Property:Describe output parameters model

From CSDMS

This is a property of type Text.

Showing 119 pages using this property.
P
Several state variables (soil moisture, groundwater table, stream head, interception, surface state and snow depth) and fluxes (3 components of evapotranspiration) 10 stream component fluxes for each reach, infiltration, recharge, lateral flux)  +
Q
Shoreline and alluvial-bedrock transition trajectories over time. Future versions of the model will include the profile evolution.  +
G
Shoreline position, breaking wave information, estimated longshore sand transport rates.  +
B
Simple ascii files containing x and z coordinates of points at end of run. Optional output of figure in .eps format.  +
U
Snow melt  +
S
Snowpack creates various output files: * the current state of its soil and snow layers in ".sno" files; * the current state of its hazard relevant data in ".haz" files; * a time serie of snow profiles; * a time serie of the meteorological data and fluxes as used in the model.  +
O
Solute concentrations as a function of space and time  +
W
Storm, monthly, yearly, or average annual runoff, soil loss, and sediment yield from a hillslope profile. Spatial distribution of soil erosion and deposition on slope profiles. Graphical output available of 92 parameters from continuous model simulations (including precip, temperatures, runoff, soil loss, sediment yield, biomass production, residue cover, etc.). Soil output text file, water balance output text file, plant output text file, storm event output file, overland flow element summary line output file.  +
G
Temperature distribution with depth Active Layer Depth Freezing/Thawing day  +
L
Temporally evolving longitudinal profile and cross-sectional average flows of a 1D river  +
O
The Landlab OverlandFlow component outputs data as Landlab fields - numpy arrays containing data with the associated CSDMS standard name, listed below: 'surface_water__depth' : NumPy array of length nnodes. Water depths at a given time step. 'surface_water__discharge' : NumPy array of length nlinks. Water discharge values at a given time step. 'water_surface__gradient' : NumPy array of length nlinks. Water surface gradient at a given time step.  +
P
The PBS wraps ILAMB, which produces tabular and graphical statistics from a benchmark analysis. These outputs can be viewed in ILAMB, or downloaded to a user's local machine as a tarball.  +
W
The WBMplus model can output any variables used for the water balance and transport calculations. WBMsed unique output are: sediment-flux, over-bank water discharge, and all the BQART parameters.  +
S
The code outputs the following text files: “topoout.txt” – elevation for each grid point at the end of the simulation “depth.txt” – flow depth at each grid point at the end of the simulation “uh.txt” – value of conserved variable UH at each grid point “vh.txt” – value of conserved variable VH at each grid point “ch.txt” – value of conserved variable CH at each grid point “m.txt” – mass of sediment in the deposited layer at each grid point “c.txt” – sediment concentration at each grid point “vel.txt” – flow velocity at each grid point “stage.txt” – time series data (time (s), flow depth, flow velocity, and sediment concentration) at the outlet pixel “maxvel.txt” – maximum flow velocity recorded at each grid point throughout the simulation “maxdepth.txt” -- maximum flow depth recorded at each grid point throughout the simulation “saveflow.txt” – time series data (flow depth, flow velocity, sediment concentration) at user specified grid points “topomovie.txt” – elevation data at different times throughout the simulation (specified in the code by “printinterval”) “depthmovie.txt” – flow depth at different times throughout the simulation “velocitymovie.txt” – flow velocity at different times throughout the simulation “cmovie.txt” – sediment concentration at different times throughout the simulation “Mmovie.txt” – mass of sediment in the deposited layer at different times throughout the simulation  +
C
The component provides monthly temperature data in degrees Celcius. Within the CSDMS framework, the component generates an NetCDF file of a stacked grid of monthly temperatures over the specified region.  +
D
The computed outflow from any flow plane, pipe, or channel segment for each storm period may be written to the output file or to the WDM file. A summary of the measured and simulated rainfall, runoff, and peak flows is written to the output file. A flat file containing the storm rainfall, measured flow (if available), and simulated flow at user selected sites can be generated. A flat file for each storm containing the total rainfall, the measured peak flow (if available), and the simulated peak flow for user-selected sites can be generated.  +
