Search by property


This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe output parameters model" with value "Many: pressure, saturation, temperature, energy fluxes, flow, etc.". Since there have been only a few results, also nearby values are displayed.


View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


List of results

  • Model:GPM  + (Free-surface flow and wave action through time. Erosion and deposition through time. Optionally, compaction, including porosity reduction.)
  • Model:WAVEWATCH III ^TM  + (From wave heights to spectral data, see manual)
  • Model:TURB  + (Gaussian distribution of instantaneous turbulent fluid shear stresses at the bed)
  • Model:LateralVerticalIncision  + (Geometry of river entrenchment thought time)
  • Model:Gc2d  + (Glacier thickness and elevation)
  • Model:SEDPAK  + (Graphical Display and surface plot)
  • Model:WSGFAM  + (Gravity flow velocity, Depth-integrated sediment load, down-slope sediment flux, flux convergence or divergence, erosion or deposition rate.)
  • Model:Plume  + (Grid of Sediment rate in m/day for specified grain size classes)
  • Model:AquaTellUs  + (Grid of deposition of different grains over time. The model generates postscript files of stratigraphic sections.)
  • Model:Landlab  + (Gridding component provides ASCII and/or netCDF output of grid geometry.)
  • Model:Sun fan-delta model  + (Grids of topography)
  • Model:DeltaRCM Vegetation  + (Grids of water surface elevation, discharge, bed elevation, and vegetation density values for each cell. Additionally, sand fraction of each vertical cell within a grid cell.)
  • Model:CASCADE  + (H, fluxes, discharge, catchment geom, etc, at all time steps, as welle as grid connectivity)
  • Model:HSPF  + (HSPF produces a time history of the runoffHSPF produces a time history of the runoff flow rate, sediment load, and</br>nutrient and pesticide concentrations, along with a time history of water</br>quantity and quality at any point in a watershed. Simulation results can be</br>processed through a frequency and duration analysis routine that produces</br>output compatible with conventional toxicological measures (e.g., 96-hour</br>LC50).xicological measures (e.g., 96-hour LC50).)
  • Model:HexWatershed  + (Hexagon DEM, flow direction, flow accumulation, stream grid, stream segment, stream order, stream confluence, subbasin, watershed boundary, etc.)
  • Model:TauDEM  + (Hydrologic information derived from DEM)
  • Model:GSFLOW-GRASS  + (Hydrologic model discretization, input files for GSFLOW, output files from GSFLOW (hydrologic model))
  • Model:SWMM  + (In addition to modeling the generation andIn addition to modeling the generation and transport of runoff flows, SWMM can also estimate the production of pollutant loads associated with this runoff. The following processes can be modeled for any number of user-defined water quality constituents:</br></br>* dry-weather pollutant buildup over different land uses</br>* pollutant washoff from specific land uses during storm events</br>* direct contribution of rainfall deposition</br>* reduction in dry-weather buildup due to street cleaning</br>* reduction in washoff load due to BMPs</br>* entry of dry weather sanitary flows and user-specified external inflows at any point in the drainage system</br>* routing of water quality constituents through the drainage system</br>* reduction in constituent concentration through treatment in storage units or by natural processes in pipes and channelsby natural processes in pipes and channels)
  • Model:Spbgc  + (It can output local velocity, vorticity, cIt can output local velocity, vorticity, concentration, stream-function, and all derivatives of velocity necessary to calculate dissipation, viscous momentum diffusion, kinetic energy flux, work by pressure forces, and change in kinetic energy. These quantities are written out in a binary file.</br></br> It also has routines for calculating the local height profile and tip position of gravity currents and internal bores, which are outputted every time step and stored as ASCII txt files.y time step and stored as ASCII txt files.)
  • Model:Cross Shore Sediment Flux  + (It outputs all the variables used in the advection-diffusion equation describing bed evolution for both shallow water wave assumptions (all labeled as *_s) and linear theory (labeled as *_lh).)
  • Model:Ecopath with Ecosim  + (Key indices, Mortalities, Consumption, Respiration, Niche overlap, Electivity, Search rates and Fishery forms.)
  • Model:SLAMM 6.7  + (Land cover and elevation prediction rasters under SLR conditions through 2100.)
  • Model:GRLP  + (Long profile (x, z); output sediment discharge)
  • Model:FluidMud  + (Major quantities: mud floc concentration, flow velocity in longshelf and cross-shelf direction. Other quantities: TKE, turbulent dissipation rate, floc size (if floc dynamics turn on), bottom stress.)
  • Model:DFMFON  + (Mangrove properties and Delft3D-FM output)
  • Model:ParFlow  + (Many: pressure, saturation, temperature, energy fluxes, flow, etc.)
  • Model:QDSSM  + (Maps of geomorphology, discharge, deposition, isopachs, stratigraphic thickness, grain size, contour, subsidence, and environment)
  • Model:GEOMBEST++  + (Marsh boundary - gives the position of the backbarrier marsh edge through time Shorelines - gives the position of the barrier shoreline through time step number - saves the surface morphology and stratigraphy for the model at each time step)
  • Model:Wetland3P  + (Marsh depth, mudflat depth, mudflat width)
  • Model:MarshPondModel  + (Marsh elevation Pond area and location)
  • Model:CosmoLand  + (Mass, atoms, landslide size, fluvial residence time, mixed mass and atoms fraction)
