Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe input parameters model" with value "See documentation: https://bmi-topography.readthedocs.io". Since there have been only a few results, also nearby values are displayed.

Showing below up to 26 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:CSt ASMITA  + (Parameters: *A(I,J) - Angle between flow aParameters:</br>*A(I,J) - Angle between flow and grid coordinates {SG}</br>*Ab(I) - Breaker angle {2}</br>*ACENT - Angle of wave climate central tendency (0 is for crests parallel to the lower boundary)</br>*ASTORM - Angle of dominant waves</br>*Aw(I,J) - Angle between wave propagation & onshore direction {2}</br>*Beta - Scales the exponent in the wave-drift</br>*CK - Coef.scales rate of gravity-driven upper shoreface sed flux (3)</br>*DELTAX - Longshore grid cell dimension (SG)</br>*DELTAY - Cross-shore grid cell dimension (SG)</br>*DC(I,J) - Cross-shore diff. coef.in flow coords.{1}</br>*DCyyy - Controls the slope of the cross-shore diffusion coef. when it is *computed from a linear eqn.</br>*DCzero - The offset in the above relationship</br>*DCmax - Max. Limit for the cross-shore diff. coef.</br>*DL(I,J) - Longshore diff. coef.in flow coords. {1}</br>*DLyyy - Slope of the longshore diff. coef.</br>*DLzero - Offset of the above.</br>*DLmax - Max. Limit for the long-shore diff. coef.</br>*DT - Time step in years</br>*EDFACT - Controls relative converge/divergence of waves due to refraction (should mimic RFACT)</br>*GFACT - Factor for the K(Cn)/(delrho)ga in the ls transp.eqn.</br>*H(I,J,iTime) - Depths in grid, fill index in surf-zone cells {SG}</br>*Hmax - Max.(ie. most negative) depth in the surf zone cell (SG)</br>*Hmin - Min. depth in the surf zone cell (SG)</br>*IMAX - Number of grid cells in the shore parallel direction(SG)</br>*JMAX - Number of grid cells in the cross-shore direction(SG)</br>*JSHORE(I) - Most landward ocean cell - surf-zone cell(SG)</br>*K1 - Scales the diff. sed. transport</br>*MFACT - Scales the wave-energy density of general wave climate</br>*NFACT - Scales the wave-energy density of the dominant waves</br>*PORE - Sediment porosity</br>*SANGLE(I) - - Tangent angle along the shoreline {SG}</br>*Scr - The critical slope of the upper shoreface cell (JSHORE-1)</br>*SHOAL(I) - Relative convergence/div of wave-energy density due to refraction</br>*RFACT - Contols the relative ray-bending due to refraction</br>*Wo - Scales the wave-drift sed. trans.</br>*XSHORE(I) - X-coord. of the continuous shoreline {SG}</br>*YSHORE(I) - Y-coord. of the continuous shoreline {SG}</br>*YOFF(I,iTime) - offset between the surf-zone cell center and the continuous shoreline (can be positive or negative){SG}us shoreline (can be positive or negative){SG})
  • Model:SimClast  + (Parameters: *Sealevel curve *subsidence *rParameters:</br>*Sealevel curve</br>*subsidence</br>*rainfall (variable through time)</br>*multiple rivers with variable discharge and sediment load through time</br>*initial topography</br>*wind velocity and direction/or wave height and propagation direction</br>*marine current velocity and location</br>*sediment transport parameters</br>*number of grainsizes, grainsize dimensions and density</br>*fluvial channel dimensionsns and density *fluvial channel dimensions)
  • Model:GEOtop  + (Please see: http://geotopmodel.github.io/geotop/)
  • Model:EF5  + (Precipitation)
  • Model:HYPE  + (Precipitation, temperature, and geographical data)
  • Model:Avulsion  + (Probability density function of stream-avulsion angles)
  • Model:CarboCAT  + (Production and subsidence rates, cellular automata rules (number of seed neighbours etc), sea-level history)
  • Model:BEDLOAD  + (Proportion by mass of each size-density fraction in the bed, instantaneous turbulent grain shear velocities, critical shear stresses of each size-density fraction)
  • Model:MARM5D  + (Raster at ArcGIS ASCII format 1. contributRaster at ArcGIS ASCII format</br>1. contributing area (m2)</br>2. topographic slope (%)</br>3. flow direction (ArcGIS coding)</br></br>Tables:</br>4. initial surface particle size distribution (PSD)</br>5. aeolian PSD (optional)</br>6. climate fluctuations (optional)</br></br>Text:</br>7. input parametersions (optional) Text: 7. input parameters)
  • Model:GLUDM  + (Rasters containing the relative area of a specific land use (e.g. cropland) in the past (e.g. 1960, 1980, 1990, 2005). A table of historic and predicted global population.)