C
The data component provides monthly temperature as a NetCDF file for the region of Alaska  +
W
The following output files are available to the user, depending on their run configuration: 1. Land surface model output 2. Land surface diagnostic output 3. Streamflow output at all channel reaches/cells 4. Streamflow output at forecast points or gage reaches/cells 5. Streamflow on the 2D high resolution routing grid (gridded channel routing only) 6. Terrain routing variables on the 2D high resolution routing grid 7. Lake output variables 8. Ground water output variables 9. A text file of streamflow output at either forecast points or gage locations For a detailed table of each variable contained within each output file, see the WRF-Hydro Output Variable Matrix V5 located on our website https://ral.ucar.edu/projects/wrf_hydro/technical-description-user-guide  +
1
The model can be customized to produce many different kinds of output but, typically, the output consists of (i) h, a final hillslope profile; (ii) h_diffs, a vector which summarizes how the profile changed over the duration of the simulation; and (iii) a vector expressing the fluxes of particles through a site along the hillslope. However, the same code can be used to produce a video of the hillslope evolution, a vector containing the absolute difference between the hillslope profile and a reference profile, and many other observables of interest.  +
W
The model can output any variables used for the water balance and transport calculations. The most frequently requested ones are: potential and actual evapotranspiration, soil moisture, groundwater storage, river discharge, irrigational water uptake.  +
P
The model generates several georeferenced tiff files upon completion. These geotiff files can be viewed using any GIS software. Each file is a 2D map of a modeled flow property such as thickness, velocity etc. Additionally, multiband geotiff files containing similar 2D maps at multiple user-defined time intervals during the simulation. Depth – Map of the final 2D flow thickness (in meters). Depthbin – Binary map where cells with thickness > user-defined threshold thickness have a value of 1 and the rest of the cells have a value of 0. MaxDepth – Map of the maximum flow depth obtained at each cell during the entire simulation (in meters). MaxVelocity – Map of the maximum velocity obtained at each cell during the entire simulation (in m/s). MomentumX – Map of final 2D flow momentum along the X direction (in sq. m/s). MomentumY – Map of final 2D flow momentum along the Y direction (in sq. m/s). Velocity – Map of the final 2D flow velocity (in m/s). VelocityX – Map of the final 2D flow velocity along the X direction (in m/s). VelocityY – Map of the final 2D flow velocity along the Y direction (in m/s). The multiband (movie) files output by the model are DepthMovie, MomentumXMovie, MomentumYMovie, VelocityMovie, VelocityXMovie, VelocityYMovie.  +
S
The new coastline at the end of the simulation is plotted. Results are not currently saved to files.  +
R
The no-fail storage capacity and corresponding storage behaviour time series.  +
G
The output are elevation values that represent the gully channel profile.  +
L
The output can ultimately be used to plot and view the particles and compare the outcomes of different model runs. There are two types of comma-delimited output files: para and endfile. The para files are created periodically at set intervals throughout the running of the program and contain the particle locations at the current time. The endfile file is created only at the end of the program and contains information regarding each particles’ start location, end location, and ending status.  +
H
The output data is both plain text data files and .flt raster files containing the spatial location of the computed results.  +
C
The output of the model consists of snapshots of the coastline during its evolution. The model can be configured to write the resulting coastline at any point during the simulation. The output format of the coastline file is a custom binary formatted-file (the same format as the initial model input). Also, for convenience using with other software tools such as MATLAB, an ASCII-based file of the coastline shape can be written too. The model can also directly generate JPEG-formatted pictures of the coastline shape at any time during the simulation.  +
The outputs are i) For chi_m_over_n_analysis.exe, a *.movern file that contains information about the goodness of fit of channel profiles to a series of linear segments as a function of the m/n ratio: this file is used to determine the best fit m/n ratio of a channel network. ii) For chi_get_profiles.exe, a series of *.tree files which contain information about the best fit channel segments in chi-elevation space. This data can be used to infer erosion rates, tectonics, or variations in erodibility.  +
