Also known as
Model type Single
Model part of larger framework
Incorporated models or components:
Spatial dimensions
Spatial extent
Model domain Terrestrial
One-line model description Fluvial landscape evolution model
Extended model description Erode is a raster-based, fluvial landscape evolution model. The newest version (3.0) is written in Python and contains html help pages when running the program through the CSDMS Modeling Tool CMT (

landscape evolution,

First name Scott
Last name Peckham
Type of contact Model developer
Institute / Organization CSDMS, INSTAAR, University of Colorado
Postal address 1 1560 30th street
Postal address 2
Town / City Boulder
Postal code 80309
State Colorado
Country United States
Email address
Phone 303-492-6752

Supported platforms Unix, Linux, Mac OS, Windows
Other platform
Programming language Python, IDL
Other program language
Code optimized Single Processor
Multiple processors implemented
Nr of distributed processors
Nr of shared processors
Start year development 2003
Does model development still take place? Yes
If above answer is no, provide end year model development
Code development status
When did you indicate the 'code development status'?
Model availability As code
Source code availability
(Or provide future intension)
Through CSDMS repository
Source web address
Source csdms web address
Program license type Apache public license
Program license type other
Memory requirements Standard
Typical run time hours-days

Describe input parameters Initial land surface (several built-in options), number of timesteps, DEM grid dimensions, DEM grid cell dimensions, R = "geomorphic" rainrate (m/yr), U=uplift rate (mm/yr), BLR = base-level lowering rate (mm/yr), Kf="erodibility coefficient (m^3/yr)^(1-m), m = area/discharge exponent, n = slope exponent, p = area-discharge exponent, toggles for different types of boundary conditions (e.g. periodic), DEM georeferencing info (bounding box, pixel geometry, etc.)
Input format
Other input format Command line
Describe output parameters A sequence of grids that represent DEMs at different times in the evolution. Saved in RTS (RiverTools Sequence) format with RTI file for georeferencing.
Output format Binary
Other output format
Pre-processing software needed? No
Describe pre-processing software
Post-processing software needed? Yes
Describe post-processing software RiverTools or a similar program can be used to create animations of the grid sequence.
Visualization software needed? Yes
If above answer is yes
Other visualization software Rivertools

Describe processes represented by the model Sediment transport (parameterized with slope and contributing area grids), rainfall, uplift, base-level lowering.
Describe key physical parameters and equations The main equations are:

Q = R * A^p
Qs = Kf * (Q^m) * (S^n),
2D mass conservation equations for water and sediment

Describe length scale and resolution constraints Typical grid cell dimensions are 10 to 500 meters.
Describe time scale and resolution constraints Typical simulated time is 1000 to 100,000 years.
Describe any numerical limitations and issues D8 flow codes are used to compute contributing areas. Would be better to use D-Infinity or the Mass-Flux method.

Describe available calibration data sets
Upload calibration data sets if available:
Describe available test data sets
Upload test data sets if available:
Describe ideal data for testing [[Describe ideal data::Same as used for other LEMs, like CHILD and MARSSIM.]]

Do you have current or future plans for collaborating with other researchers? See comments below.
Is there a manual available? No
Upload manual if available:
Model website if any
Model forum / discussion board
Comments I currently have an NSF-CMG grant to work with Greg Tucker, Tom Manteuffel and Steve McCormick to find faster algorithms for this type of model.

This part will be filled out by CSDMS staff

OpenMI compliant No but possible
BMI compliant Yes
WMT component No but possible
PyMT component
DOI model 10.1594/IEDA/100116
For model version 3.0
Year version submitted 2011
Link to file
Can be coupled with:
Model info

Citation indices Erode
Nr. of pubs: 2
Citations: 8
h-index: 1
Qrcode Erode.png
Link to this page




Citation indices Erode
Nr. of pubs: 2
Citations: 8
h-index: 1

Featured publication(s)YearModel describedType of ReferenceCitations
Peckham, Scott D.; 2003. Fluvial landscape models and catchment-scale sediment transport. Global and Planetary Change, 39, 31–51. 10.1016/S0921-8181(03)00014-6
(View/edit entry)
Model overview 8
See more publications of Erode




Input Files

Output Files