Browse wiki

From CSDMS
United States  +
Idaho Department of Labor  +
Idaho  +
Model developer  +
No not possible  +
2  +
Columbia  +
No not possible  +
No not possible  +
No not possible  +
Single Processor  +
United States  +
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
21:49:37, 21 September 2021  +
Yes, we plan to work with the full model.  +
The model was zeroed on the pre-1930 Minnesota River between Mankato and Jordan, Minnesota, using data available in the literature and on the USGS website.  +
We performed a model sensitivity analysis and the results are reported in the Equilibrium_results_submit.xlsx file uploaded in the github repository  +
River hydrology is described with a flow dRiver hydrology is described with a flow duration curve, the mean annual sand load is specified, the mean annual mud load is computed with a user-specified rating curve, characteristic sand and mud grain size, friction coefficients for the channel and for the floodplain and other model parameters described in the excel caclulatorrameters described in the excel caclulator  +
Model governing equations express the consModel governing equations express the conservation of sand and mud in the floodplain and in the channel. Water depth and shear stress are computed with a Chezy formulation for a composite rectangular cross section. Total ((bedload plus suspended load) sand transport capacity is computed with an Engelund and Hansen-type of bulk load relation (see Parker, 2004). The mean annual sand load is determined by averaging the sand transport capacities over the flow duration curve. Channel migration rate is computed as in Eke et al. (2014). Overbank deposition rates are computed with the approach presented in Parker et al. (1996). </br></br>References</br>Eke, E., Parker, G. & Shimizu, Y. (2014). Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: Morphodynamics of bar push and bank pull, Journal of Geophysical Research: Earth Surface 119, 1455-1483.</br>Parker, G. (2004). 1D sediment transport morphodynamics with applications to rivers and turbidity currents e-book available at http://hydrolab.illinois.edu/people/parkerg/morphodynamics_e-book.htm .</br>Parker, G., Cui, Y., Imran, J. & Dietrich, W. E. (1996). Flooding in the lower Ok Tedi, Papua New Guinea due to the disposal of mine tailings and it’s amelioration, International Seminar on Recent trends of floods and their preventive measures, 20-21 June, Sapporo, Japan.r preventive measures, 20-21 June, Sapporo, Japan.  +
We use formulations describing rivers at lWe use formulations describing rivers at large scale. Complex interactions between physical, chemical, biological and ecological processes that play a relevant role in floodplain construction are not accounted for, as their impacts on floodplain mass balance cannot be quantified. Model parameters should thus be interpreted as averages over a few meander bends, and over several years.few meander bends, and over several years.  +
Model limitations are related to the use of the goal seek function in excel to find the solution.  +
equilibrium channel slope, width and depthequilibrium channel slope, width and depth, bankfull discharge, point bar height, difference in elevation between eroding and depositing banks, channel migration rate, overbank deposition rates of sand and mud, volume fraction content of sand and mud in the floodplain.content of sand and mud in the floodplain.  +
The model predicts bankfull geometry of siThe model predicts bankfull geometry of single-thread, sand-bed rivers from first principles, i.e. conservation of channel bed and floodplain sediment, which does not require the a-priori knowledge of the bankfull discharge. Building on previous work on the equilibrium of engineered rivers, i.e. rivers with fixed banks and sinuosity (Blom et al., 2016, 2017, Arkesteijn et al., 2019), as well as formulations for floodplain morphodynamics (Lauer & Parker, 2008, Viparelli et al., 2013, Lauer et al., 2016) and bank migration (Parker et al., 2011, Eke et al., 2014, Davidson & Eaton, 2018, De Rego et al., 2020), we derive equilibrium solutions for channel geometry (width, depth, slope), floodplain sediment size distribution, bankfull discharge, channel migration and overbank deposition rates. </br></br>References</br>Arkesteijn, L., Blom, A., Czapiga, M. J., Chavarrias, V. & Labeur, R. J. (2019). The quasi-equilibrium longitudinal profile in backwater reaches if the engineered alluvial river: A space-marching method, Journal of Geophysical Research: Earth Surface 124, 2542-2560.