Property:Key references dataset

From CSDMS

This is a property of type Text.

Showing 51 pages using this property.
C
Additional data access via NOAA Digital Coast Data Access Viewer https://chs.coast.noaa.gov/htdata/raster2/elevation/NCEI_third_Topobathy_2014_8580/ https://chs.coast.noaa.gov/htdata/raster2/elevation/NCEI_ninth_Topobathy_2014_8483/ Metadata: https://data.noaa.gov/waf/NOAA/NESDIS/NGDC/MGG/DEM/iso/  +
N
Allen, G. H., Pavelsky T.M., (2015), Patterns of river width and surface area newly revealed by the satellite-derived North American River Width data set. Geophysical Research Letters. doi: 10.1002/2014GL062764  +
E
Amante, C. and B. W. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, March 2009.  +
G
Amatulli, G., McInerney, D., Sethi, T. et al. Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci Data 7, 162 (2020). https://doi.org/10.1038/s41597-020-0479-6  +, Amatulli, G., McInerney, D., Sethi, T., Strobl, P., Domisch, S. (2020). Geomorpho90m - Global High-Resolution Geomorphometry Layers. Distributed by OpenTopography. https://doi.org/10.5069/G91R6NPX. Accessed: 2020-06-12  +
S
Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally. 1996, updated 2008. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, "list dates of temporal coverage used". Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.  +, Meier, W., F. Fetterer, K. Knowles, M. Savoie, M. J. Brodzik. 2006, updated quarterly. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, "list dates of temporal coverage used". Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.  +
D
Cite as: Jenkins, C.J. & Gan, T. 2024. Gulf of Mexico Seafloor Substrates. INSTAAR, University of Colorado, Boulder CO USA. (URL: "https://csdms.colorado.edu/wiki/Data:DBSEABED"; Last edit 27 June 2024)  +
O
Cite: 'Reproduced with the permission of the OneGeology Secretariat & registered Participants. All rights Reserved'  +
M
Cohen, S., A. J. Kettner, J.P.M. Syvitski, and B.M. Fekete (2013), WBMsed, a distributed global-scale riverine sediment flux model: Model description and validation, Computers & Geosciences, 53: 80–93. doi: 10.1016/j.cageo.2011.08.011  +, Cohen,S., A. J. Kettner, and J.P.M. Syvitski (2014), Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity, Global and Planetary Change, 115: 44-58, http://dx.doi.org/10.1016/j.gloplacha.2014.01.011.  +
G
D. Giardini, G. Grünthal, K. M. Shedlock, P. Zhang, 1999. The GSHAP Global Seismic Hazard Map. Annals of Geophysics, 42, 1225-1230  +
S
Divins, D.L., NGDC Total Sediment Thickness of the World's Oceans & Marginal Seas, Retrieved date goes here, http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html  +
T
Egbert, G.D., and S.Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19(2), 183-204.  +
H
FAO/IIASA/ISRIC/ISSCAS/JRC, 2009. Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria.  +
G
GLC-SHARE, Global Land Cover SHARE. Database Beta-Release Version 1.0 - 2014, by John Latham, Renato Cumani, Ilaria Rosati and Mario Bloise. FAO document.  +
GLOBE Task Team and others (Hastings, David A., Paula K. Dunbar, Gerald M. Elphingstone, Mark Bootz, Hiroshi Murakami, Hiroshi Maruyama, Hiroshi Masaharu, Peter Holland, John Payne, Nevin A. Bryant, Thomas L. Logan, J.-P. Muller, Gunter Schreier, and John S. MacDonald), eds., 1999. The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80305-3328, U.S.A. Digital data base on the World Wide Web (URL: http://www.ngdc.noaa.gov/mgg/topo/globe.html) and CD-ROMs.  +
N
Gesch, D., Evans, G., Mauck, J., Hutchinson, J., Carswell Jr., W.J., 2009, The National Map—Elevation: U.S. Geological Survey Fact Sheet 2009-3053, 4 p.  +
G
