtsev Model | , | ![]() |
|
Kudryavtsev Model | , | ![]() |
|
LEMming | LEMming landscape evolution model: a 2-D, regular-grid, rules-based, hybrid finite-difference / cellular automaton model that is designed to explore the effect of multiple rock types on landscape evolution. | Ward, Dylan | ![]() |
LEMming | , | ![]() |
|
LEMming | , | ![]() |
|
LEMming | , | ![]() |
|
LEMming2 | 2D model that simulates the retreat of hard-capped cliffs | Ward, Dylan | ![]() |
LEMming2 | , | ![]() |
|
LEMming2 | , | ![]() |
|
LEMming2 | , | ![]() |
|
LISFLOOD | LISFLOOD - a distributed hydrological rainfall-runoff model | de Roo, Ad | ![]() |
LISFLOOD | , | ![]() |
|
LISFLOOD | , | ![]() |
|
LISFLOOD | , | ![]() |
|
LITHFLEX1 | Lithospheric flexure solution | Furlong, Kevin | ![]() |
LITHFLEX1 | , | ![]() |
|
LITHFLEX1 | , | ![]() |
|
LITHFLEX1 | , | ![]() |
|
LITHFLEX2 | Lithospheric flexure solution for a broken plate | Furlong, Kevin | ![]() |
LITHFLEX2 | , | ![]() |
|
LITHFLEX2 | , | ![]() |
|
LITHFLEX2 | , | ![]() |
|
LOADEST | Software for estimating constituent loads in streams and rivers | Runkel, Rob | ![]() |
LOADEST | , | ![]() |
|
LOADEST | , | ![]() |
|
LOADEST | , | ![]() |
|
LOGDIST | Logrithmic velocity distribution solution | Slingerland, Rudy | ![]() |
LOGDIST | , | ![]() |
|
LOGDIST | , | ![]() |
|
LOGDIST | , | ![]() |
|
LONGPRO | Dynamic evolution of longitudinal profiles | Slingerland, Rudy | ![]() |
LONGPRO | , | ![]() |
|
LONGPRO | , | ![]() |
|
LONGPRO | , | ![]() |
|
LTRANS | The Larval TRANSport Lagrangian model (LTRANS) is an off-line particle-tracking model that runs with the stored predictions of a 3D hydrodynamic model, specifically the Regional Ocean Modeling System (ROMS). | North, Elizabeth | ![]() |
LTRANS | , | ![]() |
|
LTRANS | , | ![]() |
|
LTRANS | , | ![]() |
|
LaMEM | LaMEM - Lithosphere and Mantle Evolution Model | Popov, Anton | ![]() |
LaMEM | , | ![]() |
|
LaMEM | , | ![]() |
|
LaMEM | , | ![]() |
|
Lake-Permafrost with Subsidence | 1-D lake-permafrost thermal model with subsidence. | Matell, Nora | ![]() |
Lake-Permafrost with Subsidence | , | ![]() |
|
Lake-Permafrost with Subsidence | , | ![]() |
|
Lake-Permafrost with Subsidence | , | ![]() |
|
Lake-Permafrost with Subsidence | , | ![]() |
|
LakeMapperBarnes | Temporarily fills depressions and reroutes flow across them | Hobley, Daniel | ![]() |
LakeMapperBarnes | , | ![]() |
|
LakeMapperBarnes | , | ![]() |
|
LakeMapperBarnes | , | ![]() |
|
LakeMapperBarnes | , | ![]() |
|
Landlab | Python software framework for writing, assembling, and running 2D numerical models | Tucker, Greg | ![]() |
Landlab | , | ![]() |
|
Landlab | , | ![]() |
|
Landlab | , | ![]() |
|
Landslides | Landlab component that simulates landslide probability of failure as well as mean relative wetness and probability of saturation. | Strauch, Ronda | ![]() |
Landslides | , | ![]() |
|
Landslides | , | ![]() |
|
Landslides | , | ![]() |
|
Landslides | , | ![]() |
|
Landslides | , | ![]() |
|
Landslides | , | ![]() |
|
Landslides | , | ![]() |
|
Landslides | , | ![]() |
|
Landslides | , | ![]() |
|
LateralEroder | Laterally erode neighbor node through fluvial erosion. | Langston, Abigail | ![]() |
LateralEroder | , | ![]() |
|
LateralEroder | , | ![]() |
|
LateralEroder | , | ![]() |
|
LateralEroder | , | ![]() |
|
LateralEroder | , | ![]() |
|
LateralEroder | , | ![]() |
|
LateralEroder | , | ![]() |
|
LateralEroder | , | ![]() |
|
LateralVerticalIncision | Geometric model to explore autogenic increase of vertical incision rate in entrenching alluvial rivers. | Malatesta, Luca | ![]() |
LateralVerticalIncision | , | ![]() |
|
LateralVerticalIncision | , | ![]() |
|
LateralVerticalIncision | , | ![]() |
|
LavaFlow2D | Read note in extended description. 2D radially symmetric lava flow model | Pelletier, Jon | ![]() |
LavaFlow2D | , | ![]() |
|
LavaFlow2D | , | ![]() |
|
LavaFlow2D | , | ![]() |
|
LinearDiffuser | Landlab component that models soil creep as a linear diffusion process | Tucker, Greg | ![]() |
LinearDiffuser | , | ![]() |
|
LinearDiffuser | , | ![]() |
|
LinearDiffuser | , | ![]() |
|
LinearDiffuser | , | ![]() |
|
Lithology | Create a Lithology object with different properties | Barnhart, Katy | ![]() |
Lithology | , | ![]() |
|
Lithology | , | ![]() |
|
Lithology | , | ![]() |
|
Lithology | , | ![]() |
|
Lithology | , | ![]() |
|
Lithology | , | ![]() |
|
Lithology | , | ![]() |
|
LossyFlowAccumulator | Component to calculate drainage area and accumulate flow, while permitting dynamic loss or gain of flow downstream. | Hobley, Dan | ![]() |
LossyFlowAccumulator | , | ![]() |
|
LossyFlowAccumulator | , | ![]() |
|
LossyFlowAccumulator | , | ![]() |
|
LossyFlowAccumulator | , | ![]() |
|
LossyFlowAccumulator | , | ![]() |
|
LossyFlowAccumulator | , | ![]() |
|
LossyFlowAccumulator | , | ![]() |
|
LossyFlowAccumulator | , | ![]() |
|
LuSS | A set of MATLAB functions to model how luminescence evolves in different geomorphic scenarios. | Brown, Nathan | ![]() |
LuSS | , | ![]() |
|
LuSS | , | ![]() |
|
LuSS | , | ![]() |
|
LumSoilMixer | This is a model to simulate the non-dimensionalized luminescence in a mixing soil. | Gray, Harrison | ![]() |
LumSoilMixer | , | ![]() |
|
LumSoilMixer | , | ![]() |
|
LumSoilMixer | , | ![]() |
|
LumSoilMixer | , | ![]() |
|
MARM5D | Landscape-scale soil evolution model | Cohen, Sagy | ![]() |
MARM5D | , | ![]() |
|
MARM5D | , | ![]() |
|
MARM5D | , | ![]() |
|
MARSSIM | Landform evolution model | Howard, Alan | ![]() |
MARSSIM V4 | MARSSIM terrestrial and planetary Landform Evolution Model | Howard, Alan | ![]() |
MARSSIM V4 | , | ![]() |
|
MARSSIM V4 | , | ![]() |
|
MARSSIM V4 | , | ![]() |
|
MARSSIM | , | ![]() |
|
MARSSIM | , | ![]() |
|
MARSSIM | , | ![]() |
|
MCPM | A stand alone model for the morphological evolution of an idealized transect across a marsh channel-and-platform. | Mariotti, Giulio | ![]() |
MCPM | , | ![]() |
|
MCPM | , | ![]() |
|
MCPM | , | ![]() |
|
MFDrouting | Read note in extended description. Multiple Flow Direction (MFD) flow routing method | Pelletier, Jon | ![]() |
MFDrouting | , | ![]() |
|
MFDrouting | , | ![]() |
|
MFDrouting | , | ![]() |
|
MFDrouting-Successive | Read note in extended description. Successive flow routing with Multiple Flow Direction (MFD) method | Pelletier, Jon | ![]() |
MFDrouting-Successive | , | ![]() |
|
MFDrouting-Successive | , | ![]() |
|
MFDrouting-Successive | , | ![]() |
|
MICOM | Miami Isopycnic Coordinate Ocean Model | Bleck, Rainer | ![]() |
MICOM | , | ![]() |
|
MICOM | , | ![]() |
|
MICOM | , | ![]() |
|
MIDAS | Coupled flow- heterogeneous sediment routing model | Slingerland, Rudy | ![]() |
MIDAS | , | ![]() |
|
MIDAS | , | ![]() |
|
MIDAS | , | ![]() |
|
MITgcm | The MITgcm (MIT General Circulation Model) is a numerical model designed for study of the atmosphere, ocean, and climate. | Lovenduski, Nicole | ![]() |
MITgcm | , | ![]() |
|
MITgcm | , | ![]() |
|
MITgcm | , | ![]() |
|
MODFLOW | MODFLOW is a three-dimensional finite-difference ground-water model | Barlow, Paul | ![]() |
MODFLOW 6 | MODFLOW 6 is an object-oriented program and framework developed to provide a platform for supporting multiple models and multiple types of models within the same simulation | Hughes, Joseph | ![]() |
MODFLOW 6 | , | ![]() |
|
MODFLOW 6 | , | ![]() |
|
MODFLOW 6 | , | ![]() |
|
MODFLOW 6 | , | ![]() |
|
MODFLOW 6 | , | ![]() |
|
MODFLOW 6 | , | ![]() |
|
MODFLOW 6 | , | ![]() |
|
MODFLOW 6 | , | ![]() |
|
MODFLOW | , | ![]() |
|
MODFLOW | , | ![]() |
|
MODFLOW | , | ![]() |
|
MOM6 | MOM6 is the latest generation of the Modular Ocean Model which is a numerical model code for simulating the ocean general circulation. | User community, MOM6 | ![]() |