</br>Blom, A., Viparelli, E. & Chavarrias, V. (2016). The graded alluvial river: Profile concavity and downstream fining, Geophysical Research Letters 43 (12), 6285-6293.</br>Blom, A., Arkesteijn, L., Chavarrias, V. & Viparelli, E. (2017). The equilibrium alluvial river under variable flow and its channel-forming discharge, Journal of Geophysical Research: Earth Surface 122, 1924-1948.</br>Davidson, S.L. & Eaton, B. C. (2018). Beyond Regime: A stochastic model of floods, bank erosion, and channel migration. Water Resources Research, 54, 6282-6298. </br>De Rego, K., Lauer, J. W., Eaton, B. & Hassan, M. (2020). A decadal-scale numerical model for wandering, cobble-bedded rivers subject to disturbance, Earth Surface Processes and Landforms 45, 912-927. </br>Eke, E., Parker, G. & Shimizu, Y. (2014). Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: Morphodynamics of bar push and bank pull, Journal of Geophysical Research: Earth Surface 119, 1455-1483.</br>Lauer, J. W. & Parker, G. (2008). Modeling framework for sediment deposition, storage, and evacuation in the floodplain of a meandering river: Theory, Water Resources Research 44, W04425, doi: 10.1029/2006WR005528.</br>Lauer, J. W., Viparelli, E. & Piegay, H. (2016). Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir, Advances in Water Resources 93, 135-149.</br>Parker, G., Shimizu, Y., Wilkerson, G. V., Eke, E. C., Abad, J. D., Lauer, J. W., Paola, C., Dietrich, W. E. & Voller, V. R. (2011). A new framework for modeling the migration of meandering rivers, Earth Surface Processes and Landforms 36, 70-86.</br>Viparelli, E., Lauer, J. W., Belmont, P. & Parker, G. (2013). A numerical model to develop long-term sediment budgets using isotopic sediment fingerprints, Computers & Geosciences 53, 114-122.ediment budgets using isotopic sediment fingerprints, Computers & Geosciences 53, 114-122.  
We present an equilibrium solution that maWe present an equilibrium solution that may or may not be reached. The fundamental assumption is that in the absence of subsidence, uplift and change of downstream water surface base level, an alluvial river will evolve toward an equilibrium state in which overbank and bar deposition (floodplain construction) are perfectly balanced by the removal of floodplain sediment due to channel migration (floodplain shaving) (Lauer & Parker, 2006). This equilibrium state can be reached if hydrologic regime, sediment supply and caliber do not vary in time. </br></br>Reference</br>Lauer, J. W. & Parker, G. (2006). Net local removal of floodplain sediment by river meander migration, Geomorphology 96, 123-149.iver meander migration, Geomorphology 96, 123-149.  +
As is, no updates are provided  +
The model predicts bankfull geometry of single-thread, sand-bed rivers from first principles, i.e. conservation of channel bed and floodplain sediment, which does not require the a-priori knowledge of the bankfull discharge.  +
Enrica  +
1  +
Has query"Has query" is a predefined property that represents meta information (in form of a <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Subobject">subobject</a>) about individual queries and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Numbers is an excel file  +
University of South Carolina  +
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Viparelli  +
0.2  +
Terrestrial  +  and Hydrology  +
single-thread  +, self-formed  +, sand-bed  +, rivers  +, model predicts bankfull  +, predicts bankfull geometry  +, geometry of single-thread  +, sand-bed rivers  +, conservation of channel  +, floodplain sediment  +, bankfull discharge  +, model predicts  +, channel bed  +, bed and floodplain  +, require the a-priori  +, a-priori knowledge  +, predicts bankfull  +, bankfull geometry  +, bankfull  +  and equilibrium calculator  +
As code  +  and As teaching tool  +
sand-bed rivers  +  and bankfull geometry  +
Tool  +
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
12:34:19, 22 September 2021  +
1  +
Equilibrium solver of Self-formed, Single-thread, Sand-bed Rivers  +
Numbers in an excel file  +
29208  +
Visual Basic for Applications  +
BSD or MIT X11  +
few minutes at the most  +
Through web repository  +
https://github.com/vipenrica/Channel-geometry  +
Reach-Scale  +
South Carolina  +
Mac OS  +  and Windows  +
Model developer  +