Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "LabReferences" with value "Howard, A, Knutson, T., 1994. Sufficient conditions for meandering.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 27 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Lab-0013  + (Howard, A, Knutson, T., 1994. Sufficient conditions for meandering.)
    • Lab-0025  + (Campforts, B., Overeem, I., Gasparini, N.M., Piper, M., and Arthurs, L., 2021: Modeling earth surface processes for the future: ESPIn, a summer school focusing on cyber training and professional networking, 2021 AGU Fall Meeting, New Orleans, LA.)
    • Lab-0015  + (Hutton, E.W.H., Piper, M.D., and Tucker, G.E., 2020. The Basic Model Interface 2.0: A standard interface for coupling numerical models in the geosciences. Journal of Open Source Software, 5(51), 2317, https://doi.org/10.21105/joss.02317)
    • Lab-0016  + (Hutton, E.W.H., and Piper, M.D., 2020: csdms/pymt: The Python Modeling Toolkit (Version v1.0.0). Zenodo. http://doi.org/10.5281/zenodo.3644240)
    • Lab-0001  + (Janke, J., Williams, M., Evans, A., 2012. A comparison of permafrost prediction models along a section of Trail Ridge Road, RMNP, CO. Geomorphology 138, 111-120.)
    • Lab-0032  + (Anisimov, O. A., Shiklomanov, N. I., & Nelson, F. E. (1997). Global warming and active-layer thickness: results from transient general circulation models. Global and Planetary Change, 15(3-4), 61-77. https://doi.org/10.1016/S0921-8181(97)00009-X)
    • Lab-0005  + (Kettner, A.J., and Syvitski, J.P.M., 2008.Kettner, A.J., and Syvitski, J.P.M., 2008. HydroTrend version 3.0: a Climate-Driven Hydrological Transport Model that Simulates Discharge and Sediment Load leaving a River System. Computers & Geosciences, 34(10), 1170-1183. doi: 10.1016/j.cageo.2008.02.008), 1170-1183. doi: 10.1016/j.cageo.2008.02.008)
    • Lab-0006  + (Darby, S. E., Dunn, F. E., Nicholls, R.J.,Darby, S. E., Dunn, F. E., Nicholls, R.J., Rahman, M. and Riddy, L. 2015. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges–Brahmaputra–Meghna delta. Environmental Science: Processes & Impacts. doi:10.1039/c5em00252drocesses & Impacts. doi:10.1039/c5em00252d)
    • Lab-0017  + (Kudryavtsev, V.A. , L.S. Garagulya, K.A. KKudryavtsev, V.A. , L.S. Garagulya, K.A. Kondrat'yeva, and V.G. Melamed Fundamentals of Frost Forecasting in Geological Engineering Investigations Nauka, Moscow (1974), p. 431 (in Russian; English translation appears as U.S. Army Cold Regions Research and Engineering Laboratory Draft Translation 606)ineering Laboratory Draft Translation 606))
    • Lab-0002  + (Anisimov, O. A., Shiklomanov, N. I., & Nelson, F. E. (1997). Global warming and active-layer thickness: results from transient general circulation models. Global and Planetary Change, 15(3-4), 61-77. DOI:10.1016/S0921-8181(97)00009-X)
    • Lab-0031  + (Gan, T., Tucker, G.E., Hutton, E.W.H., PipGan, T., Tucker, G.E., Hutton, E.W.H., Piper, M.D., Overeem, I., Kettner, A.J., Campforts, B., Moriarty, J.M., Undzis, B., Pierce, E., McCready, L., 2024: CSDMS Data Components: data–model integration tools for Earth surface processes modeling. Geosci. Model Dev., 17, 2165–2185. https://doi.org/10.5194/gmd-17-2165-2024. https://doi.org/10.5194/gmd-17-2165-2024)
    • Lab-0003  + (Chadburn, S.E., Burke, E.J., Cox, P.M., Friedlingstein, P., Hugelius, G., Westerman, S., 2017. An observation-based constraint on permafrost loss as a function of global warming.Nature Climate Change, 10 APRIL 2017. DOI: 10.1038/NCLIMATE3262)
    • Lab-0004  + (Nelson, F.E., Outcalt, S.I., 1987. A computational method for prediction and prediction and regionalization of permafrost. Arct. Alp. Res. 19, 279–288.)