MOM6 | , | ![]() |
|
MOM6 | , | ![]() |
|
MOM6 | , | ![]() |
|
MPeat2D | A fully coupled mechanical–ecohydrological model of peatland development in two dimensions | Mahdiyasa, Adilan | ![]() |
MPeat2D | , | ![]() |
|
MPeat2D | , | ![]() |
|
MPeat2D | , | ![]() |
|
MRSAA | Macro-roughness model framework for treating erosion, bed cover, and sediment transport in bedrock river channels. | Zhang, Li | ![]() |
MRSAA | , | ![]() |
|
MRSAA | , | ![]() |
|
MRSAA | , | ![]() |
|
Manningseq-bouldersforpaleohydrology | Matlab® code for paleo-hydrological flood flow reconstruction in a fluvial channel | Huber, Marius | ![]() |
Manningseq-bouldersforpaleohydrology | , | ![]() |
|
Manningseq-bouldersforpaleohydrology | , | ![]() |
|
Manningseq-bouldersforpaleohydrology | , | ![]() |
|
Marsh column model | Simulates sediment, roots and carbon accumulating in a 1D marsh profile. | Mudd, Simon | ![]() |
Marsh column model | , | ![]() |
|
Marsh column model | , | ![]() |
|
Marsh column model | , | ![]() |
|
Marsh column model | , | ![]() |
|
MarshMorpho2D | 2D long-term marsh evolution model based on tidal dispersion | Mariotti, Giulio | ![]() |
MarshMorpho2D | , | ![]() |
|
MarshMorpho2D | , | ![]() |
|
MarshMorpho2D | , | ![]() |
|
MarshMorpho2D | , | ![]() |
|
MarshPondModel | 2D marsh evolution model focused on pond dynamics | Mariotti, Giulio | ![]() |
MarshPondModel | , | ![]() |
|
MarshPondModel | , | ![]() |
|
MarshPondModel | , | ![]() |
|
Meander Centerline Migration Model | Simulation of the long-term migration of meandering rivers flowing above heterogeneous floodplains | Bogoni, Manuel | ![]() |
Meander Centerline Migration Model | , | ![]() |
|
Meander Centerline Migration Model | , | ![]() |
|
Meander Centerline Migration Model | , | ![]() |
|
Meanderpy | A simple kinematic model of meandering | Sylvester, Zoltan | ![]() |
Meanderpy | , | ![]() |
|
Meanderpy | , | ![]() |
|
Meanderpy | , | ![]() |
|
Mixed bedrock-alluvial morphodynamic | Alluvial morphodynamics of bedrock reaches | Jafarinik, Sadegh | ![]() |
Mixed bedrock-alluvial morphodynamic | , | ![]() |
|
Mixed bedrock-alluvial morphodynamic | , | ![]() |
|
Mixed bedrock-alluvial morphodynamic | , | ![]() |
|
MizuRoute | MizuRoute is a stand-alone runoff routing tool | Mizukami, Naoki | ![]() |
MizuRoute | , | ![]() |
|
MizuRoute | , | ![]() |
|
MizuRoute | , | ![]() |
|
Mocsy | Routines to model the ocean carbonate system | Orr, James | ![]() |
Mocsy | , | ![]() |
|
Mocsy | , | ![]() |
|
Mocsy | , | ![]() |
|
ModelParameterDictionary | Tool written in Python for reading model input parameters from a simple formatted text file. | Tucker, Greg | ![]() |
ModelParameterDictionary | , | ![]() |
|
ModelParameterDictionary | , | ![]() |
|
ModelParameterDictionary | , | ![]() |
|
ModelParameterDictionary | , | ![]() |
|
Morphodynamic gravel bed | Morphodynamic evolution of gravel bed rivers | Jafarinik, Sadegh | ![]() |
Morphodynamic gravel bed | , | ![]() |
|
Morphodynamic gravel bed | , | ![]() |
|
Morphodynamic gravel bed | , | ![]() |
|
Morphodynamic gravel bed | , | ![]() |
|
Mosartwmpy | Model for Scale Adaptive River Transport with Water Management in Python | Thurber, Travis | ![]() |
Mosartwmpy | , | ![]() |
|
Mosartwmpy | , | ![]() |
|
Mosartwmpy | , | ![]() |
|
Mosartwmpy | , | ![]() |
|
Mosartwmpy | , | ![]() |
|
Mosartwmpy | , | ![]() |
|
Mosartwmpy | , | ![]() |
|
Mrip | Mrip is a self-organization type model for the formation and dynamics of megaripples in the nearshore. | Gallagher, Edith | ![]() |
Mrip | , | ![]() |
|
Mrip | , | ![]() |
|
Mrip | , | ![]() |
|
Mrip | , | ![]() |
|
NEMO | NEMO: Nucleus for European Modelling of the Ocean | System Team, NEMO | ![]() |
NEMO | , | ![]() |
|
NEMO | , | ![]() |
|
NEMO | , | ![]() |
|
NEWTS | NEWTS: Numerical model of coastal Erosion by Waves and Transgressive Scarps | Palermo, Rose | ![]() |
NEWTS | , | ![]() |
|
NEWTS | , | ![]() |
|
NEWTS | , | ![]() |
|
NEXRAD-extract | Extract data from NEXRAD Doppler Radar NetCDFs | Wickert, Andy | ![]() |
NEXRAD-extract | , | ![]() |
|
NEXRAD-extract | , | ![]() |
|
NEXRAD-extract | , | ![]() |
|
NEXRAD-extract | , | ![]() |
|
NUBBLE | A turbulent boundary layer model for the linearized shallow water equations | Naimie, Christopher | ![]() |
NUBBLE | , | ![]() |
|
NUBBLE | , | ![]() |
|
NUBBLE | , | ![]() |
|
NUBBLE | , | ![]() |
|
NWIS Data Component | A CSDMS data component used to download the National Water Information System (Nwis) time series datasets. | Gan, Tian | ![]() |
NWIS Data Component | , | ![]() |
|
NWIS Data Component | , | ![]() |
|
NWIS Data Component | , | ![]() |
|
NWIS Data Component | , | ![]() |
|
NWM Data Component | A CSDMS data component used to download the National Water Model datasets. | Gan, Tian | ![]() |
NWM Data Component | , | ![]() |
|
NWM Data Component | , | ![]() |
|
NWM Data Component | , | ![]() |
|
NWM Data Component | , | ![]() |
|
NearCoM | Nearshore Community Model | Kirby, James | ![]() |
NearCoM | , | ![]() |
|
NearCoM | , | ![]() |
|
NearCoM | , | ![]() |
|
Nitrate Network Model | Nitrate and organic carbon dynamics on a wetland-river network | Czuba, Jonathan | ![]() |
Nitrate Network Model | , | ![]() |
|
Nitrate Network Model | , | ![]() |
|
Nitrate Network Model | , | ![]() |
|
Non Local Means Filtering | Performs non-local means filtering of a DEM following Buades et al. (2005) | Hurst, Martin | ![]() |
Non Local Means Filtering | , | ![]() |
|
Non Local Means Filtering | , | ![]() |
|
Non Local Means Filtering | , | ![]() |
|
Non Local Means Filtering | , | ![]() |
|
NormalFault | NormalFault implements relative rock motion due to a normal fault. | Barnhart, Katy | ![]() |
NormalFault | , | ![]() |
|
NormalFault | , | ![]() |
|
NormalFault | , | ![]() |
|
NormalFault | , | ![]() |
|
NormalFault | , | ![]() |
|
NormalFault | , | ![]() |
|
NormalFault | , | ![]() |
|
NormalFault | , | ![]() |
|
OGGM | OGGM is a modular open source model for glacier dynamics | Maussion, Fabien | ![]() |
OGGM | , | ![]() |
|
OGGM | , | ![]() |
|
OGGM | , | ![]() |
|
OTEQ | One-Dimensional Transport with Equilibrium Chemistry (OTEQ): A Reactive Transport Model for Streams and Rivers | Runkel, Rob | ![]() |
OTEQ | , | ![]() |
|
OTEQ | , | ![]() |
|
OTEQ | , | ![]() |
|
OTIS | One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers | Runkel, Rob | ![]() |
OTIS | , | ![]() |
|
OTIS | , | ![]() |
|
OTIS | , | ![]() |
|
OTTAR | Ode To Transient (Ancho de los) Rivers: Transient evolution of river-channel width in response to river discharge and bank and sediment properties. | Wickert, Andrew | ![]() |
OTTAR | , | ![]() |
|
OTTAR | , | ![]() |
|
OTTAR | , | ![]() |
|
OTTAR | , | ![]() |
|
OTTER | Evolution of a river profile with dynamic width | Yanites, Brian | ![]() |
OTTER | , | ![]() |
|
OTTER | , | ![]() |
|
OTTER | , | ![]() |
|
OceanWaves | Calculate wave-generated bottom orbital velocities from surface wave parameters | Wiberg, Patricia | ![]() |
OceanWaves | , | ![]() |
|
OceanWaves | , | ![]() |
|
OceanWaves | , | ![]() |
|
OceanWaves | , | ![]() |
|
Oceananigans.jl | Oceananigans.jl is a fast and friendly ocean-flavored Julia software for simulating incompressible fluid dynamics in Cartesian and spherical shell domains on CPUs and GPUs. | Ramadhan, Ali | ![]() |
Oceananigans.jl | , | ![]() |
|
Oceananigans.jl | , | ![]() |
|
Oceananigans.jl | , | ![]() |
|
OlaFlow | Wave generation and active absorption interaction with porous structures framework | Higuera, Pablo | ![]() |
OlaFlow | , | ![]() |
|
OlaFlow | , | ![]() |
|
OlaFlow | , | ![]() |
|
OpenAMUNDSEN | openAMUNDSEN is a modular snow and hydroclimatological modeling framework written in Python. | Strasser, Ulrich | ![]() |
