Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe output parameters model" with value "Geometry of river entrenchment thought time". Since there have been only a few results, also nearby values are displayed.

Showing below up to 51 results starting with #1.

View (previous 100 | next 100) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:Subside  + (CSV file of crustal deflection)
  • Model:Inflow  + (CSV file of final bathymetry and deposit thickness for each grain size contained in the flow)
  • Model:Sakura  + (CSV file of final bathymetry and deposit thickness for each grain size contained in the flow)
  • Model:Hydromad  + (Calibration algorithms, fit statistics.)
  • Model:SINUOUS  + (Centerline and floodplain evolution through time, as well as hydraulic parameters as detailed in the model documentation)
  • Model:AR2-sinuosity  + (Channel centerlines and associated model parameters)
  • Model:River Erosion Model  + (Channel geometry; sediment export)
  • Model:D'Alpaos model  + (Channel network configuration and morphology, marsh platform elevations, erosion and accretion rates, relevant geomorphological features)
  • Model:TreeThrow  + (Characteristics of tree growth (stand biomass, stem count, leaf area, diamter) and characteristics of sediment transport (sediment flux in m4/m/yr, # of tree falls))
  • Model:CarboCAT  + (Chronostrat plots, maps, cross-sections, lithofacies thickness distributions)
  • Model:GFlex  + (Cofactor matrix (*.mtx sparse matrix file; ASCII) Flexural response map (ASCII))
  • Model:Compact  + (Compacted sediment porosity)
  • Model:Mocsy  + (Compute all carbonate system variables)
  • Model:SETTLE  + (Constant terminal settling velocity at STP)
  • Model:ENTRAINH  + (Critical shear stress for entrainment of a noncohesive grain from a mixed size-density bed)
  • Model:ENTRAIN  + (Critical shear stress for entrainment of a noncohesive grain from a homogenous bed)
  • Model:SUSP  + (Cross-sectional average suspended load transport rates)
  • Model:FLDTA  + (Cross-sectional mean flow velocities, flow depths, bed shear stresses as a function of along-channel distance.)
  • Model:1DBreachingTurbidityCurrent  + (Current thickness, velocity, and D50 for active layer and in suspension.)
  • Model:BOM  + (Currents, salinity, temperature, ... all model variables.)
  • Model:CAESAR Lisflood  + (DEM, Flow patterns, Inundation, Grainsize and others)
  • Model:DLBRM  + (DLBRM output includes, for every cell in tDLBRM output includes, for every cell in the watershed grid, surface runoff to surface storage, infiltration to USZ, ET, ETP, percolation from USZ to LSZ, interflow from LSZ to surface storage, deep percolation from LSZ to groundwater storage, groundwater flow from groundwater storage to surface storage, surface moisture storage, USZ, and LSZ moisture storages, groundwater storage, and lateral flows from storages to adjacent cells for the surface (channel outflow), USZ, LSZ, and groundwater (Changsheng He and Thomas E. Croley II, 2007).ngsheng He and Thomas E. Croley II, 2007).)
  • Model:Dakotathon  + (Dakotathon produces no output parameters; instead, it creates the standard Dakota output files '''dakota.out''' and '''dakota.dat'''.)
  • Model:Kudryavtsev Model  + (Dampening effects of vegetation and snow on temperature Mean annual active layer thickness Mean annual temperature at the permafrost ground surface)
  • Model:Bing  + (Debris flow deposit thickness)
  • Model:WINDSEA  + (Deep water significant wave height and period at each point under a hurricane.)
  • Model:HAMSOM  + (Default: 3D Temperature and salinity field 3D Velocities 2D Sea Surface Height)
  • Model:The TELEMAC system  + (Depend on different modules that are usingDepend on different modules that are using, it can produce hydrodynamics, such as water velocity and depth; vertical density (3D); temperature plumes and salt wedge; water quality; sediment concentration and transport; underground water velocity field; wave parameters;und water velocity field; wave parameters;)
  • Model:Gvg3Dp  + (Depending on the flags indicated in the inDepending on the flags indicated in the input file, typical flow quantities are stored to the file at the given time steps.<br></br>Velocities, Pressure, Concentration (of the particles).<br></br>Depending on the problems, some other quantities could be stored too.e problems, some other quantities could be stored too.)
  • Model:TURBINS  + (Depending on the flags set in the "input.iDepending on the flags set in the "input.inp" file, flow properties such as velocity, pressure, particle concentration(s), particle deposit mass, bottom shear stress, kinetic and potential energy, dissipation rate, suspended particle mass, current front location, and etc are recorded at the given timesteps.d etc are recorded at the given timesteps.)