  • Model:MRSAA  + (Reach hydraulic parameters (e.g. slope, sediment grain size, critical shear stresses, Chezy coefficient, bed macro-roughness, sediment supply rate, length, channel width, flood intermittency factor, etc.))
  • Model:ThawLake1D  + (Requires an input file called: radin_dailyavg.mat This specifies the daily average incoming radiation.)
  • Model:Equilibrium Calculator  + (River hydrology is described with a flow dRiver hydrology is described with a flow duration curve, the mean annual sand load is specified, the mean annual mud load is computed with a user-specified rating curve, characteristic sand and mud grain size, friction coefficients for the channel and for the floodplain and other model parameters described in the excel caclulatorrameters described in the excel caclulator)
  • Model:Sedflux  + (River mouth characteristics (velocity, width, depth, concentration) averaged daily, or longer. Initial bathymetry. Input sediment distribution and properties of each grain type. Optionally, any of: tectonics, sea level, wave climate, and currents)
  • Model:Plume  + (River velocity, width, depth; Sediment concentrations)
  • Model:SPARROW  + (SPARROW modeling requires the integration SPARROW modeling requires the integration of many types of geospatial data for use as explanatory variables which are considered as either constituent sources or delivery factors. Sources might include certain land types such as urban area, or known contaminant sources such as sewage treatment plants. Delivery terms can include any basin characteristic that may be associated with natural attenuation. For example, denitrification is often associated with certain soil characteristics and the spatial pattern of those soil characteristics is often related to that of constituent loads. In some cases delivery terms might also be associated with enhanced delivery. For example, high basin slope might cause more rapid flows which could increase the delivery of constituents. Delivery is also influenced by the water time of travel in streams, which can be estimated from published USGS time-of-travel studies (e.g., Reed and Stuckey, 2001).el studies (e.g., Reed and Stuckey, 2001).)
  • Model:CASCADE  + (SPM parameters (Kf, Kd, lf, etc) geomtrical and other parameters imposed by modifying the code)
  • Model:Coastal Landscape Transect Model (CoLT)  + (Sea Level Rise rate (mm/yr), upland slope (unitless), suspended sediment concentration (external supply) (mg/L), length of simulation (years))
  • Model:BITM  + (Sea level curve; rate of lagoonal depositiSea level curve; rate of lagoonal deposition; rate of overwash; initial shelf profile. The stratigraphic data are organized in a matrix of integers. Every matrix entry corresponds to a stratigraphic unit (bedrock, overwash, transitional, shoreface, aeolian and lagoonal).itional, shoreface, aeolian and lagoonal).)
  • Model:SEDPAK  + (Sealevel, Subsidence, Start Time, End Time, Sedimentation Rates, Initial basin surface)
  • Model:D'Alpaos model  + (Sediment availability, vegetation characteristics, tidal forcing, rate of relative sea level rise, tidal network configuration and marsh topography if an actual domain is considered.)
  • Model:Compact  + (Sediment porosity, closest-packed porosity, compaction coefficient)
  • Model:Rescal-snow  + (See 'rescal_snow_inputs' in docs)
  • Model:NearCoM  + (See documentation.)
  • Model:GeoTiff Data Component  + (See documentation: https://bmi-geotiff.readthedocs.io)
  • Model:GridMET Data Component  + (See documentation: https://pymt-gridmet.readthedocs.io)
  • Model:Hilltop and hillslope morphology extraction  + (See included readme)
  • Model:SPHYSICS  + (See manual)
  • Model:Glimmer-CISM  + (See paper)
  • Model:RiverMUSE  + (See the readme file.)
  • Model:TOPOG  + (See website, too many to describe: http://www-data.wron.csiro.au/topog/)
  • Model:SWAT  + (See: https://swat.tamu.edu/)
  • Model:Sun fan-delta model  + (Several, as defined in wrapper script)
  • Model:GENESIS  + (Shoreline position, time series of offshore wave height, period, and direction. Coastal structures and their physical attributes. Optionally, nearshore wave information from an external wave model.)