OpenAMUNDSEN | , | ![]() |
|
OpenAMUNDSEN | , | ![]() |
|
OpenAMUNDSEN | , | ![]() |
|
OpenFOAM | Open Field Operation and Manipulation is a toolbox for the development of customized numerical solvers. | Weller, Henry | ![]() |
OpenFOAM | , | ![]() |
|
OpenFOAM | , | ![]() |
|
OpenFOAM | , | ![]() |
|
OptimalCycleID | A numerical method to analyse a vertical succession of strata and identify the most cyclical arrangement of constituent facies | Burgess, Peter | ![]() |
OptimalCycleID | , | ![]() |
|
OptimalCycleID | , | ![]() |
|
OptimalCycleID | , | ![]() |
|
OrderID | A method to test for order in a vertical succession of strata | Burgess, Peter | ![]() |
OrderID | , | ![]() |
|
OrderID | , | ![]() |
|
OrderID | , | ![]() |
|
OverlandFlow | Component simulating overland flow using a 2-D numerical approximation of the shallow-water equations following the de Almeida et al., 2012 algorithm for storage-cell inundation modeling. | Adams, Jordan | ![]() |
OverlandFlow | , | ![]() |
|
OverlandFlow | , | ![]() |
|
OverlandFlow | , | ![]() |
|
OverlandFlowBates | This component simulates overland flow using the 2-D numerical model of shallow-water flow over topography using the Bates et al. (2010) algorithm for storage-cell inundation modeling. | Adams, Jordan | ![]() |
OverlandFlowBates | , | ![]() |
|
OverlandFlowBates | , | ![]() |
|
OverlandFlowBates | , | ![]() |
|
OverlandFlowBates | , | ![]() |
|
PCR-GLOBWB | PCR-GLOBWB is a large-scale hydrological model intended for global to regional studies | Sutanudjaja, Edwin | ![]() |
PCR-GLOBWB | , | ![]() |
|
PCR-GLOBWB | , | ![]() |
|
PCR-GLOBWB | , | ![]() |
|
PHREEQC | PHREEQC version 3 is a computer program written in the C and C++ programming languages that is designed to perform a wide variety of aqueous geochemical calculations | Parkhurst, David | ![]() |
PHREEQC | , | ![]() |
|
PHREEQC | , | ![]() |
|
PHREEQC | , | ![]() |
|
PIHM | PIHM is a multiprocess, multi-scale hydrologic model. | Duffy, Christopher | ![]() |
PIHM | , | ![]() |
|
PIHM | , | ![]() |
|
PIHM | , | ![]() |
|
PIHMgis | Tightly coupled GIS interface for the Penn State Integrated Hydrologic Model | Duffy, Christopher | ![]() |
PIHMgis | , | ![]() |
|
PIHMgis | , | ![]() |
|
PIHMgis | , | ![]() |
|
PISM | Parallel Ice Sheet Model, PISM | Group, Glacier | ![]() |
PISM | , | ![]() |
|
PISM | , | ![]() |
|
PISM | , | ![]() |
|
PRMS | Precipitation-Runoff Modeling System | Leavesley, George | ![]() |
PRMS | , | ![]() |
|
PRMS | , | ![]() |
|
PRMS | , | ![]() |
|
PSTSWM | Parallel Spectral Transform Shallow Water Model | Worley, Patrick | ![]() |
PSTSWM | , | ![]() |
|
PSTSWM | , | ![]() |
|
PSTSWM | , | ![]() |
|
ParFlow | Parallel, high-performance, integrated watershed model | Maxwell, Reed | ![]() |
ParFlow | , | ![]() |
|
ParFlow | , | ![]() |
|
ParFlow | , | ![]() |
|
Permafrost Benchmark System | The PBS is a web-based tool for conducting benchmarking studies of permafrost models. | Piper, Mark | ![]() |
Permafrost Benchmark System | , | ![]() |
|
Permafrost Benchmark System | , | ![]() |
|
Permafrost Benchmark System | , | ![]() |
|
Permafrost Benchmark System | , | ![]() |
|
PerronNLDiffuse | Nonlinear diffusion, following Perron (2011). | Hobley, Daniel | ![]() |
PerronNLDiffuse | , | ![]() |
|
PerronNLDiffuse | , | ![]() |
|
PerronNLDiffuse | , | ![]() |
|
PerronNLDiffuse | , | ![]() |
|
PerronNLDiffuse | , | ![]() |
|
PerronNLDiffuse | , | ![]() |
|
PerronNLDiffuse | , | ![]() |
|
PerronNLDiffuse | , | ![]() |
|
Physprop | Calculates the acoustic values based on physical properties | Pratson, Lincoln | ![]() |
Physprop | , | ![]() |
|
Physprop | , | ![]() |
|
Physprop | , | ![]() |
|
Physprop | , | ![]() |
|
Pllcart3d | 3D numerical simulation of confined miscible flows | Oliveira, Rafael | ![]() |
Pllcart3d | , | ![]() |
|
Pllcart3d | , | ![]() |
|
Pllcart3d | , | ![]() |
|
Plume | Hypopycnal sediment plume | Hutton, Eric | ![]() |
Plume | , | ![]() |
|
Plume | , | ![]() |
|
Plume | , | ![]() |
|
Point-Tidal-flat | Point Model for Tidal Flat Evolution model | Fagherazzi, Sergio | ![]() |
Point-Tidal-flat | , | ![]() |
|
Point-Tidal-flat | , | ![]() |
|
Point-Tidal-flat | , | ![]() |
|
PotentialEvapotranspiration | Calculates potential evapotranspiration | Nudurupati, Sai | ![]() |
PotentialEvapotranspiration | , | ![]() |
|
PotentialEvapotranspiration | , | ![]() |
|
PotentialEvapotranspiration | , | ![]() |
|
PotentialEvapotranspiration | , | ![]() |
|
PotentialEvapotranspiration | , | ![]() |
|
PotentialEvapotranspiration | , | ![]() |
|
PotentialEvapotranspiration | , | ![]() |
|
PotentialEvapotranspiration | , | ![]() |
|
PotentialityFlowRouter | Multidirectional flow routing using a novel method. | Hobley, Daniel | ![]() |
PotentialityFlowRouter | , | ![]() |
|
PotentialityFlowRouter | , | ![]() |
|
PotentialityFlowRouter | , | ![]() |
|
PotentialityFlowRouter | , | ![]() |
|
PotentialityFlowRouter | , | ![]() |
|
PotentialityFlowRouter | , | ![]() |
|
PotentialityFlowRouter | , | ![]() |
|
PotentialityFlowRouter | , | ![]() |
|
PrecipitationDistribution | Generate random sequence of precipitation events | Adams, Jordan | ![]() |
PrecipitationDistribution | , | ![]() |
|
PrecipitationDistribution | , | ![]() |
|
PrecipitationDistribution | , | ![]() |
|
PrecipitationDistribution | , | ![]() |
|
PrecipitationDistribution | , | ![]() |
|
PrecipitationDistribution | , | ![]() |
|
PrecipitationDistribution | , | ![]() |
|
PrecipitationDistribution | , | ![]() |
|
Princeton Ocean Model (POM) | POM: Sigma coordinate coastal & basin circulation model | Ezer, Tal | ![]() |
Princeton Ocean Model (POM) | , | ![]() |
|
Princeton Ocean Model (POM) | , | ![]() |
|
Princeton Ocean Model (POM) | , | ![]() |
|
PsHIC | Pixel-scale Hypsometric Integral Calculator | Cohen, Sagy | ![]() |
PsHIC | , | ![]() |
|
PsHIC | , | ![]() |
|
PsHIC | , | ![]() |
|
PyDeCe | Python model for Dense Current forming eruptions (PyDeCe) is a tool for modeling the dense endmember of pyroclastic density currents generated either by impulsive column collapse or sustained fountaining eruptions. | Ganesh, Indujaa | ![]() |
PyDeCe | , | ![]() |
|
PyDeCe | , | ![]() |
|
PyDeCe | , | ![]() |
|
PyDeCe | , | ![]() |
|
PyDeltaRCM | Reduced complexity river delta formation and evolution model with channel dynamics | Perignon, Mariela | ![]() |
PyDeltaRCM | , | ![]() |
|
PyDeltaRCM | , | ![]() |
|
PyDeltaRCM | , | ![]() |
|
PyDeltaRCM | , | ![]() |
|
PyRiverBed | A Python framework to generate synthetic riverbed topography of constant-width meandering rivers | Li, Zhi | ![]() |
PyRiverBed | , | ![]() |
|
PyRiverBed | , | ![]() |
|
PyRiverBed | , | ![]() |
|
PyRiverBed | , | ![]() |
|
PyRiverBed | , | ![]() |
|
PyRiverBed | , | ![]() |
|
PyRiverBed | , | ![]() |
|
PyRiverBed | , | ![]() |
|
PySBeLT | A Python software package for stochastic sediment transport under rarefied conditions | Zwiep, Sarah | ![]() |
PySBeLT | , | ![]() |
|
PySBeLT | , | ![]() |
|
PySBeLT | , | ![]() |
|
PySBeLT | , | ![]() |
|
QDSSM | Quantitative Dynamic Sequence Stratigraphic Model | Postma, George | ![]() |
QDSSM | , | ![]() |
|
QDSSM | , | ![]() |
|
QDSSM | , | ![]() |
|
QDSSM | , | ![]() |
|
QTCM | Quasi-equilibrium Tropical Circulation Model | Neelin, David | ![]() |
QTCM | , | ![]() |
|
QTCM | , | ![]() |
|
QTCM | , | ![]() |
|
QUAL2K | A Modeling Framework for Simulating River and Stream Water Quality | Chapra, Steve | ![]() |
QUAL2K | , | ![]() |
|
QUAL2K | , | ![]() |
|
QUAL2K | , | ![]() |
|
QUODDY | A state-of-the-art finite-element computer simulation program for coastal ocean circulation modeling | Lynch, Kristina | ![]() |
QUODDY | , | ![]() |
|
QUODDY | , | ![]() |