  • Model:GeoClaw  + (Depth, momentum on adaptive grid at specified output times. Time series at specified gauge locations. Maxima observed over full simulation on specified grid.)
  • Model:HBV  + (Discharge)
  • Model:FuzzyReef  + (Dynamic variables: # water energy # depositional (seafloor) slope Final output: # carbonate productivity rate # depositional facies)
  • Model:BRaKE  + (Elevation and slope arrays as well as optional information about bed cover and shear stress distributions, as well as block size distributions and incision rate records.)
  • Model:Kirwan marsh model  + (Elevation, Biomass, Accretion Rate, Erosion Rate, and other characteristics of every cell in domain. Also outputs spatially averaged statistics.)
  • Model:GOLEM  + (Elevation, drainage area, and related gridded information.)
  • Model:LOADEST  + (Estimated constituent loads)
  • Model:SBEACH  + (Estimated post-storm beach profile, cross-shore profile of: maximum wave height; maximum water elevation plus setup; volume change)
  • Model:Detrital Thermochron  + (Estimates of the erosional history and spatial patterns and model diagnostic plots.)
  • Model:Rescal-snow  + (Evolving 3D cellspace and 2D elevation map)
  • Model:SICOPOLIS  + (Extent and thickness of the ice sheet, Velocity field, Temperature field, Water content field (temperate regions), Age of the ice, Isostatic displacement and temperature of the lithosphere.)
  • Model:BarrierBMFT  + (Extent, and elevation, and cross-shore boundary locations of barrier, marsh (back-barrier and mainland), bay, and forest ecosystems; organic and mineral deposition; shoreline locations; dune elevations; overwash & shoreface fluxes)
  • Model:Non Local Means Filtering  + (Filtered DEM: A new, filtered DEM in *.flt binary format. Noise: A *.flt binary format grid of the filtered noise.)
  • Model:GSSHA  + (Flow rates, depths, soil moisture, sediment fluxes, erosion/deposition, contaminant/nutrient fluxes and concentrations, groundwater levels, reservoir storages.)
  • Model:LOGDIST  + (Flow velocities at N levels in the vertical, assuming a logarithmic velocity profile)
  • Model:WASH123D  + (Fluid velocity, pressure, temperature, salFluid velocity, pressure, temperature, salinity, concentrations, thermal flexes, and matrial fluxes at all nodes at any desired time. volumetric, energy, and mass balance at all types of boundaries and the entire boundary at any specified time. Br>For details refer to Yeh et al., 2005 Technical Report on WASH123DYeh et al., 2005 Technical Report on WASH123D)
  • Model:RivMAP  + (For a single image: centerlines, widths, cFor a single image: centerlines, widths, channel direction, curvatures</br>For multiple images: (centerline) migration areas, erosion and accretion areas, cutoffs, cutoff statistics, channel belt boundaries, grid generation to map spatial changes, spacetime maps of changes in planform variablestime maps of changes in planform variables)
  • Model:GPM  + (Free-surface flow and wave action through time. Erosion and deposition through time. Optionally, compaction, including porosity reduction.)
  • Model:WAVEWATCH III ^TM  + (From wave heights to spectral data, see manual)
  • Model:TURB  + (Gaussian distribution of instantaneous turbulent fluid shear stresses at the bed)
  • Model:Gc2d  + (Glacier thickness and elevation)
  • Model:SEDPAK  + (Graphical Display and surface plot)
  • Model:WSGFAM  + (Gravity flow velocity, Depth-integrated sediment load, down-slope sediment flux, flux convergence or divergence, erosion or deposition rate.)
  • Model:Plume  + (Grid of Sediment rate in m/day for specified grain size classes)
  • Model:AquaTellUs  + (Grid of deposition of different grains over time. The model generates postscript files of stratigraphic sections.)
  • Model:Landlab  + (Gridding component provides ASCII and/or netCDF output of grid geometry.)
  • Model:Sun fan-delta model  + (Grids of topography)
  • Model:DeltaRCM Vegetation  + (Grids of water surface elevation, discharge, bed elevation, and vegetation density values for each cell. Additionally, sand fraction of each vertical cell within a grid cell.)
  • Model:CASCADE  + (H, fluxes, discharge, catchment geom, etc, at all time steps, as welle as grid connectivity)
  • Model:HSPF  + (HSPF produces a time history of the runoffHSPF produces a time history of the runoff flow rate, sediment load, and</br>nutrient and pesticide concentrations, along with a time history of water</br>quantity and quality at any point in a watershed. Simulation results can be</br>processed through a frequency and duration analysis routine that produces</br>output compatible with conventional toxicological measures (e.g., 96-hour</br>LC50).xicological measures (e.g., 96-hour LC50).)
