Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe pre-processing software" with value "Preparation if input files, particularly initial elevation matrix.". Since there have been only a few results, also nearby values are displayed.

⧼showingresults⧽

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:CellularFanDelta  + (Post-processing and (pre-processing) is through Matlab scripts.)
  • Model:RASCAL  + (Pre-processing software is optional and shPre-processing software is optional and should be used if the code is to be developed for specific vegetation communities. The software creates two-dimensional lookup tables for fluid mechanical parameters such as bed shear stress, depth-averaged drag force, and dispersion coefficients as a function of water depth and mean flow velocity. Lookup tables encapsulate the results of detailed simulations of velocity profiles under different combinations of water-surface slope and surface-water depth. See description in Larsen et al., Ecological Engineering, 2009.rsen et al., Ecological Engineering, 2009.)
  • Model:MARSSIM V4  + (Preparation if input files, particularly initial elevation matrix.)
  • Model:HexWatershed  + (QGIS may be needed to preprocessing some files.)
  • Model:ADCIRC  + (See: http://adcirc.org)
  • Model:WRF  + (The WRF Preprocessing System (WPS) is a seThe WRF Preprocessing System (WPS) is a set of three programs whose collective role is to prepare input to the real program for real-data simulations. Each of the programs performs one stage of the preparation: geogrid defines model domains and interpolates static geographical data to the grids; ungrib extracts meteorological fields from GRIB-formatted files; and metgrid horizontally interpolates the meteorological fields extracted by ungrib to the model grids defined by geogrid. (See also: http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm)/docs/user_guide_V3/users_guide_chap3.htm))
  • Model:Drainage Density  + (Though the component can use a simple slopThough the component can use a simple slope-area threshold to delineate channels, it is much more preferable to use some channel-head extraction method like those of Passalacqua et al (2010, Journal of Geophysical Research), Pelletier (2013, Water Resources Research), or Clubb et al (2014, Water Resources Research).bb et al (2014, Water Resources Research).)
  • Model:STWAVE  + (To assist STWAVE users in generating inputTo assist STWAVE users in generating input files and visualizing output files, a user interface has been built for STWAVE within the Surface-water Modeling System (Brigham Young University Engineering Computer Graphics Laboratory (ECGL) 1997). The SMS interface supports grid generation, interpolation of current fields, generation of input spectra, visualization of wave heights, periods, and directions, and visualization of output spectra. Non-Corps users can get information from ECGL (http://www.ecgl.byu.edu).ation from ECGL (http://www.ecgl.byu.edu).)
  • Model:Cliffs  + (To improve stability of the computations, it is recommended to pre-process bathymetry map with depth_ssl (module included with the source code).)
  • Model:WRF-Hydro  + (While some parameter files and templates aWhile some parameter files and templates are included with the model source code, most must be</br>generated by the user. We provide a number of scripts and preprocessing utilities on the WRF-Hydro website (https://ral.ucar.edu/projects/wrf_hydro) in order to aid in this process. These include NCAR Command Language (NCL) scripts to regrid forcing data from commonly used data sources, R scripts to generate parameter and model initialization files, and a set of Python based ArcGIS pre-processing tools. Python based ArcGIS pre-processing tools.)
  • Model:CAESAR Lisflood  + (Yes - ish - uses arc GIS ascii formats - commonly available.)
  • Model:RCPWAVE  + (Yes, pre- and post-processing, and visualiztion tools provided in software package)
  • Model:BOM  + (idealized experiments can be run with simple text files as input, but for realistic cases input data needs to be created with e.g. python, matlab or fortran scripts.)
  • Model:FACET  + (taudem : Enable (True) or disable (False).taudem : Enable (True) or disable (False). Default is enabled. Parameter enables or disables TauDEM pre processing steps. Disabling will fail to generate any pre-processing files needed for FACET. The toggle is useful for re-running FACET without needing to also re-run all the pre processes steps.</br></br>taudem cores : Parameter to set the number of cores TauDEM can use for generating pre processing files. If you experience performance issues reduce the number of cores. Default is set at 2.</br></br>wt_grid : Enable (True) or disable (False). Default is enabled. Parameter to toggle the creation of a weight grid from NHD stream lines. Disabling will fail to generate *_wg.tif an important input for pre-processing steps. The toggle is useful for re-running FACET without needing to also re-run all the pre processes steps.</br></br>resample resolution : The input is integer and the default is set to 3 meters. The units are always in meters. This parameter is the resolution to which the user wants the DEM resampled to. FACET uses ‘resample resolution’ to set the cross-section point distances parameter i.e. ‘xnptdist’. This ensures bank point spacing aligns with the DEM’s resolution. spacing aligns with the DEM’s resolution.)