|
QUODDY | , | ![]() |
|
Quad | Geometric model to study the response of fluvial-deltas to base-level changes. | Lorenzo Trueba, Jorge | ![]() |
Quad | , | ![]() |
|
Quad | , | ![]() |
|
Quad | , | ![]() |
|
Quad | , | ![]() |
|
RAFEM | River Avulsion and Floodplain Evolution Module | Ratliff, Katherine | ![]() |
RAFEM | , | ![]() |
|
RAFEM | , | ![]() |
|
RAFEM | , | ![]() |
|
RASCAL | Landscape evolution resulting from feedback between flow, vegetation, and sediment | Larsen, Laurel | ![]() |
RASCAL | , | ![]() |
|
RASCAL | , | ![]() |
|
RASCAL | , | ![]() |
|
RASCAL | , | ![]() |
|
RCPWAVE | Regional Coastal Processes Wave Model | Gravens, Mark | ![]() |
RCPWAVE | , | ![]() |
|
RCPWAVE | , | ![]() |
|
RCPWAVE | , | ![]() |
|
RCPWAVE | , | ![]() |
|
REF-DIF | Phase-resolving parabolic refraction-diffraction model for ocean surface wave propagation. | Kirby, James | ![]() |
REF-DIF | , | ![]() |
|
REF-DIF | , | ![]() |
|
REF-DIF | , | ![]() |
|
RHESSys | Regional Hydro-Ecologic Simulation System | Tague, christina | ![]() |
RHESSys | , | ![]() |
|
RHESSys | , | ![]() |
|
RHESSys | , | ![]() |
|
ROMS | Regional Ocean Modeling System | Arango, Hernan G. | ![]() |
ROMS Data Component | A CSDMS data component used to access the Regional Ocean Modeling System (ROMS) datasets | Gan, Tian | ![]() |
ROMS Data Component | , | ![]() |
|
ROMS Data Component | , | ![]() |
|
ROMS Data Component | , | ![]() |
|
ROMS Data Component | , | ![]() |
|
ROMS | , | ![]() |
|
ROMS | , | ![]() |
|
ROMS | , | ![]() |
|
ROMSBuilder | ROMSBuilder is a CCA-CSDMS Modeling Tool (CMT) compliant component that creates another CMT compliant ROMS component. The new ROMS component is build as per the C-preprocessing options that defines a particular ROMS application. | Kallumadikal, Jisamma | ![]() |
ROMSBuilder | , | ![]() |
|
ROMSBuilder | , | ![]() |
|
ROMSBuilder | , | ![]() |
|
ROMSBuilder | , | ![]() |
|
Rabpro | River and Basin Profiler (rabpro) | Schwenk, Jon | ![]() |
Rabpro | , | ![]() |
|
Rabpro | , | ![]() |
|
Rabpro | , | ![]() |
|
Radiation | Compute 1D and 2D total incident shortwave radiation. | Nudurupati, Sai | ![]() |
Radiation | , | ![]() |
|
Radiation | , | ![]() |
|
Radiation | , | ![]() |
|
Radiation | , | ![]() |
|
Radiation | , | ![]() |
|
Radiation | , | ![]() |
|
Radiation | , | ![]() |
|
Radiation | , | ![]() |
|
RecircFeed | E-book: calculator for approach to equilibrium in recirculating and feed flumes | Parker, Gary | ![]() |
RecircFeed | , | ![]() |
|
RecircFeed | , | ![]() |
|
RecircFeed | , | ![]() |
|
RecircFeed | , | ![]() |
|
Rescal-snow | A model of dunes and snow-waves | Kochanski, Kelly | ![]() |
Rescal-snow | , | ![]() |
|
Rescal-snow | , | ![]() |
|
Rescal-snow | , | ![]() |
|
Reservoir | Reservoir: Tools for Analysis, Design, and Operation of Water Supply Storages | Turner, Sean | ![]() |
Reservoir | , | ![]() |
|
Reservoir | , | ![]() |
|
Reservoir | , | ![]() |
|
Reservoir | , | ![]() |
|
RivGraph | RivGraph: Automatic extraction and analysis of river and delta channel network topology | Schwenk, Jon | ![]() |
RivGraph | , | ![]() |
|
RivGraph | , | ![]() |
|
RivGraph | , | ![]() |
|
RivMAP | Matlab toolbox for mapping and measuring river planform changes | Schwenk, Jon | ![]() |
RivMAP | , | ![]() |
|
RivMAP | , | ![]() |
|
RivMAP | , | ![]() |
|
River Erosion Model | An intermediate complexity model for simulating stream channel evolution (years to decades) at the watershed scale. | Lammers, Roderick | ![]() |
River Erosion Model | , | ![]() |
|
River Erosion Model | , | ![]() |
|
River Erosion Model | , | ![]() |
|
River Network Bed-Material Sediment | Bed-material sediment transport and storage dynamics on river networks. | Czuba, Jonathan | ![]() |
River Network Bed-Material Sediment | , | ![]() |
|
River Network Bed-Material Sediment | , | ![]() |
|
River Network Bed-Material Sediment | , | ![]() |
|
River Temperature Model | River Temperature Model based on heat balance approach | Overeem, Irina | ![]() |
River Temperature Model | , | ![]() |
|
River Temperature Model | , | ![]() |
|
River Temperature Model | , | ![]() |
|
River Temperature Model | , | ![]() |
|
RiverMUSE | Simulates freshwater mussel populations' response to changes in suspended sediment | Schwenk, Jon | ![]() |
RiverMUSE | , | ![]() |
|
RiverMUSE | , | ![]() |
|
RiverMUSE | , | ![]() |
|
RiverSynth | Excel file for creating XYZ coordinates of artificial river valley topography | Brown, Rocko | ![]() |
RiverSynth | , | ![]() |
|
RiverSynth | , | ![]() |
|
RiverSynth | , | ![]() |
|
RiverWFRisingBaseLevelNormal | E-book: Calculator for disequilibrium aggradation of a sand-bed river in response to rising base level. | Parker, Gary | ![]() |
RiverWFRisingBaseLevelNormal | , | ![]() |
|
RiverWFRisingBaseLevelNormal | , | ![]() |
|
RiverWFRisingBaseLevelNormal | , | ![]() |
|
RiverWFRisingBaseLevelNormal | , | ![]() |
|
RouseVanoniEquilibrium | E-book: Program for calculating the Rouse-Vanoni profile of suspended sediment. | Parker, Gary | ![]() |
RouseVanoniEquilibrium | , | ![]() |
|
RouseVanoniEquilibrium | , | ![]() |
|
RouseVanoniEquilibrium | , | ![]() |
|
RouseVanoniEquilibrium | , | ![]() |
|
SBEACH | Numerical Model for Simulating Storm-Induce Beach Change | Gravens, Mark | ![]() |
SBEACH | , | ![]() |
|
SBEACH | , | ![]() |
|
SBEACH | , | ![]() |
|
SBEACH | , | ![]() |
|
SBM | Sorted Bedform Model | Murray, A. Brad | ![]() |
SBM | , | ![]() |
|
SBM | , | ![]() |
|
SBM | , | ![]() |
|
SEA | Southamption--East Anglia | Stevens, David | ![]() |
SEA | , | ![]() |
|
SEA | , | ![]() |
|
SEA | , | ![]() |
|
SEDPAK | Models the sedimentary fill of basins | Kendall, Christopher | ![]() |
SEDPAK | , | ![]() |
|
SEDPAK | , | ![]() |
|
SEDPAK | , | ![]() |
|
SEDPAK | , | ![]() |
|
SELFE | Semi-implicit Eulerian–Lagrangian Finite Element | Zhang, Yinglong | ![]() |
SELFE | , | ![]() |
|
SELFE | , | ![]() |
|
SELFE | , | ![]() |
|
SEOM | Spectral Element Ocean Model | Haidvogel, Dale | ![]() |
SEOM | , | ![]() |
|
SEOM | , | ![]() |
|
SEOM | , | ![]() |
|
SEOM | , | ![]() |
|
SETTLE | Partical settling velocity solution | Slingerland, Rudy | ![]() |
SETTLE | , | ![]() |
|
SETTLE | , | ![]() |
|
SETTLE | , | ![]() |
|
SFINCS | SFINCS, a reduced-physics solver to compute compound flooding in coastal systems due to fluvial, pluvial, tidal, wind- and wave-driven processes | Leijnse, Tim | ![]() |
SFINCS | , | ![]() |
|
SFINCS | , | ![]() |
|
SFINCS | , | ![]() |
|
SIBERIA | SIBERIA simulates the evolution of landscapes under the action of runoff and erosion over long times scales. | Willgoose, Garry | ![]() |
SIBERIA | , | ![]() |
|
SIBERIA | , | ![]() |
|
SIBERIA | , | ![]() |
|
SICOPOLIS | Ice sheet model | Greve, Ralf | ![]() |
SICOPOLIS | , | ![]() |
|
SICOPOLIS | , | ![]() |
|
SICOPOLIS | , | ![]() |
|
SIGNUM | SIGNUM (Simple Integrated Geomorphological Numerical Model) is a MAtlab TIN-based landscape evolution model | Capolongo, Domenico | ![]() |
SIGNUM | , | ![]() |
|
SIGNUM | , | ![]() |
|
SIGNUM | , | ![]() |
|
SIMSAFADIM | Finite element model for fluid flow, clastic, carbonate and evaporate sedimentation | Bitzer, Klaus | ![]() |
SIMSAFADIM | , | ![]() |
|
SIMSAFADIM | , | ![]() |
|
SIMSAFADIM | , | ![]() |
|
SIMSAFADIM | , | ![]() |
|
SINUOUS | SINUOUS - Meander Evolution Model | Howard, Alan | ![]() |
SINUOUS | , | ![]() |
|
SINUOUS | , | ![]() |
|
SINUOUS | , | ![]() |
|
SINUOUS | , | ![]() |
|
SISV | Spectral, Implicit, Streamfunction-Vorticity solver | Burns, Peter | ![]() |
SISV | , | ![]() |
|
SISV | , | ![]() |
|
SISV | , | ![]() |
|
SISV | , | ![]() |
|
SLAMM 6.7 | The Sea Level Affecting Marshes Model (SLAMM) | Clough, Jonathan | ![]() |
SLAMM 6.7 | , | ![]() |
|