  • Model:HexWatershed  + (Hexagon DEM, flow direction, flow accumulation, stream grid, stream segment, stream order, stream confluence, subbasin, watershed boundary, etc.)
  • Model:TauDEM  + (Hydrologic information derived from DEM)
  • Model:GSFLOW-GRASS  + (Hydrologic model discretization, input files for GSFLOW, output files from GSFLOW (hydrologic model))
  • Model:SWMM  + (In addition to modeling the generation andIn addition to modeling the generation and transport of runoff flows, SWMM can also estimate the production of pollutant loads associated with this runoff. The following processes can be modeled for any number of user-defined water quality constituents:</br></br>* dry-weather pollutant buildup over different land uses</br>* pollutant washoff from specific land uses during storm events</br>* direct contribution of rainfall deposition</br>* reduction in dry-weather buildup due to street cleaning</br>* reduction in washoff load due to BMPs</br>* entry of dry weather sanitary flows and user-specified external inflows at any point in the drainage system</br>* routing of water quality constituents through the drainage system</br>* reduction in constituent concentration through treatment in storage units or by natural processes in pipes and channelsby natural processes in pipes and channels)
  • Model:Spbgc  + (It can output local velocity, vorticity, cIt can output local velocity, vorticity, concentration, stream-function, and all derivatives of velocity necessary to calculate dissipation, viscous momentum diffusion, kinetic energy flux, work by pressure forces, and change in kinetic energy. These quantities are written out in a binary file.</br></br> It also has routines for calculating the local height profile and tip position of gravity currents and internal bores, which are outputted every time step and stored as ASCII txt files.y time step and stored as ASCII txt files.)
  • Model:Cross Shore Sediment Flux  + (It outputs all the variables used in the advection-diffusion equation describing bed evolution for both shallow water wave assumptions (all labeled as *_s) and linear theory (labeled as *_lh).)
  • Model:Ecopath with Ecosim  + (Key indices, Mortalities, Consumption, Respiration, Niche overlap, Electivity, Search rates and Fishery forms.)
  • Model:SLAMM 6.7  + (Land cover and elevation prediction rasters under SLR conditions through 2100.)
  • Model:GRLP  + (Long profile (x, z); output sediment discharge)
  • Model:FluidMud  + (Major quantities: mud floc concentration, flow velocity in longshelf and cross-shelf direction. Other quantities: TKE, turbulent dissipation rate, floc size (if floc dynamics turn on), bottom stress.)
  • Model:DFMFON  + (Mangrove properties and Delft3D-FM output)
  • Model:ParFlow  + (Many: pressure, saturation, temperature, energy fluxes, flow, etc.)
  • Model:QDSSM  + (Maps of geomorphology, discharge, deposition, isopachs, stratigraphic thickness, grain size, contour, subsidence, and environment)
  • Model:GEOMBEST++  + (Marsh boundary - gives the position of the backbarrier marsh edge through time Shorelines - gives the position of the barrier shoreline through time step number - saves the surface morphology and stratigraphy for the model at each time step)
  • Model:Wetland3P  + (Marsh depth, mudflat depth, mudflat width)
  • Model:MarshPondModel  + (Marsh elevation Pond area and location)
  • Model:CosmoLand  + (Mass, atoms, landslide size, fluvial residence time, mixed mass and atoms fraction)
  • Model:Lake-Permafrost with Subsidence  + (Matlab variables, Matlab graphs)
  • Model:DeltaRCM  + (Matrices of: Water surface elevation; Water unit discharge and velocity field; Delta surface elevation and bathymetry; Stratigraphy (User can choose which time step to output))
  • Model:Manningseq-bouldersforpaleohydrology  + (Microsoft Excel tables)
  • Model:TOPMODEL  + (Model Interface Capabilities: There are thModel Interface Capabilities:</br>There are three options available in the program interface: </br>* The Hydrograph Prediction Option: This option allows the model to be run and hydrographs displayed. If a Topographic Index Map File is available, then a map button is displayed that allows the display of predicted simulation, either as a summary over all timesteps or animated. </br>* The Sensitivity Analysis Option: This screen allows the sensitivity of the objective functions to changes of one or more of the parameters to be explored. </br>* The Monte Carlo Analysis Option: In this option a large number of runs of the model can be made using uniform random samples of the parameters chosen for inclusion in the analysis. Check boxes can be used to choose the variables and objective functions to be saved for each run. The results file produced will be compatible with the GLUE analysis software package.e with the GLUE analysis software package.)