    • Lab-0026  + (Campforts, B., Overeem, I., Gasparini, N.M., Piper, M., and Arthurs, L., 2021: Modeling earth surface processes for the future: ESPIn, a summer school focusing on cyber training and professional networking, 2021 AGU Fall Meeting, New Orleans, LA.)
    • Lab-0029  + (Piper, M. (2021). CSDMS GeoTIFF data component (Version 0.2.3) (Computer software). https://doi.org/10.5281/zenodo.4721475)
    • Lab-0028  + (Piper, M. (2021). CSDMS Topography data component (Version 0.3.1) (Computer software). https://doi.org/10.5281/zenodo.4608653.)
    • Lab-0020  + (Barnhart, Katherine R., et al. "Landlab v2. 0: a software package for Earth surface dynamics." Earth Surface Dynamics 8.2 (2020): 379-379.)
    • Lab-0024  + (Braun, J., Willett, S. (2013). A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology 180-181(C), 170-179. https://dx.doi.org/10.1016/j.geomorph.2012.10.008)
    • Lab-0013  +
    • Lab-0033  + (Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research, 104 (C4): 7649-7666. https://doi.org/10.1029/98JC02622)
    • Lab-0019  + (Gan, T., Tucker, G.E., Hutton, E.W.H., PipGan, T., Tucker, G.E., Hutton, E.W.H., Piper, M.D., Overeem, I., Kettner, A.J., Campforts, B., Moriarty, J.M., Undzis, B., Pierce, E., McCready, L., 2024: CSDMS Data Components: data–model integration tools for Earth surface processes modeling. Geosci. Model Dev., 17, 2165–2185. https://doi.org/10.5194/gmd-17-2165-2024. https://doi.org/10.5194/gmd-17-2165-2024)
    • Lab-0014  + (Barnhart, K. R., Hutton, E. W. H., Tucker,Barnhart, K. R., Hutton, E. W. H., Tucker, G. E., Gasparini, N. M., Istanbulluoglu, E., Hobley, D. E. J., Lyons, N. J., Mouchene, M., Nudurupati, S. S., Adams, J. M., and Bandaragoda, C.: Short communication: Landlab v2.0: a software package for Earth surface dynamics, Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020, 2020.://doi.org/10.5194/esurf-8-379-2020, 2020.)
    • Lab-0018  + (Gan, T., Tucker, G.E., Hutton, E.W.H., PipGan, T., Tucker, G.E., Hutton, E.W.H., Piper, M.D., Overeem, I., Kettner, A.J., Campforts, B., Moriarty, J.M., Undzis, B., Pierce, E., McCready, L., 2024: CSDMS Data Components: data–model integration tools for Earth surface processes modeling. Geosci. Model Dev., 17, 2165–2185. https://doi.org/10.5194/gmd-17-2165-2024. https://doi.org/10.5194/gmd-17-2165-2024)
    • Lab-0034  + (Gan, T., Tucker, G.E., Hutton, E.W.H., PipGan, T., Tucker, G.E., Hutton, E.W.H., Piper, M.D., Overeem, I., Kettner, A.J., Campforts, B., Moriarty, J.M., Undzis, B., Pierce, E., McCready, L., 2024: CSDMS Data Components: data–model integration tools for Earth surface processes modeling. Geosci. Model Dev., 17, 2165–2185. https://doi.org/10.5194/gmd-17-2165-2024. https://doi.org/10.5194/gmd-17-2165-2024)
    • Lab-0036  + (Gan, T., Tucker, G.E., Hutton, E.W.H., PipGan, T., Tucker, G.E., Hutton, E.W.H., Piper, M.D., Overeem, I., Kettner, A.J., Campforts, B., Moriarty, J.M., Undzis, B., Pierce, E., McCready, L., 2024: CSDMS Data Components: data–model integration tools for Earth surface processes modeling. Geosci. Model Dev., 17, 2165–2185. https://doi.org/10.5194/gmd-17-2165-2024. https://doi.org/10.5194/gmd-17-2165-2024)
    • Lab-0027  + (Ashton A.D., Murray A.B. (2006) High-Angle Wave Instability and Emergent Shoreline Shapes: 2. Wave Climate Analysis and Comparisons to Nature. Journal of Geophysical Research. Volume 111.)
    • Lab-0030  + (Adams, J. M., Gasparini, N. M., Hobley, D.Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E. (2017). The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geoscientific Model Development, 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017. https://doi.org/10.5194/gmd-10-1645-2017.)