SLAMM 6.7 | , | ![]() |
|
SLAMM 6.7 | , | ![]() |
|
SLEPIAN Alpha | Computation of spherical harmonics, Slepian functions, and transforms | Simons, Frederik | ![]() |
SLEPIAN Alpha | , | ![]() |
|
SLEPIAN Alpha | , | ![]() |
|
SLEPIAN Alpha | , | ![]() |
|
SLEPIAN Bravo | Linear inverse problems using spherical harmonics and spherical Slepian functions | Simons, Frederik | ![]() |
SLEPIAN Bravo | , | ![]() |
|
SLEPIAN Bravo | , | ![]() |
|
SLEPIAN Bravo | , | ![]() |
|
SLEPIAN Bravo | , | ![]() |
|
SLEPIAN Charlie | Spectral estimation problems using spherical harmonics and spherical Slepian functions | Simons, Frederik | ![]() |
SLEPIAN Charlie | , | ![]() |
|
SLEPIAN Charlie | , | ![]() |
|
SLEPIAN Charlie | , | ![]() |
|
SLEPIAN Charlie | , | ![]() |
|
SLEPIAN Delta | Analysis of time-variable gravity from the GRACE satellite mission using spherical harmonics and spherical Slepian functions | Harig, Christopher | ![]() |
SLEPIAN Delta | , | ![]() |
|
SLEPIAN Delta | , | ![]() |
|
SLEPIAN Delta | , | ![]() |
|
SLEPIAN Delta | , | ![]() |
|
SLEPIAN Echo | Computation of vectorial spherical harmonics, vectorial Slepian functions, and transforms | Plattner, Alain | ![]() |
SLEPIAN Echo | , | ![]() |
|
SLEPIAN Echo | , | ![]() |
|
SLEPIAN Echo | , | ![]() |
|
SLEPIAN Echo | , | ![]() |
|
SNAC | An updated Lagrangian explicit finite difference code for modeling a finitely deforming elasto-visco-plastic solid in 3D. | Choi, Eunseo | ![]() |
SNAC | , | ![]() |
|
SNAC | , | ![]() |
|
SNAC | , | ![]() |
|
SNOWPACK | SNOWPACK is a multi-purpose snow and land-surface model, which focuses on a detailed description of the mass and energy exchange between the snow, the atmosphere and optionally with the vegetation cover and the soil. It also includes a detailed treatment of mass and energy fluxes within these media. | Lehning, Michael | ![]() |
SNOWPACK | , | ![]() |
|
SNOWPACK | , | ![]() |
|
SNOWPACK | , | ![]() |
|
SPACE | Landlab component for 2-D calculation of fluvial sediment transport and bedrock erosion | Shobe, Charles | ![]() |
SPACE | , | ![]() |
|
SPACE | , | ![]() |
|
SPACE | , | ![]() |
|
SPARROW | The SPARROW Surface Water-Quality Model | Alexander, Richard | ![]() |
SPARROW | , | ![]() |
|
SPARROW | , | ![]() |
|
SPARROW | , | ![]() |
|
SPHYSICS | Smoothed Particle Hydrodynamics code | Dalrymple, Robert | ![]() |
SPHYSICS | , | ![]() |
|
SPHYSICS | , | ![]() |
|
SPHYSICS | , | ![]() |
|
SRH-1D | One-dimensional cross section based hydraulic and mobile-bed sediment transport model | Greimann, Blair | ![]() |
SRH-1D | , | ![]() |
|
SRH-1D | , | ![]() |
|
SRH-1D | , | ![]() |
|
SRH-1D | , | ![]() |
|
STORM | Windfield simulator for a cyclone | Slingerland, Rudy | ![]() |
STORM | , | ![]() |
|
STORM | , | ![]() |
|
STORM | , | ![]() |
|
STSWM | NCAR Spectral Transform Shallow Water Model | Hack, James | ![]() |
STSWM | , | ![]() |
|
STSWM | , | ![]() |
|
STSWM | , | ![]() |
|
STVENANT | 1D gradually varied flow routine | Slingerland, Rudy | ![]() |
STVENANT | , | ![]() |
|
STVENANT | , | ![]() |
|
STVENANT | , | ![]() |
|
STWAVE | Steady-State Spectral Wave Model | Smith, Jane | ![]() |
STWAVE | , | ![]() |
|
STWAVE | , | ![]() |
|
STWAVE | , | ![]() |
|
SUSP | Suspended load transport subroutine | Slingerland, Rudy | ![]() |
SUSP | , | ![]() |
|
SUSP | , | ![]() |
|
SUSP | , | ![]() |
|
SVELA | Shear velocity solution associated with grain roughness | Slingerland, Rudy | ![]() |
SVELA | , | ![]() |
|
SVELA | , | ![]() |
|
SVELA | , | ![]() |
|
SWAN | SWAN is a third-generation wave model | SWAN, Team | ![]() |
SWAN | , | ![]() |
|
SWAN | , | ![]() |
|
SWAN | , | ![]() |
|
SWAT | SWAT is a river basin scale model developed to quantify the impact of land management practices in large, complex watersheds. | Arnold, Jeff | ![]() |
SWAT | , | ![]() |
|
SWAT | , | ![]() |
|
SWAT | , | ![]() |
|
SWEHR | A coupled model for infiltration, fluid flow, and sediment transport. | McGuire, Luke | ![]() |
SWEHR | , | ![]() |
|
SWEHR | , | ![]() |
|
SWEHR | , | ![]() |
|
SWMM | Storm Water Management Model | Rossman, Lewis | ![]() |
SWMM | , | ![]() |
|
SWMM | , | ![]() |
|
SWMM | , | ![]() |
|
Sakura | 3 Equation hyperpycnal flow model | Kubo, Yusuke | ![]() |
Sakura | , | ![]() |
|
Sakura | , | ![]() |
|
Sakura | , | ![]() |
|
SedBerg | An iceberg drift and melt model, developed to simulate sedimentation in high-latitude glaciated fjords. | Mugford, Ruth | ![]() |
SedBerg | , | ![]() |
|
SedBerg | , | ![]() |
|
SedBerg | , | ![]() |
|
SedCas | A probabilistic sediment cascade model for sediment production, storage and transfer | Hirschberg, Jacob | ![]() |
SedCas | , | ![]() |
|
SedCas | , | ![]() |
|
SedCas | , | ![]() |
|
SedDepEroder | Compute fluvial erosion using using “tools and cover” theory | Hobley, Daniel | ![]() |
SedDepEroder | , | ![]() |
|
SedDepEroder | , | ![]() |
|
SedDepEroder | , | ![]() |
|
SedDepEroder | , | ![]() |
|
SedDepEroder | , | ![]() |
|
SedDepEroder | , | ![]() |
|
SedDepEroder | , | ![]() |
|
SedDepEroder | , | ![]() |
|
SedFoam-2.0 | A multi-dimensional Eulerian two-phase model for sediment transport (version 2.0) | Chauchat, Julien | ![]() |
SedFoam-2.0 | , | ![]() |
|
SedFoam-2.0 | , | ![]() |
|
SedFoam-2.0 | , | ![]() |
|
SedPlume | SedPlume simulates glacial meltwater plume dynamics and sedimentation. | Mugford, Ruth | ![]() |
SedPlume | , | ![]() |
|
SedPlume | , | ![]() |
|
SedPlume | , | ![]() |
|
SedPlume | , | ![]() |
|
Sedflux | Basin filling stratigraphic model | Hutton, Eric | ![]() |
Sedflux | , | ![]() |
|
Sedflux | , | ![]() |
|
Sedflux | , | ![]() |
|
Sedtrans05 | Sediment transport model for continental shelf and estuaries | Neumeier, Urs | ![]() |
Sedtrans05 | , | ![]() |
|
Sedtrans05 | , | ![]() |
|
Sedtrans05 | , | ![]() |
|
Shoreline | Coastal evolution model | Peckham, Scott | ![]() |
Shoreline | , | ![]() |
|
Shoreline | , | ![]() |
|
Shoreline | , | ![]() |
|
Shoreline | , | ![]() |
|
SiStER | An easy-to-use MATLAB code to simulate long-term lithosphere and mantle deformation. | Olive, Jean-Arthur | ![]() |
SiStER | , | ![]() |
|
SiStER | , | ![]() |
|
SiStER | , | ![]() |
|
SimClast | basin-scale 3D stratigraphic model | Dalman, Rory | ![]() |
SimClast | , | ![]() |
|
SimClast | , | ![]() |
|
SimClast | , | ![]() |
|
SimClast | , | ![]() |
|
SinkFiller | Fill sinks in a landscape to the brim, following the Barnes et al. (2014) algorithms. | Hobley, Daniel | ![]() |
SinkFiller | , | ![]() |
|
SinkFiller | , | ![]() |
|
SinkFiller | , | ![]() |
|
SinkFiller | , | ![]() |
|
SinkFiller | , | ![]() |
|
SinkFiller | , | ![]() |
|
SinkFiller | , | ![]() |
|
SinkFiller | , | ![]() |
|
SoilGrids Data Component | A CSDMS data component used to download the soil property datasets from the SoilGrids system. | Gan, Tian | ![]() |
SoilGrids Data Component | , | ![]() |
|
SoilGrids Data Component | , | ![]() |
|
SoilGrids Data Component | , | ![]() |
|
SoilGrids Data Component | , | ![]() |
|
SoilInfiltrationGreenAmpt | Landlab component that calculates soil infiltration based on the Green-Ampt solution. | Rengers, Francis | ![]() |
SoilInfiltrationGreenAmpt | , | ![]() |
|
SoilInfiltrationGreenAmpt | , | ![]() |
|
SoilInfiltrationGreenAmpt | , | ![]() |
|
SoilMoisture | Compute the decay of soil moisture saturation at storm-interstorm time period | Nudurupati, Sai | ![]() |
SoilMoisture | , | ![]() |
|
SoilMoisture | , | ![]() |
|
SoilMoisture | , | ![]() |
|
SoilMoisture | , | ![]() |
|
SoilMoisture | , | ![]() |
|
SoilMoisture | , | ![]() |
|
SoilMoisture | , | ![]() |
|
SoilMoisture | , | ![]() |
|
SpatialPrecipitationDistribution | Generate random sequence of spatially-resolved precipitation events | Hobley, Daniel | ![]() |