  • Model:AquaTellUs  + (Simulation time (t) and time step (dt), Initial grid size and slope, Incoming discharge and sediment load (t), Sea level (t), no of grain size classes, grain size distribution, grain size. Sediment transport coeficients)
  • Model:DeltaSIM  + (Simulation time and time step, Initial profile, Stochastic sediment input (t), Sea level (t), Sediment transport parameters (i.e. travel distances))
  • Model:SLAMM 6.7  + (Slope Data: Slope of each cell, used to caSlope Data: Slope of each cell, used to calculate partial changes in cell composition. As</br>derived from the Digital Elevation Map. (units are degrees)</br>• DEM Data: Digital Elevation Map data. Preferrable derived from LiDAR. Contour data</br>(from the National Elevation Database, for example) are typically</br>inappropriate to use for calculating sea level rise effects but serve as data in</br>areas where more precise data are not available ( in this case the elevation</br>preprocessor module may be used). (units are meters)</br>• NWI Data: National Wetlands Inventory categories. Dominant wetland category for</br>each cell is converted into SLAMM categories. This is also used to refine</br>elevation estimates for each cell. Table 4 provides the crosswalk information</br>for Cowardin codes to SLAMM categories</br>• Dike Data: Boolean defining whether each cell is protected by dikes or not. This is</br>available as an attribute of the NWI data, special modifier “h.”</br>• IMP Data: Percent impervious raster, derived from National Land Cover Dataset. Dry</br>land with percent impervious greater than 25% is assumed to be “developed</br>dry land.”25% is assumed to be “developed dry land.”)
  • Model:GNE  + (Source inputs consist of global, spatiallySource inputs consist of global, spatially distributed (GIS) raster datasets: hydrological properties (river basin systems, runoff, reservoirs, irrigation, rainfall), topographic slope, land use, agricultural N & P inputs (fertilizer, manure), atmospheric N deposition, sewage, N fixation, etc.spheric N deposition, sewage, N fixation, etc.)
  • Model:TURB  + (Spatial-temporal mean bed fluid shear stress)
  • Model:GOLEM  + (Standard input parameter files (ascii). For some conditions, also require additional binary file specifying boundary configuration.)
  • Model:DECAL  + (Staring grid topography and vegetation maps, control parameters such as potential transport rates, vegetation response functions)
  • Model:Dionisos  + (Stratigraphic parameters : basin deformation(eustatic curve, subsidence maps, compaction, flexure), supply (boundary conditions, rain fall, carbonate production), transport (waves, water and gravity transport, slope failure))
  • Model:SICOPOLIS  + (Surface mass balance, (precipitation, evaporation, runoff), Mean annual air temperature above the ice, Eustatic sea level, Geothermal heat flux.)
  • Model:Instructed Glacier Model  + (Surface mass balance, Ice thickness, and ice flow)
  • Model:OceanWaves  + (Surface wave height and period or surface winds as well as water depth.)
  • Model:ParFlow  + (TCL script, many physical and numerical parameters needed.)
  • Model:Reservoir  + (The Rippl function executes the sequent peThe Rippl function executes the sequent peak algorithm to determine the no-fail storage for given inflow and release time series. The storage function gives the design storage for a specified timebased reliability and yield. Similarly, the yield function computes yield given the storage capacity. The rrv function returns three reliability measures, relilience, and dimensionless vulnerability for given storage, inflow time series, and target release. Users can assume Standard Operating Policy, or can apply the output of sdp analysis to determine the RRV metrics under different operating objectives. The Hurst function estimates the Hurst coefficient for an annualized inflow time series.ient for an annualized inflow time series.)
  • Model:Alpine3D  + (The area to be simulated has to be describThe area to be simulated has to be described (DEM, landuse). The meteorological input data (air temperature, relative humidity, precipitations...) have to be described (units, interpolations types). Some parameters about the model itself must be given (precision of the radiation ray tracing algorithms, characteristic lengths, parameters for a bucket model of runoff...)arameters for a bucket model of runoff...))
  • Model:SWAN  + (The bathymetry, current, water level, bottom friction and wind (if spatially variable) need to be provided to SWAN on so-called input grids. It is best to make an input grid so large that it completely covers the computational grid.)
  • Model:TopoFlow-Evaporation-Read File  + (The behavior of this component is controllThe behavior of this component is controlled with a configuration (CFG) file, which may point to other files that contain input data. Here is a sample configuration (CFG) file for this component:</br> Method code: 1</br> Method name: Read_from_binary_file</br> Time step: Scalar 10800.00000000 (sec)</br> ET rate: Grid_Sequence Space-time_Rain_Test/Rain_TEST.rts (mm/hr)ace-time_Rain_Test/Rain_TEST.rts (mm/hr))