H
The outputs of HydroCNHS are stored in a data collector object, an attribute of HydroCNHS (e.g., model.dc). The main output is the daily streamflow at routing outlets. However, this data collector object will also contain other user-specified agent outputs as long as users use this data collector object in their ABM modules.  +
W
The program outputs a text file that provides information on the current minimum and maximum water table elevation, the changes in surface water and groundwater within the past iteration, and the number of iterations passed. The main output is a geoTiff file that supplies the depth to/elevation of the water table. Negative values indicate a water table below the surface, while positive values indicate a water table above the surface (i.e. a lake).  +
C
The state of the system is periodically output to a binary file that can be read by the post-processing and visualization routines (see the CVPM modeling system user's guide).  +
S
The windfield for a cyclone based on pressure distribution and radius to maximum winds (SI units).  +
D
There are a number of different types of output that the model can produce. In short, the following possibilities are available: DHSVM hydrologic output * Default output (these files are always produced) * Model state files * Network flow files * Travel time based hydrograph file * Optional output files Sediment Module output * Default output (these files are always produced) * Network flow files * Optional output files  +
R
There are hundreds of output parameters and fields that are written to several NetCDF files.  +
C
There are hundreds of output parameters and fields that are written to several NetCDF files.  +
U
There are hundreds of output parameters and fields that are written to several NetCDF files.  +
T
This component computes the following variables, as grids: Q = discharge (m^3/s) u = flow velocity (m/s) d = flow depth (m) f = friction factor (none) Rh = hydraulic radius (m) S_free = free-surface slope (m/m) The user can choose which, if any, of these to save. Each may be saved as a grid sequence, indexed by time, in a netCDF file, at a specified sampling rate. Each may also be saved for a set of "monitored" grid cells, each specified as a (row,column) pair in a file with the name: <case_prefix>_outlets.txt. With this option, computed values are saved in a multi-column text file at a specified sampling rate. Each column in this file corresponds to a time series of values for a particular grid cell. For both options the sampling rate must no smaller than the process timestep.  +
This component computes the following variables, as grids: Q = discharge (m^3/s) u = flow velocity (m/s) d = flow depth (m) f = friction factor (none) Rh = hydraulic radius (m) S_free = free-surface slope (m/m) The user can choose which, if any, of these to save. Each may be saved as a grid sequence, indexed by time, in a netCDF file, at a specified sampling rate. Each may also be saved for a set of "monitored" grid cells, each specified as a (row,column) pair in a file with the name: <case_prefix>_outlets.txt. With this option, computed values are saved in a multi-column text file at a specified sampling rate. Each column in this file corresponds to a time series of values for a particular grid cell. For both options the sampling rate must no smaller than the process timestep.  +
This component computes the following variables, as grids: Q = discharge (m^3/s) u = flow velocity (m/s) d = flow depth (m) f = friction factor (none) Rh = hydraulic radius (m) S_free = free-surface slope (m/m) The user can choose which, if any, of these to save. Each may be saved as a grid sequence, indexed by time, in a netCDF file, at a specified sampling rate. Each may also be saved for a set of "monitored" grid cells, each specified as a (row,column) pair in a file with the name: <case_prefix>_outlets.txt. With this option, computed values are saved in a multi-column text file at a specified sampling rate. Each column in this file corresponds to a time series of values for a particular grid cell. For both options the sampling rate must no smaller than the process timestep.  +
C
Time series of 2D topography/bathymetry and water discharge. 3D stratigraphy grid (currently model is single grain-size, so stratigraphy only stores deposit age)  +
D
Time series of 2D/3D map data and selected point data, particle tracks  +
T
Time variation of longitudinal profile, sediment flux and grain size distributions of bedload, surface and subsurface sediment.  +