SpatialPrecipitationDistribution | , | ![]() |
|
SpatialPrecipitationDistribution | , | ![]() |
|
SpatialPrecipitationDistribution | , | ![]() |
|
SpatialPrecipitationDistribution | , | ![]() |
|
SpatialPrecipitationDistribution | , | ![]() |
|
SpatialPrecipitationDistribution | , | ![]() |
|
SpatialPrecipitationDistribution | , | ![]() |
|
SpatialPrecipitationDistribution | , | ![]() |
|
Spbgc | 2D Numerical Simulation of Turbidity Currents | Borden, Zachary | ![]() |
Spbgc | , | ![]() |
|
Spbgc | , | ![]() |
|
Spbgc | , | ![]() |
|
Spbgc | , | ![]() |
|
SpeciesEvolver | Evolve life in a landscape. | Lyons, Nathan | ![]() |
SpeciesEvolver | , | ![]() |
|
SpeciesEvolver | , | ![]() |
|
SpeciesEvolver | , | ![]() |
|
SpeciesEvolver | , | ![]() |
|
SpeciesEvolver | , | ![]() |
|
SpeciesEvolver | , | ![]() |
|
SpeciesEvolver | , | ![]() |
|
SpeciesEvolver | , | ![]() |
|
Spirals1D | Read note in extended description. 1D model of spiral troughs on Mars | Pelletier, Jon | ![]() |
Spirals1D | , | ![]() |
|
Spirals1D | , | ![]() |
|
Spirals1D | , | ![]() |
|
SteadyStateAg | E-book: calculator for approach to equilibrium in recirculating and feed flumes | Parker, Gary | ![]() |
SteadyStateAg | , | ![]() |
|
SteadyStateAg | , | ![]() |
|
SteadyStateAg | , | ![]() |
|
SteadyStateAg | , | ![]() |
|
SteepnessFinder | Calculate steepness and concavity indices from gridded topography | Hobley, Daniel | ![]() |
SteepnessFinder | , | ![]() |
|
SteepnessFinder | , | ![]() |
|
SteepnessFinder | , | ![]() |
|
SteepnessFinder | , | ![]() |
|
SteepnessFinder | , | ![]() |
|
SteepnessFinder | , | ![]() |
|
SteepnessFinder | , | ![]() |
|
SteepnessFinder | , | ![]() |
|
StreamPower | Read note in extended description. Modeling the development of topographic steady state in the stream-power model | Pelletier, Jon | ![]() |
StreamPower | , | ![]() |
|
StreamPower | , | ![]() |
|
StreamPower | , | ![]() |
|
StreamPowerSmoothThresholdEroder | Compute fluvial erosion using stream power theory with a numerically smoothed threshold | Tucker, Greg | ![]() |
StreamPowerSmoothThresholdEroder | , | ![]() |
|
StreamPowerSmoothThresholdEroder | , | ![]() |
|
StreamPowerSmoothThresholdEroder | , | ![]() |
|
StreamPowerSmoothThresholdEroder | , | ![]() |
|
StreamPowerSmoothThresholdEroder | , | ![]() |
|
StreamPowerSmoothThresholdEroder | , | ![]() |
|
StreamPowerSmoothThresholdEroder | , | ![]() |
|
StreamPowerSmoothThresholdEroder | , | ![]() |
|
StreamProfilerApp | Global stream profiler web-app | Ruetenik, Gregory | ![]() |
StreamProfilerApp | , | ![]() |
|
StreamProfilerApp | , | ![]() |
|
StreamProfilerApp | , | ![]() |
|
StreamProfilerApp | , | ![]() |
|
Subside | Flexure model | Hutton, Eric | ![]() |
Subside | , | ![]() |
|
Subside | , | ![]() |
|
Subside | , | ![]() |
|
SubsidingFan | E-book: calculator for evolution of profiles of fans in subsiding basins | Parker, Gary | ![]() |
SubsidingFan | , | ![]() |
|
SubsidingFan | , | ![]() |
|
SubsidingFan | , | ![]() |
|
SubsidingFan | , | ![]() |
|
Sun fan-delta model | Fan-delta and alluvial fan landscape evolution model | Limaye, Ajay | ![]() |
Sun fan-delta model | , | ![]() |
|
Sun fan-delta model | , | ![]() |
|
Sun fan-delta model | , | ![]() |
|
Sun fan-delta model | , | ![]() |
|
Sun fan-delta model | , | ![]() |
|
Sun fan-delta model | , | ![]() |
|
Sun fan-delta model | , | ![]() |
|
Sun fan-delta model | , | ![]() |
|
SurfaceRoughness | Quantifies surface roughness with high-resolution topographic data by analyzing the local variability of surface normal vectors. | Milodowski, David | ![]() |
SurfaceRoughness | , | ![]() |
|
SurfaceRoughness | , | ![]() |
|
SurfaceRoughness | , | ![]() |
|
SuspSedDensityStrat | E-book: Module for calculating the effect of density stratification on the vertical profiles of velocity and suspended sediment. | Parker, Gary | ![]() |
SuspSedDensityStrat | , | ![]() |
|
SuspSedDensityStrat | , | ![]() |
|
SuspSedDensityStrat | , | ![]() |
|
SuspSedDensityStrat | , | ![]() |
|
Symphonie | 3D primitive equation ocean model | Marsaleix, Patrick | ![]() |
Symphonie | , | ![]() |
|
Symphonie | , | ![]() |
|
Symphonie | , | ![]() |
|
TAo | tAo is a software designed to model the interplay between lithosphere flexure and surface transport (erosion/sedimentation), particularly during the formation of orogens and foreland sedimentary basins (see details). | Garcia Castellanos, Daniel | ![]() |
TAo | , | ![]() |
|
TAo | , | ![]() |
|
TAo | , | ![]() |
|
TIN-based Real-time Integrated Basin Simulator (tRIBS) | The TIN-based Real-Time Integrated Basin Simulator is a fully-distributed, continuous hydrologic model operating on a Triangulated Irregular Network (TIN). | Vivoni, Enrique | ![]() |
TIN-based Real-time Integrated Basin Simulator (tRIBS) | , | ![]() |
|
TIN-based Real-time Integrated Basin Simulator (tRIBS) | , | ![]() |
|
TIN-based Real-time Integrated Basin Simulator (tRIBS) | , | ![]() |
|
TISC | TISC integrates quantitative models of lithospheric flexure, fault deformation, and surface mass transport (erosion/transport/sedimentation) along drainage networks. | Garcia Castellanos, Daniel | ![]() |
TISC | , | ![]() |
|
TISC | , | ![]() |
|
TISC | , | ![]() |
|
TOPMODEL | Physically based, distributed watershed model that simulates hydrologic fluxes of water through a watershed | Beven, Keith | ![]() |
TOPMODEL | , | ![]() |
|
TOPMODEL | , | ![]() |
|
TOPMODEL | , | ![]() |
|
TOPOG | TOPOG is a terrain analysis-based hydrologic modelling package | Silberstein, Richard | ![]() |
TOPOG | , | ![]() |
|
TOPOG | , | ![]() |
|
TOPOG | , | ![]() |
|
TUGS | Fluvial gravel and sand transport model | Cui, Yantao | ![]() |
TUGS | , | ![]() |
|
TUGS | , | ![]() |
|
TUGS | , | ![]() |
|
TUGS | , | ![]() |
|
TURB | Gausian distribution calculator of instantaneous shear stresses on the fluvial bed | Slingerland, Rudy | ![]() |
TURB | , | ![]() |
|
TURB | , | ![]() |
|
TURB | , | ![]() |
|
TURBINS | An immersed boundary, Navier–Stokes code for the simulation of gravity and turbidity currents interacting with complex topographies. | Nasr-Azadani, Mohamad | ![]() |
TURBINS | , | ![]() |
|
TURBINS | , | ![]() |
|
TURBINS | , | ![]() |
|
TauDEM | A suite of Digital Elevation Model (DEM) tools for the extraction and analysis of hydrologic information from topography as represented by a DEM. TauDEM 5 is a new version implemented to take advantage of parallel processing | Tarboton, David | ![]() |
TauDEM | , | ![]() |
|
TauDEM | , | ![]() |
|
TauDEM | , | ![]() |
|
TaylorNonLinearDiffuser | Model non-linear soil creep after Ganti et al. (2012) | Glade, Rachel | ![]() |
TaylorNonLinearDiffuser | , | ![]() |
|
TaylorNonLinearDiffuser | , | ![]() |
|
TaylorNonLinearDiffuser | , | ![]() |
|
TaylorNonLinearDiffuser | , | ![]() |
|
TaylorNonLinearDiffuser | , | ![]() |
|
TaylorNonLinearDiffuser | , | ![]() |
|
TaylorNonLinearDiffuser | , | ![]() |
|
TaylorNonLinearDiffuser | , | ![]() |
|
Terrainbento | A Python package for multi-model analysis in long-term drainage basin evolution | Barnhart, Katy | ![]() |
Terrainbento | , | ![]() |
|
Terrainbento | , | ![]() |
|
Terrainbento | , | ![]() |
|
Terrapin | Build and destroy strath and fill terraces | Wickert, Andy | ![]() |
Terrapin | , | ![]() |
|
Terrapin | , | ![]() |
|
Terrapin | , | ![]() |
|
Terrapin | , | ![]() |
|
ThawLake1D | 1-D numerical model of permafrost and subsidence processes. | Matell, Nora | ![]() |
ThawLake1D | , | ![]() |
|
ThawLake1D | , | ![]() |
|
ThawLake1D | , | ![]() |
|
The TELEMAC system | a powerful integrated modeling tool for use in the field of free-surface flows. | TELEMAC support team, - | ![]() |
The TELEMAC system | , | ![]() |
|
The TELEMAC system | , | ![]() |
|