  • Model:Lake-Permafrost with Subsidence  + (Matlab variables, Matlab graphs)
  • Model:DeltaRCM  + (Matrices of: Water surface elevation; Water unit discharge and velocity field; Delta surface elevation and bathymetry; Stratigraphy (User can choose which time step to output))
  • Model:Manningseq-bouldersforpaleohydrology  + (Microsoft Excel tables)
  • Model:TOPMODEL  + (Model Interface Capabilities: There are thModel Interface Capabilities:</br>There are three options available in the program interface: </br>* The Hydrograph Prediction Option: This option allows the model to be run and hydrographs displayed. If a Topographic Index Map File is available, then a map button is displayed that allows the display of predicted simulation, either as a summary over all timesteps or animated. </br>* The Sensitivity Analysis Option: This screen allows the sensitivity of the objective functions to changes of one or more of the parameters to be explored. </br>* The Monte Carlo Analysis Option: In this option a large number of runs of the model can be made using uniform random samples of the parameters chosen for inclusion in the analysis. Check boxes can be used to choose the variables and objective functions to be saved for each run. The results file produced will be compatible with the GLUE analysis software package.e with the GLUE analysis software package.)
  • Model:REF-DIF  + (Model output: * Complex amplitude, * Wave Heights and angles * Radiation stresses and forcing terms * Wave induced mass flux * Velocity moments for bottom stress calculation)
  • Model:ErosionDeposition  + (Model returns modified 'topographic__elevation', the model grid field holding model node elevations.)
  • Model:MIDAS  + (Morphodynamic evolution of a quasi-2D single-thread channel)
  • Model:AnugaSed  + (NetCDF file (.sww) of x, y, elevation, flow depth, x and y momentum, and sediment concentration (all optional))
  • Model:Cliffs  + (Netcdf binaries of velocities and elevatioNetcdf binaries of velocities and elevation screenshots in Master grid</br>�Netcdf binary of maximum water surface elevation in Master grid</br>�Netcdf Time histories of the water surface elevation at virtual gages;</br>Netcdf binaries of boundary input time-series for the enclosed grids, one �file for each boundary (east, west, north, south)r each boundary (east, west, north, south))
  • Model:SNAC  + (Nodal field data: velocity, temperature Element-centered (discontinuous) field data: strain rate, stress, plastic strain, etc.)
  • Model:AlluvStrat  + (Numpy array of channel and overbank deposit)
  • Model:Mrip  + (Options (can be turned on or off): Print eOptions (can be turned on or off):</br>Print evolving bed to screen.</br>A file with the bed with each time step, or at intermediate steps.</br>A file with the spectra of bed at each time step, or at intermediate steps.</br>A file with statistics (eg, rms roughness of bed)with statistics (eg, rms roughness of bed))
  • Model:KWAVE  + (Output Files: 1. stage -- array containingOutput Files:</br>1. stage -- array containing information on flow at the edges of the model domain</br>2. depth -- flow depth at each grid cell at the end of the simulation</br>3. vel -- flow velocity at each grid cell at the end of the simulation</br>4. maxdepth -- maximum flow depth at each grid cell</br>4. maxvel -- maximum flow velocity at each grid cell-- maximum flow velocity at each grid cell)
  • Model:ESCAPE  + (Output are grids of 3D surface evolution in HDF5)
  • Model:KnickZone-Picker  + (Output data are written as GeoTIFF files, shapefiles, CSV files.)
  • Model:IDA  + (Output drainage area, true drainage area, Output drainage area, true drainage area, and initial guess:</br> 64 bit float ('double')</br></br> Row major order is used.</br> The drainage area of cells with no drainage to or from them, such as ocean</br> cells, will be the area of the cell itself (1.0, if all cells are given</br> unit area).(1.0, if all cells are given unit area).)
  • Model:SBM  + (Output files provide snapshots of the bedfOutput files provide snapshots of the bedform domain during its evolution. They containing elevation of bedform domain, the percentage full of sediment for all cells in the top layer, and the percent of coarse material in those top cells. Furthermore, there is output for the percent coarse of every cell in the domain (not just the top layer) for analyzing stratigraphic profiles.yer) for analyzing stratigraphic profiles.)
  • Model:Coastal Dune Model  + (Output is '.dat' files showing vegetation cover density and DEM of the model domain at specified time intervals)
  • Model:GEOMBEST-Plus  + (Output parameters: * Marsh boundary - giveOutput parameters:</br>* Marsh boundary - gives the position of the backbarrier marsh edge through time</br>* Shorelines - gives the position of the barrier shoreline through time</br>* step number - saves the surface morphology and stratigraphy for the model at each time stepratigraphy for the model at each time step)
  • Model:OrderID  + (Outputs are m and r values, plus p values Outputs are m and r values, plus p values indicating the probability that the calculated m and r values could occur by chance. Graphical output is produced showing the vertical section of strata, a transition probability matrix for the facies, a histogram of facies frequency, a plot of the m value calculated from observed strata versus the m values calculated from Monte Carlo modelling of shuffled equivalent strata, and a plot of the r value calculated from observed strata versus the r values calculated from Monte Carlo modelling of shuffled equivalent strata.o modelling of shuffled equivalent strata.)