B
Timeseries of: Overwash fluxes (m3/m/s) Inlet fluxes (m3/m/s) Shoreface toe location (m) Shoreline location (m) Back-barrier location (m) Barrier Height (m) Inlet locations alongshore (m)  +
P
To many to list here, see ''Description of Input and Examples for PHREEQC Version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations'.  +
Toggle on/off in input file: - PNG files of eta, stage, depth - grids of eta, stage, depth (as netCDF4) - grids of sand fraction in stratigraphy (as netCDF4)  +
M
Too many to mention here, see: http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html  +
T
Topography-based downscaling of climate data  +
Y
Total load mass flux  +
A
Two output maps ESRI ASCII format: # Alpha (coefficient); # Constant.  +
S
Typical flow quantities: Velocities, Concentrations, Vorticity, Passive marker location  +
U
Urban flooding maps  +
O
VOF, U, turbulence variables...  +
P
Velocities and concentration fields of the particles are stored to binary files at given time steps.  +
D
Vertically-integrated flow velocities and bed elevations as functions of time and two horizontal dimensions  +
2
Vertically-integrated flow velocities and water surface elevations as functions of time and two horizontal dimensions  +
W
WOFOST simulates the growth of a specific crop and its interaction with the soil. Its main output variables consist of crop variables (like total biomass, yield, phenological development and leaf area index) and soil variables like soil water content. More recent versions of WOFOST also include the N/P/K amounts in the crop organs and soil.  +
Water quantity and quality  +
D
_info = { "bedrock__elevation": { "dtype": float, "intent": "out", "optional": False, "units": "m", "mapping": "node", "doc": "elevation of the bedrock surface", }, "soil__depth": { "dtype": float, "intent": "inout", "optional": False, "units": "m", "mapping": "node", "doc": "Depth of soil or weathered bedrock", }, "soil__flux": { "dtype": float, "intent": "out", "optional": False, "units": "m^2/yr", "mapping": "link", "doc": "flux of soil in direction of link", }, "soil_production__rate": { "dtype": float, "intent": "in", "optional": False, "units": "m/yr", "mapping": "node", "doc": "rate of soil production at nodes", }, "topographic__elevation": { "dtype": float, "intent": "inout", "optional": False, "units": "m", "mapping": "node", "doc": "Land surface topographic elevation", }, "topographic__slope": { "dtype": float, "intent": "out", "optional": False, "units": "m/m", "mapping": "link", "doc": "gradient of the ground surface", }, }  +
_info = { "surface_water__discharge": { "dtype": float, "intent": "in", "optional": False, "units": "m**3/s", "mapping": "node", "doc": "Volumetric discharge of surface water", }, "topographic__elevation": { "dtype": float, "intent": "inout", "optional": False, "units": "m", "mapping": "node", "doc": "Land surface topographic elevation", }, "topographic__slope": { "dtype": float, "intent": "in", "optional": True, "units": "-", "mapping": "node", "doc": "gradient of the ground surface", }, }  +
S
alpha: sediment concentration Ua: sediment velocity Ub: fluid velocity p: fluid pressure Theta: granular temperature k: fluid kinetic energy epsilon/omega: fluid turbulent dissipation  +
C
ascii grids (readable into arcGIS) and google earth images of: DEM, flow depth, surface grainsize, shear stress, vegetation cover, velocity. Also time series of water discharge and sediment discharge (across 9 grainsizes) at user chosen interval. Also visual output to AVI file.  +
averaged daily water discharge to lower reach of crevasse splay; averaged daily crevasse splay depth; averaged daily crevasse splay width  +
Z
boolean: Indicates if the taxon is still evolving. When `False` is returned, this method will not be called for the taxon in subsequent stages in the current model time step.<br> list of Taxon: The children produced by the taxon at a given stage. The ``evolve`` method of child taxon will be called in stages following the stage the child taxon was produced. An empty list indicates no child taxon.  +
change in topographic profile with time  +
M
channel centerlines; 3d model  +
D
classification of groups of similar zones within a deltasystem code blocks that: • loads in the shapefiles • calculate the parameters for the network that both surround and drain the islands • calculate the base metrics (e.g. perimeter, area, solidity, aspect ratio...) • calculates maximum distance from the island center to the nearest water body • estimates minimum, average and maximum widths of all network channels • evaluates the fractal dimension of each delta island • creates shapefiles based on the metrics calculated earlier in the code • saves all metrics to an output file • generates PCA and GeoSOM results from the island and channel metrics • plots the U-matrix and dendrogram based on the GeoSOM results  +