The TELEMAC system | , | ![]() |
|
TopoFlow | Spatially-distributed, D8-based hydrologic model | Peckham, Scott | ![]() |
TopoFlow | , | ![]() |
|
TopoFlow | , | ![]() |
|
TopoFlow | , | ![]() |
|
TopoFlow-Channels-Diffusive Wave | Diffusive Wave process component for flow routing in a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Channels-Diffusive Wave | , | ![]() |
|
TopoFlow-Channels-Diffusive Wave | , | ![]() |
|
TopoFlow-Channels-Diffusive Wave | , | ![]() |
|
TopoFlow-Channels-Dynamic Wave | Dynamic Wave process component for flow routing in a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Channels-Dynamic Wave | , | ![]() |
|
TopoFlow-Channels-Dynamic Wave | , | ![]() |
|
TopoFlow-Channels-Dynamic Wave | , | ![]() |
|
TopoFlow-Channels-Kinematic Wave | Kinematic Wave process component for flow routing in a D8-based, spatial hydrologic model. | Peckham, Scott | ![]() |
TopoFlow-Channels-Kinematic Wave | , | ![]() |
|
TopoFlow-Channels-Kinematic Wave | , | ![]() |
|
TopoFlow-Channels-Kinematic Wave | , | ![]() |
|
TopoFlow-DEM Smoother | TopoFlow-DEM Smoother | Peckham, Scott | ![]() |
TopoFlow-DEM Smoother | , | ![]() |
|
TopoFlow-DEM Smoother | , | ![]() |
|
TopoFlow-DEM Smoother | , | ![]() |
|
TopoFlow-DEM Smoother | , | ![]() |
|
TopoFlow-Data-HIS | The CUAHSI Hydrologic Information System | Peckham, Scott | ![]() |
TopoFlow-Data-HIS | , | ![]() |
|
TopoFlow-Data-HIS | , | ![]() |
|
TopoFlow-Data-HIS | , | ![]() |
|
TopoFlow-Diversions | Diversions component for a D8-based, spatial hydrologic model. | Peckham, Scott | ![]() |
TopoFlow-Diversions | , | ![]() |
|
TopoFlow-Diversions | , | ![]() |
|
TopoFlow-Diversions | , | ![]() |
|
TopoFlow-Evaporation-Energy Balance | Evaporation process component (Energy Balance method) for a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Evaporation-Energy Balance | , | ![]() |
|
TopoFlow-Evaporation-Energy Balance | , | ![]() |
|
TopoFlow-Evaporation-Energy Balance | , | ![]() |
|
TopoFlow-Evaporation-Priestley Taylor | Evaporation process component (Priestley-Taylor method) for a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Evaporation-Priestley Taylor | , | ![]() |
|
TopoFlow-Evaporation-Priestley Taylor | , | ![]() |
|
TopoFlow-Evaporation-Priestley Taylor | , | ![]() |
|
TopoFlow-Evaporation-Read File | Evaporation process component (read from file method) for a spatially-distributed hydrologic model. | Peckham, Scott | ![]() |
TopoFlow-Evaporation-Read File | , | ![]() |
|
TopoFlow-Evaporation-Read File | , | ![]() |
|
TopoFlow-Evaporation-Read File | , | ![]() |
|
TopoFlow-Infiltration-Green-Ampt | Infiltration process component (Green-Ampt method) for a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Infiltration-Green-Ampt | , | ![]() |
|
TopoFlow-Infiltration-Green-Ampt | , | ![]() |
|
TopoFlow-Infiltration-Green-Ampt | , | ![]() |
|
TopoFlow-Infiltration-Richards 1D | Infiltration process component (Richards 1D method) for a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Infiltration-Richards 1D | , | ![]() |
|
TopoFlow-Infiltration-Richards 1D | , | ![]() |
|
TopoFlow-Infiltration-Richards 1D | , | ![]() |
|
TopoFlow-Infiltration-Smith-Parlange | Infiltration process component (Smith-Parlange method) for a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Infiltration-Smith-Parlange | , | ![]() |
|
TopoFlow-Infiltration-Smith-Parlange | , | ![]() |
|
TopoFlow-Infiltration-Smith-Parlange | , | ![]() |
|
TopoFlow-Meteorology | Meteorology process component for a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Meteorology | , | ![]() |
|
TopoFlow-Meteorology | , | ![]() |
|
TopoFlow-Meteorology | , | ![]() |
|
TopoFlow-Saturated Zone-Darcy Layers | Saturated Zone process component (Darcy's law, multiple soil layers) for a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Saturated Zone-Darcy Layers | , | ![]() |
|
TopoFlow-Saturated Zone-Darcy Layers | , | ![]() |
|
TopoFlow-Saturated Zone-Darcy Layers | , | ![]() |
|
TopoFlow-Snowmelt-Degree-Day | Snowmelt process component (Degree-Day method) for a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Snowmelt-Degree-Day | , | ![]() |
|
TopoFlow-Snowmelt-Degree-Day | , | ![]() |
|
TopoFlow-Snowmelt-Degree-Day | , | ![]() |
|
TopoFlow-Snowmelt-Energy Balance | Snowmelt process component (Energy Balance method) for a D8-based, spatial hydrologic model | Peckham, Scott | ![]() |
TopoFlow-Snowmelt-Energy Balance | , | ![]() |
|
TopoFlow-Snowmelt-Energy Balance | , | ![]() |
|
TopoFlow-Snowmelt-Energy Balance | , | ![]() |
|
TopoPyScale | A Python Package for Hillslope Climate Downscaling | Filhol, Simon | ![]() |
TopoPyScale | , | ![]() |
|
TopoPyScale | , | ![]() |
|
TopoPyScale | , | ![]() |
|
TopoToolbox | A set of Matlab functions for topographic analysis | Schwanghart, Wolfgang | ![]() |
TopoToolbox | , | ![]() |
|
TopoToolbox | , | ![]() |
|
TopoToolbox | , | ![]() |
|
Topography Data Component | A CSDMS data component used to fetch and cache NASA Shuttle Radar Topography Mission (SRTM) and JAXA Advanced Land Observing Satellite (ALOS) land elevation data using the OpenTopography REST API. | Piper, Mark | ![]() |
Topography Data Component | , | ![]() |
|
Topography Data Component | , | ![]() |
|
Topography Data Component | , | ![]() |
|
Topography Data Component | , | ![]() |
|
Tracer dispersion calculator | The model computes the streamwise and vertical dispersal of a patch of tracers in a gravel bed river | Viparelli, Enrica | ![]() |
Tracer dispersion calculator | , | ![]() |
|
Tracer dispersion calculator | , | ![]() |
|
Tracer dispersion calculator | , | ![]() |
|
Tracer dispersion calculator | , | ![]() |
|
Tracer dispersion calculator | , | ![]() |
|
Tracer dispersion calculator | , | ![]() |
|
Tracer dispersion calculator | , | ![]() |
|
Tracer dispersion calculator | , | ![]() |
|
TransportLengthHillslopeDiffuser | Transport length hillslope diffusion. | Mouchene, Margaux | ![]() |
TransportLengthHillslopeDiffuser | , | ![]() |
|
TransportLengthHillslopeDiffuser | , | ![]() |
|
TransportLengthHillslopeDiffuser | , | ![]() |
|
TransportLengthHillslopeDiffuser | , | ![]() |
|
TransportLengthHillslopeDiffuser | , | ![]() |
|
TransportLengthHillslopeDiffuser | , | ![]() |
|
TransportLengthHillslopeDiffuser | , | ![]() |
|
TransportLengthHillslopeDiffuser | , | ![]() |
|
TreeThrow | Sediment transport by tree throw on hillslopes | Kirwan, Matthew | ![]() |
TreeThrow | , | ![]() |
|
TreeThrow | , | ![]() |
|
TreeThrow | , | ![]() |
|
TreeThrow | , | ![]() |
|
TwoPhaseEulerSedFoam | A four-way coupled two-phase Eulerian model for sediment transport | Cheng, Zhen | ![]() |
TwoPhaseEulerSedFoam | , | ![]() |
|
TwoPhaseEulerSedFoam | , | ![]() |
|
TwoPhaseEulerSedFoam | , | ![]() |
|
TwoPhaseEulerSedFoam | , | ![]() |
|
UEB | The Utah Energy Balance (UEB) Grid snowmelt model | Tarboton, David | ![]() |
UEB | , | ![]() |
|
UEB | , | ![]() |
|
UEB | , | ![]() |
|
UIDS | A Matlab-based urban flood model considering rainfall-induced and surcharge-induced inundations | Tran, Vinh | ![]() |
UIDS | , | ![]() |
|
UIDS | , | ![]() |
|
UIDS | , | ![]() |
|
UMCESroms | Chesapeake Bay Application, special case of Regional Ocean Modeling System (ROMS) | Li, Yun | ![]() |
UMCESroms | , | ![]() |
|
UMCESroms | , | ![]() |
|
UMCESroms | , | ![]() |
|
Underworld2 | Underworld2 is an open-source, particle-in-cell finite element code tuned for large-scale geodynamics simulations. | Moresi, Louis | ![]() |
Underworld2 | , | ![]() |
|
Underworld2 | , | ![]() |
|
Underworld2 | , | ![]() |
|
VIC | VIC (Variable Infiltration Capacity) is a macroscale hydrologic model that solves full water and energy balances, originally developed by Xu Liang at the University of Washington. | Lettenmaier, Dennis | ![]() |
