This lab is appropriate for advanced undergraduates and graduate students majoring in earth science/engineering.
We will use Landlab to generate a grid, use two different landscape evolution models (LEMs) to evolve a synthetic landscape, apply stochastic wildfires that increase erodibility, and plot various maps and graphs. Though no real-world data are used, the landscape relief is statistically realistic and roughly approximate to the Wasatch mountains in Utah.
Classroom organization This Jupyter Notebook is best for people who already have a conceptual understanding of earth surface processes and want to learn how these apply to numerical modeling, landscape evolution, and sediment flux. Although no Python skills are required to run the notebook, those with an intermediate understanding of Python will be able to learn more by reading the code.
Learning objectives Skills
Use Landlab to generate a grid
Use Fastscape and SPACE for landscape evolution
Create plots
Key concepts
Landscape evolution
Stream Power equation
Wildfires
Sediment flux
Lab notes
This lab can be run on the lab (for educators) and jupyter (for general use) instances of the OpenEarthscape JupyterHub: just click one of the links under the Run online using heading at the top of this page, then run the notebook in the "CSDMS" kernel.
Requirements If run locally, this lab requires the installation of the following Python packages: landlab, numpy, imageio, and matplotlib
Acknowledgements This lab was created during CSDMS's ESPIn 2021 summer workshop. Thank you to everyone involved in organizing and teaching ESPIn.
References
Braun, J., Willett, S. (2013). A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology 180-181(C), 170-179. https://dx.doi.org/10.1016/j.geomorph.2012.10.008
Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution, Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, 2017.
Campforts, B., Overeem, I., Gasparini, N.M., Piper, M., and Arthurs, L., 2021: Modeling earth surface processes for the future: ESPIn, a summer school focusing on cyber training and professional networking, 2021 AGU Fall Meeting, New Orleans, LA.