G
cumulative infiltration, infiltration rate  +
R
daily river temperature  +
F
depth, liquid and solid discharges along x and y. In the multi-layer version(under development), these are provided for each layer.  +
L
elevation; slope gradient; soil unit discharge  +
H
elevations of all nodes elevation changes of all nodes  +
E
equilibrium channel slope, width and depth, bankfull discharge, point bar height, difference in elevation between eroding and depositing banks, channel migration rate, overbank deposition rates of sand and mud, volume fraction content of sand and mud in the floodplain.  +
G
evolving landscape, stratigraphy  +
A
for every grid cell: air and surface temperature, relative humidity, short and long wave radiation, snow height, snow water content, albedo Global outputs: catchment discharge, surface and subsurface flow At user defined locations: full snow profiles (temperature profile, grain types, grain sizes, density, water content, liquid water content)  +
V
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/Inputs.shtml  +
P
http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/software/oui_and_mms_s/prms.shtml  +
W
hundreds of physical parameters  +
I
ice flow of an ice sheet, sea-level rise, visco-elastic uplift  +
ice thickness, ice velocity  +
Z
list of Zones: The discrete zones identified in the mask.  +
W
locus of points defining a wave ray  +
M
W
netcdf output files describing atmospheric state, chemistry, etc  +
G
node state grid written to netCDF file (each node gets a code from 0 to 8; see papers)  +
C
organic (allochthonous and autochthonous) and mineral deposition, bay extent, forest extent, marsh extent are the primary outputs  +
organic (allochthonous and autochthonous) and mineral deposition, bay extent, forest extent, marsh extent are the primary outputs  +
I
overland runoff, soil moisture, and infiltration information, and landslide assessments (FSPFVL and AL).  +
M
rasters of (at ArcGIS ASCII format): 1. soil PSD (d50) for each soil-profile layer at the end of the simulation (e.g. D50aL13.txt) 2. surface soil PSD (d50) at defined temporal increments (e.g. d50aL038.00pc.txt) 3. soil depth (cm) at defined temporal increments (e.g. DepthL038.00pc.txt) 4. total soil erosion (TotalErosion.txt) 5. soil PSD at the end of the simulation - a layer describing the % of each PSD grading class  +
F
receivers : ndarray of size (num nodes, max neighbors at node)<br> For each node, the IDs of the nodes that receive its flow. For nodes that do not direct flow to all neighbors, grid.BAD_INDEX is given as a placeholder. The ID of the node itself is given if no other receiver is assigned. proportions : ndarray of size (num nodes, max neighbors at node)<br> For each receiver, the proportion of flow (between 0 and 1) is given. A proportion of zero indicates that the link does not have flow along it. slopes: ndarray of size (num nodes, max neighbors at node)<br> For each node in the array ``recievers``, the slope value (positive downhill) in the direction of flow. If no flow occurs (value of ``recievers`` is -1), then this array is set to 0. steepest_slope : ndarray<br> The slope value (positive downhill) in the direction of flow. steepest_receiver : ndarray<br> For each node, the node ID of the node connected by the steepest link. grid.BAD_INDEX is given if no flow emmanates from the node. sink : ndarray<br> IDs of nodes that are flow sinks (they are their own receivers) receiver_links : ndarray of size (num nodes, max neighbors at node)<br> ID of links that leads from each node to its receiver, or grid.BAD_INDEX if no flow occurs on this link. steepest_link : ndarray<br> For each node, the link ID of the steepest link. grid.BAD_INDEX is given if no flow emanates from the node.  +
receivers : ndarray of size (num nodes, max neighbors at node)<br> For each node, the IDs of the nodes that receive its flow. For nodes that do not direct flow to all neighbors, BAD_INDEX_VALUE is given as a placeholder. The ID of the node itself is given if no other receiver is assigned. proportions : ndarray of size (num nodes, max neighbors at node)<br> For each receiver, the proportion of flow (between 0 and 1) is given. A proportion of zero indicates that the link does not have flow along it. slopes: ndarray of size (num nodes, max neighbors at node)<br> For each node in the array ``recievers``, the slope value (positive downhill) in the direction of flow. If no flow occurs (value of ``recievers`` is -1), then this array is set to 0. steepest_slope : ndarray<br> The slope value (positive downhill) in the direction of flow. steepest_receiver : ndarray<br> For each node, the node ID of the node connected by the steepest link. BAD_INDEX_VALUE is given if no flow emmanates from the node. sink : ndarray<br> IDs of nodes that are flow sinks (they are their own receivers) receiver_links : ndarray of size (num nodes, max neighbors at node)<br> ID of links that leads from each node to its receiver, or BAD_INDEX_VALUE if no flow occurs on this link. steepest_link : ndarray<br> For each node, the link ID of the steepest link. BAD_INDEX_VALUE is given if no flow emanates from the node.  +