VIC | , | ![]() |
|
VIC | , | ![]() |
|
VIC | , | ![]() |
|
VegCA | Landlab component that simulates inter-species plant competition using a 2D cellular automata model. | Nudurupati, Sai | ![]() |
VegCA | , | ![]() |
|
VegCA | , | ![]() |
|
VegCA | , | ![]() |
|
VegCA | , | ![]() |
|
VegCA | , | ![]() |
|
VegCA | , | ![]() |
|
VegCA | , | ![]() |
|
VegCA | , | ![]() |
|
Vegetation | Model plant dynamics using multiple representative plant species | Nudurupati, Sai | ![]() |
Vegetation | , | ![]() |
|
Vegetation | , | ![]() |
|
Vegetation | , | ![]() |
|
Vegetation | , | ![]() |
|
WACCM Dust-Sulfur | Whole atmosphere module of sulfate aerosols. | Neely, Ryan | ![]() |
WACCM Dust-Sulfur | , | ![]() |
|
WACCM Dust-Sulfur | , | ![]() |
|
WACCM Dust-Sulfur | , | ![]() |
|
WACCM Dust-Sulfur | , | ![]() |
|
WACCM-CARMA | atmospheric/aerosol microphysical model | English, Jason | ![]() |
WACCM-CARMA | , | ![]() |
|
WACCM-CARMA | , | ![]() |
|
WACCM-CARMA | , | ![]() |
|
WACCM-CARMA | , | ![]() |
|
WACCM-EE | GCM for deep paleoclimate studies | Wolf, Eric | ![]() |
WACCM-EE | , | ![]() |
|
WACCM-EE | , | ![]() |
|
WACCM-EE | , | ![]() |
|
WASH123D | Watershed Model, River Hydraulics, Overland Flow, Subsurface Flow, Sediment Transport, Water Quality Transport | Yeh, Gour-Tsyh (George) | ![]() |
WASH123D | , | ![]() |
|
WASH123D | , | ![]() |
|
WASH123D | , | ![]() |
|
WASH123D | , | ![]() |
|
WAVEREF | Wave refraction routine | Slingerland, Rudy | ![]() |
WAVEREF | , | ![]() |
|
WAVEREF | , | ![]() |
|
WAVEREF | , | ![]() |
|
WAVEWATCH III Data Component | A CSDMS data component used to fetch and cache WAVEWATCH III datasets. | Hutton, Eric | ![]() |
WAVEWATCH III Data Component | , | ![]() |
|
WAVEWATCH III Data Component | , | ![]() |
|
WAVEWATCH III Data Component | , | ![]() |
|
WAVEWATCH III Data Component | , | ![]() |
|
WAVEWATCH III Data Component | , | ![]() |
|
WAVEWATCH III Data Component | , | ![]() |
|
WAVEWATCH III Data Component | , | ![]() |
|
WAVEWATCH III Data Component | , | ![]() |
|
WAVEWATCH III ^TM | Spectral wind wave model | Tolman, Hendrik | ![]() |
WAVEWATCH III ^TM | , | ![]() |
|
WAVEWATCH III ^TM | , | ![]() |
|
WAVEWATCH III ^TM | , | ![]() |
|
WAVI.jl | Ice Sheet Modelling in Julia | Bradley, Alexander | ![]() |
WAVI.jl | , | ![]() |
|
WAVI.jl | , | ![]() |
|
WAVI.jl | , | ![]() |
|
WBM-WTM | Water Balance/Transport Model | Fekete, Balazs | ![]() |
WBM-WTM | , | ![]() |
|
WBM-WTM | , | ![]() |
|
WBM-WTM | , | ![]() |
|
WBMsed | Global sediment flux and water discharge model. | Cohen, Sagy | ![]() |
WBMsed | , | ![]() |
|
WBMsed | , | ![]() |
|
WBMsed | , | ![]() |
|
WDUNE | GUI implementation of the Werner (1995) cellular automata aeolian dune model | Barchyn, Tom | ![]() |
WDUNE | , | ![]() |
|
WDUNE | , | ![]() |
|
WDUNE | , | ![]() |
|
WEPP | Process-based soil erosion by water at field/farm scale | Flanagan, Dennis | ![]() |
WEPP | , | ![]() |
|
WEPP | , | ![]() |
|
WEPP | , | ![]() |
|
WEPP | , | ![]() |
|
WILSIM | Landscape evolution model | Luo, Wei | ![]() |
WILSIM | , | ![]() |
|
WILSIM | , | ![]() |
|
WILSIM | , | ![]() |
|
WINDSEA | Deep water significant wave height and period simulator during a hurricane routine | Slingerland, Rudy | ![]() |
WINDSEA | , | ![]() |
|
WINDSEA | , | ![]() |
|
WINDSEA | , | ![]() |
|
WOFOST | WOFOST (WOrld FOod STudies) is a simulation model for the quantitative analysis of the growth and production of annual field crops. | Boogaard, Hendrik | ![]() |
WOFOST | , | ![]() |
|
WOFOST | , | ![]() |
|
WOFOST | , | ![]() |
|
WPHydResAMBL | E-book: Implementation of the Wright-Parker (2004) formulation for hydraulic resistance combined with the Ashida-Michiue (1972) bedload formulation. | Parker, Gary | ![]() |
WPHydResAMBL | , | ![]() |
|
WPHydResAMBL | , | ![]() |
|
WPHydResAMBL | , | ![]() |
|
WPHydResAMBL | , | ![]() |
|
WRF | Weather Research and Forecasting Model | Skamarock, Bill | ![]() |
WRF | , | ![]() |
|
WRF | , | ![]() |
|
WRF | , | ![]() |
|
WRF-Hydro | The WRF-Hydro® Modeling System, an open-source community model, is used for a range of projects, including flash flood prediction, regional hydroclimate impacts assessment, seasonal forecasting of water resources, and land-atmosphere coupling studies. It produces forecasts and analyses for all major terrestrial water-cycle components: Precipitation, Streamflow, Soil moisture, Snowpack, Flooding, Groundwater. | McAllister, Molly | ![]() |
WRF-Hydro | , | ![]() |
|
WRF-Hydro | , | ![]() |
|
WRF-Hydro | , | ![]() |
|
WRF-Hydro | , | ![]() |
|
WRF-Hydro | , | ![]() |
|
WRF-Hydro | , | ![]() |
|
WRF-Hydro | , | ![]() |
|
WSGFAM | Wave and current supported sediment gravity flow model | Friedrichs, Carl | ![]() |
WSGFAM | , | ![]() |
|
WSGFAM | , | ![]() |
|
WSGFAM | , | ![]() |
|
WSIMOD | WSIMOD: Water Systems Integrated Modelling framework | Dobson, Barnaby | ![]() |
WSIMOD | , | ![]() |
|
WSIMOD | , | ![]() |
|
WSIMOD | , | ![]() |
|
WTM | Coupled groundwater and dynamic lake modelling | Callaghan, Kerry | ![]() |
WTM | , | ![]() |
|
WTM | , | ![]() |
|
WTM | , | ![]() |
|
WWTM | The WWTM (Wind Wave Tidal Model) has been developed to describe hydrodynamic and wind-wave generation and propagation within shallow tidal environments | Carniello, Luca | ![]() |
WWTM | , | ![]() |
|
WWTM | , | ![]() |
|
WWTM | , | ![]() |
|
WWTM | , | ![]() |
|
Wetland3P | A 3-point dynamic model for the morphological evolution of a backbarrier basin composed by marshes and mudflats | mariotti, giulio | ![]() |
Wetland3P | , | ![]() |
|
Wetland3P | , | ![]() |
|
Wetland3P | , | ![]() |
|
XBeach | Morphological changes, nearshore currents, wave propagation and sediment transport model | Roelvink, Dano | ![]() |
XBeach | , | ![]() |
|
XBeach | , | ![]() |
|
XBeach | , | ![]() |
|
YANGs | Fluvial sediment transport model | Slingerland, Rudy | ![]() |
YANGs | , | ![]() |
|
YANGs | , | ![]() |
|
YANGs | , | ![]() |
|
ZoneController | Controls zones and populates them with taxa. | Lyons, Nathan | ![]() |
ZoneController | , | ![]() |
|
ZoneController | , | ![]() |
|
ZoneController | , | ![]() |
|
ZoneController | , | ![]() |
|
ZoneController | , | ![]() |
|
ZoneController | , | ![]() |
|
ZoneController | , | ![]() |
|
ZoneController | , | ![]() |
|
ZoneTaxon | A zone-based taxon | Lyons, Nathan | ![]() |
ZoneTaxon | , | ![]() |
|
ZoneTaxon | , | ![]() |
|
ZoneTaxon | , | ![]() |
|
ZoneTaxon | , | ![]() |
|
Zscape | A simple parallel code to demonstrate diffusion | Connor, Chuck | ![]() |
Zscape | , | ![]() |
|
Zscape | , | ![]() |
|
Zscape | , | ![]() |
Questionnaires still need to be filled out for the following models:
Questionnaires still need to be filled out for the following models:
Program | Description | Developer | Source code |
---|---|---|---|
NearshorePOM | Model: Nearshore version of POM (Princeton Ocean Model) | Kirby, Jim | ![]() |
Questionnaires still need to be filled out for the next models:
How to Wiki tips
Modify "Log in / create account"
If you want to modify the upper right corner wiki message 'Log in / create account', modify the following file MediaWiki:Nav-login-createaccount. Be aware that for other languages than English this message is not modified.
Remove "discussion tab"
Notice: Discussion tab is made active again on this wiki!
This is a nasty way to remove the discussion tab:
Open \includes\SkinTemplate.php file and look for:
$content_actions[’talk’] = $this->tabAction(
$this->mTitle->getTalkPage(),
‘talk’,
$this->mTitle->isTalkPage(),
”,
true);
and change that to:
/*
$content_actions[’talk’] = $this->tabAction(
$this->mTitle->getTalkPage(),
‘talk’,
$this->mTitle->isTalkPage(),
”,
true);
*/
Hallo