Haney, N., Cohen, S. (2015), Predicting 21st century global agricultural land use with a spatially and temporally explicit regression-based model. Applied Geography, 62: 366-376. doi:10.1016/j.apgeog.2015.05.010  +
Hartmann, J., Moosdorf, N., 2012. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13. DOI: 10.1029/2012GC004370  +, https://www.clisap.de/fileadmin/B-Research/IA/IA5/LITHOMAP/dev/lithomap.html  +
E
Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones, M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201  +
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 (Accessed on DD-MMM-YYYY)  +
P
If you use data from the PSMSL, then please make sure to acknowledge the Service in your reports.  +
G
In all publications, the source of the data will be fully cited as: "The Global Runoff Data Centre, D - 56002 Koblenz, Germany".  +
N
India plans the grandest of canal networks Pallava Bagla1 Science 11 Jul 2014: Vol. 345, Issue 6193, pp. 128 DOI: 10.1126/science.345.6193.128  +
I
Jakobsson, M., L. A. Mayer, B. Coakley, J. A. Dowdeswell, S. Forbes, B. Fridman, H. Hodnesdal, R. Noormets, R. Pedersen, M. Rebesco, H.-W. Schenke, Y. Zarayskaya A, D. Accettella, A. Armstrong, R. M. Anderson, P. Bienhoff, A. Camerlenghi, I. Church, M. Edwards, J. V. Gardner, J. K. Hall, B. Hell, O. B. Hestvik, Y. Kristoffersen, C. Marcussen, R. Mohammad, D. Mosher, S. V. Nghiem, M. T. Pedrosa, P. G. Travaglini, and P. Weatherall, The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophysical Research Letters, doi: 10.1029/2012GL052219.  +
H
Lehner, B., Verdin, K., Jarvis, A. (2008): New global hydrography derived from spaceborne elevation data. Eos, Transactions, AGU, 89(10): 93-94.  +
N
Lehner, B., Verdin, K., Jarvis, A. (2008): New global hydrography derived from spaceborne elevation data. Eos, Transactions, AGU, 89(10): 93-94.  +, Richardson, A., C. N. Hill, and J. T. Perron (2014), IDA: An implicit, parallelizable method for calculating drainage area, Water Resour. Res., 50, 4110–4130, doi:10.1002/2013WR014326.  +
S
Lim, E., B.W. Eakins, and R. Wigley, Coastal Relief Model of Southern Alaska, National Geophysical Data Center, NESDIS, NOAA, 2009.  +
G
Liu, J.P., 2011. Global River and Delta Systems Source-to-Sink References on Google Map. URL: http://www.meas.ncsu.edu/sealevel/s2s/ , accessed on yyyy-mm-dd (2011-03-03).  +
A
Livneh B., T.J. Bohn, D.S. Pierce, F. Munoz-Ariola, B. Nijssen, R. Vose, D. Cayan, and L.D. Brekke, 2015: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and southern Canada 1950-2013, Nature Scientific Data, 5:150042, doi:10.1038/sdata.2015.42.  +
H
Messager, M.L., Lehner, B., Grill, G., Nedeva, I., Schmitt, O. (2016): Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications: 13603. doi: 10.1038/ncomms13603  +
A
Muller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008), Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, doi:10.1029/2007GC001743.  +
N
NOAA National Geophysical Data Center, U.S. Coastal Relief Model, Retrieved date goes here, http://www.ngdc.noaa.gov/mgg/coastal/crm.html  +
W
National Snow and Ice Data Center. 1999, updated 2009. World glacier inventory. World Glacier Monitoring Service and National Snow and Ice Data Center/World Data Center for Glaciology. Boulder, CO. Digital media.  +
Nutrients: Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, M. M. Zweng, O. K. Baranova, and D. R. Johnson, 2010. World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate). S. Levitus, Ed. NOAA Atlas NESDIS 71, U.S. Government Printing Office, Washington, D.C., 398 pp.  +, Oxygen: Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010. World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. S. Levitus, Ed. NOAA Atlas NESDIS 70, U.S. Government Printing Office, Washington, D.C., 344 pp.  +, Salinity: Antonov, J. I., D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010. World Ocean Atlas 2009, Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS 69, U.S. Government Printing Office, Washington, D.C., 184 pp.  +,