D
resultant landscape topography and vegetation distributions; annual avalanching statistics  +
A
salt marsh erosion rate, shape of marsh boundary, erosion time, magnitude of erosion events frequency occurrence erosion events of a given magnitude  +
T
sediment concentration (alpha); carrier fluid turbulence (k, epsilon); granular temperature (Theta); fluid pressure (p); sediment and fluid velocities (Ua, Ub); turbulence modulation factor (tmf); particle pressure ( kinetic part, pa), more details are described in the user maunal.  +
S
sediment transport rate, direction of sediment transport, bedforms, and several intermediate results (settling velocity, threshold of movements , bed shear stress, etc.)  +
M
sediment, root, and carbon fractions as a function of depth porosity as a function of depth  +
see MODFLOW 6 Description of Input/Output at https://water.usgs.gov/water-resources/software/MODFLOW-6  +
O
solute concentrations as a function of time and space at user-defined locations within the modeled stream system  +
T
temperature time series at variable depths into the subsurface in deg C lake depth in m ice thickness in m  +
S
temperature, salinity, current 3D fields. Air/sea fluxes  +
temporal/spatial distribution of sediment types and fluid flow conditions, stratigraphic architecture of deposit  +
P
the evolution of ice extent and thickness over time, the thermal and dynamic states of the ice sheet, and the associated lithospheric response  +
the vertical and horizontal positions of every particle center, the randomly sampled number of entrainment events, the number of particles actually entrained, the actual particle travel distance, the particle ‘age’, or the number of numerical steps since last entrainment for every particle, and the number of particles which cross all boundaries, i.e. sub-region and downstream at x_max  +
tidal flat elevation in time  +
B
time series - such as water and sediment partitioning spatial - such as bed elevation profiles, saved at lower time resolution (chosen by user)  +
C
time-histories of shoreline positions on a sub-grid scale and the water depths over the gridded portion of the model. Time histories of the inlet cross-section and the areas of bar, channels and tidal flats in the estuary  +
F
time_to_next_fire : float<br> Updated value for the time to next fire.  +
T
topographic derivatives (slope, curvature, flow accumulation, drainage basins), flow paths, chiplots, swath profiles, among others.  +
M
ultiple state variables and summary data  +
F
vel.*: fluid velocity, binary format, the I/O format can be found in io.F in the folder \Src. conc.*: sediment concentration, binary format, see io.F in the folder \Src for detailed I/O information. press.*: fluid dynamic pressure, binary format, see io.F in the folder \Src for detailed I/O information. vel\_p.*: difference of sediment velocity from fluid velocity, output if inertia effect or hindered settling effect is considered, binary format, see io.F in the folder \Src for detailed I/O information. DDt.*: material derivative of fluid velocity, output if inertia effect is included, binary format, see io.F in the folder \Src for detailed I/O information. ushear.dat: time series of plane averaged bottom shear velocity, it is output every time step, ASCII format. logfile: log of screen output to monitor the quantities such as CFL number, domain averaged concentration, bottom concentration, etc., ASCII format.  +
T
volume fraction content of tracers in the deposit  +
S
water depths (m), water discharges (m3/s), free surface elevation with respect to the SWL (m)  +
H
water discharge, nutrients  +
P
water use (demand, withdrawal, consumption, and return flow)  +
M
water volume, water flux, reservoir storage, unmet water demand  +
R
watershed boundaries, river elevation profiles, and catchment statistics  +
wave height, period, and direction throughout the specified computational domain  +
X
wave heights, velocities, water levels, sediment concentrations, sediment transport rates, bottom changes, bathymetry, additional model variables  +
B
weight bedload transport rates of each size-density fraction  +
xdmf time series calling hdf5 files.  +