  • Model:REF-DIF  + (Model output: * Complex amplitude, * Wave Heights and angles * Radiation stresses and forcing terms * Wave induced mass flux * Velocity moments for bottom stress calculation)
  • Model:ErosionDeposition  + (Model returns modified 'topographic__elevation', the model grid field holding model node elevations.)
  • Model:MIDAS  + (Morphodynamic evolution of a quasi-2D single-thread channel)
  • Model:AnugaSed  + (NetCDF file (.sww) of x, y, elevation, flow depth, x and y momentum, and sediment concentration (all optional))
  • Model:Cliffs  + (Netcdf binaries of velocities and elevatioNetcdf binaries of velocities and elevation screenshots in Master grid</br>�Netcdf binary of maximum water surface elevation in Master grid</br>�Netcdf Time histories of the water surface elevation at virtual gages;</br>Netcdf binaries of boundary input time-series for the enclosed grids, one �file for each boundary (east, west, north, south)r each boundary (east, west, north, south))
  • Model:SNAC  + (Nodal field data: velocity, temperature Element-centered (discontinuous) field data: strain rate, stress, plastic strain, etc.)
  • Model:AlluvStrat  + (Numpy array of channel and overbank deposit)
  • Model:Mrip  + (Options (can be turned on or off): Print eOptions (can be turned on or off):</br>Print evolving bed to screen.</br>A file with the bed with each time step, or at intermediate steps.</br>A file with the spectra of bed at each time step, or at intermediate steps.</br>A file with statistics (eg, rms roughness of bed)with statistics (eg, rms roughness of bed))
  • Model:KWAVE  + (Output Files: 1. stage -- array containingOutput Files:</br>1. stage -- array containing information on flow at the edges of the model domain</br>2. depth -- flow depth at each grid cell at the end of the simulation</br>3. vel -- flow velocity at each grid cell at the end of the simulation</br>4. maxdepth -- maximum flow depth at each grid cell</br>4. maxvel -- maximum flow velocity at each grid cell-- maximum flow velocity at each grid cell)
  • Model:ESCAPE  + (Output are grids of 3D surface evolution in HDF5)
  • Model:KnickZone-Picker  + (Output data are written as GeoTIFF files, shapefiles, CSV files.)
  • Model:IDA  + (Output drainage area, true drainage area, Output drainage area, true drainage area, and initial guess:</br> 64 bit float ('double')</br></br> Row major order is used.</br> The drainage area of cells with no drainage to or from them, such as ocean</br> cells, will be the area of the cell itself (1.0, if all cells are given</br> unit area).(1.0, if all cells are given unit area).)
  • Model:SBM  + (Output files provide snapshots of the bedfOutput files provide snapshots of the bedform domain during its evolution. They containing elevation of bedform domain, the percentage full of sediment for all cells in the top layer, and the percent of coarse material in those top cells. Furthermore, there is output for the percent coarse of every cell in the domain (not just the top layer) for analyzing stratigraphic profiles.yer) for analyzing stratigraphic profiles.)
  • Model:Coastal Dune Model  + (Output is '.dat' files showing vegetation cover density and DEM of the model domain at specified time intervals)
  • Model:GEOMBEST-Plus  + (Output parameters: * Marsh boundary - giveOutput parameters:</br>* Marsh boundary - gives the position of the backbarrier marsh edge through time</br>* Shorelines - gives the position of the barrier shoreline through time</br>* step number - saves the surface morphology and stratigraphy for the model at each time stepratigraphy for the model at each time step)
  • Model:OrderID  + (Outputs are m and r values, plus p values Outputs are m and r values, plus p values indicating the probability that the calculated m and r values could occur by chance. Graphical output is produced showing the vertical section of strata, a transition probability matrix for the facies, a histogram of facies frequency, a plot of the m value calculated from observed strata versus the m values calculated from Monte Carlo modelling of shuffled equivalent strata, and a plot of the r value calculated from observed strata versus the r values calculated from Monte Carlo modelling of shuffled equivalent strata.o modelling of shuffled equivalent strata.)
  • Model:OptimalCycleID  + (Outputs are plots of the vertical succession input along with a series of transition probability matrices and facies orders indicating the more and less ordered arrangements of facies)
  • Model:LEMming2  + (Outputs complete Matlab workspace at user-defined intervals. Outputs surface plots at user-defined intervals. Some scripts are included for additional visualization of output.)
  • Model:CHILD  + (Outputs include grids of surface elevationOutputs include grids of surface elevation, drainage area, gradient, stratigraphy, drainage direction, Voronoi cell areas, sediment texture; data on mesh configuration; total landscape volume and change in volume at each storm (time step); list of storm durations, timing, and intensities. storm durations, timing, and intensities.)