G
Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., ... & Marin-Herrera, M. A. (2013). A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5), 2102-2131.  +
Pinzon, J., Brown, M.E. and Tucker, C.J., 2005. Satellite time series correction of orbital drift artifacts using empirical mode decomposition. In: N. Huang (Editor), Hilbert-Huang Transform: Introduction and Applications, pp. 167-186.  +, Tucker, C.J., J. E. Pinzon, M. E. Brown, D. Slayback, E. W. Pak, R. Mahoney, E. Vermote and N. El Saleous (2005), An Extended AVHRR 8-km NDVI Data Set Compatible with MODIS and SPOT Vegetation NDVI Data. International Journal of Remote Sensing, Vol 26:20, pp 4485-5598.  +, Tucker, C.J., J.E. Pinzon, and M.E. Brown (2004), Global Inventory Modeling and Mapping Studies, NA94apr15b.n11-VIg, 2.0, Global Land Cover Facility, University of Maryland, College Park, Maryland, 04/15/1994.  +
S
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D., 2021. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021.  +
G
Simard, M., N. Pinto, J. B. Fisher, and A. Baccini (2011), Mapping forest canopy height globally with spaceborne lidar, J. Geophys. Res., 116, G04021, doi:10.1029/2011JG001708.  +
N
Simley, J.D., Carswell Jr., W.J., 2009, The National Map—Hydrography: U.S. Geological Survey Fact Sheet 2009-3054, 4 p.  +
G
Smith, W. H. F., and D. T. Sandwell, Global seafloor topography from satellite altimetry and ship depth soundings, Science, v. 277, p. 1957-1962, 26 Sept., 1997.  +
Stefan Siebert, Verena Henrich, Karen Frenken and Jacob Burke (2013). Global Map of Irrigation Areas version 5. Rheinische Friedrich-Wilhelms-University, Bonn, Germany / Food and Agriculture Organization of the United Nations, Rome, Italy".  +
W
Tolman, H. L., 1997: User manual and system documentation of WAVEWATCH-III version 1.15. NOAA / NWS / NCEP / OMB Technical Note 151, 97 pp. (0.74MB PDF file).  +, Tolman, H. L., 1999a: User manual and system documentation of WAVEWATCH-III version 1.18. NOAA / NWS / NCEP / OMB Technical Note 166, 110 pp. (0.76Mb pdf file).  +, Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III version 3.14. NOAA / NWS / NCEP / MMAB Technical Note 276, 194 pp.+ Appendices (0.83Mb pdf file).  +
A
Vanmaercke M, Poesen J, Broeckx J, Nyssen J (2014) Sediment Yield in Africa. Earth-Science Reviews 136: 350-368.  +
I
W.R. Peltier, 2004. Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE, Ann. Rev. Earth and Planet. Sci., 32, 111-149.  +
L
Wang, P.-L., & Feddema, J. J. (2020). Linking global land use/land cover to hydrologic soil groups From 850 to 2015. Global Biogeochemical Cycles, 34(3), e2019GB006356. https://doi.org/10.1029/2019GB006356  +
G
Wessel, P., and W. H. F. Smith, A Global Self-consistent, Hierarchical, High-resolution Shoreline Database, J. Geophys. Res., 101, 8741-8743, 1996  +
M
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J.C., Sampson, C.C., Kanae, S., and Bates P.D., 2017. A high accuracy map of global terrain elevations. Geophysical Research Letters, Doi: 10.1002/2017GL072874  +
d'Ortenzio, F., D. Iudicone, C. de Boyer Montégut, P. Testor, D. Antoine, S. Marullo, R. Santoleri, and G. Madec (2005) Seasonal variability of the mixed layer depth in the Mediterranean sea as derived from in situ profiles, Geophys. Res. Lett., 32, L12605, doi:10.1029/2005GL022463  +, de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone (2004), Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.  +
N
C
R
http://ida.water.usgs.gov/ressed/references/index.cfm  +
C
https://csdms.colorado.edu/wiki/File:CarboOKB_Docn_2.pdf  +