Browse wiki

From CSDMS
WRF has a rapidly growing community of useWRF has a rapidly growing community of users, and workshops and tutorials are held each year at NCAR. WRF is currently in operational use at NCEP, AFWA and other centers.</br></br>Notice: WRF source code is freely available on the following site:</br>http://www.mmm.ucar.edu/wrf/users/download/get_source.html</br>So no registration is needed._source.html So no registration is needed.  +
No but possible  +
210079  +
Boulder  +
No but possible  +
No but possible  +
Multiple Processors  +
United States  +
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
18:42:47, 17 November 2009  +
The effort to develop WRF has been a collaThe effort to develop WRF has been a collaborative partnership, principally among the National Center for Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administration (the National Centers for Environmental Prediction (NCEP) and the Forecast Systems Laboratory (FSL), the Air Force Weather Agency (AFWA), the Naval Research Laboratory, the University of Oklahoma, and the Federal Aviation Administration (FAA). WRF allows researchers the ability to conduct simulations reflecting either real data or idealized configurations. WRF provides operational forecasting a model that is flexible and efficient computationally, while offering the advances in physics, numerics, and data assimilation contributed by the research community.ion contributed by the research community.  +
The WRF-ARW core is based on an Eulerian sThe WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations, cast in flux (conservative) form, using a mass (hydrostatic pressure) vertical coordinate. Prognostic variables for this solver are column mass of dry air (mu), velocities u, v and w (vertical velocity), potential temperature, and geopotential. Non-conserved variables (e.g. temperature, pressure, density) are diagnosed from the conserved prognostic variables. The solver uses a third-order Runge-Kutta time-integration scheme coupled with a split-explicit 2nd-order time integration scheme for the acoustic and gravity-wave modes. 5th-order upwind-biased advection operators are used in the fully conservative flux divergence integration; 2nd-6th order schemes are run-time selectable.6th order schemes are run-time selectable.  +
WRF post-processing utilities: NCL, Vis5D, GrADS, RIP4, ARWpost, WPP, VAPOR (See: http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap2.htm)  +
The WRF Preprocessing System (WPS) is a seThe WRF Preprocessing System (WPS) is a set of three programs whose collective role is to prepare input to the real program for real-data simulations. Each of the programs performs one stage of the preparation: geogrid defines model domains and interpolates static geographical data to the grids; ungrib extracts meteorological fields from GRIB-formatted files; and metgrid horizontally interpolates the meteorological fields extracted by ungrib to the model grids defined by geogrid. (See also: http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/users_guide_chap3.htm)/docs/user_guide_V3/users_guide_chap3.htm)  +
To simulate real weather and to do simulatTo simulate real weather and to do simulations with coarse resolutions, a minimum set of physics components is required, namely radiation, boundary layer and land-surface parameterization, convective parameterization, subgrid eddy diffusion, and microphysics. Since the model is developed for both research and operational groups, sophisticated physics schemes and simple physics schemes are needed in the model. The objectives of the WRF physics development are to implement a basic set of physics into the WRF model and to design a user friendly physics interface. Since the WRF model is targeted at resolutions of 1-10 km, some of physics schemes might not work properly in this high resolution (e.g. cumulus parameterization). However, at this early stage of model development, only existing physics schemes are implemented, and most of them are taken from current mesoscale and cloud models. In the future, new physics schemes designed for resolutions of 1-10 km should be developed and implemented. See http://www.mmm.ucar.edu/wrf/users/docs/wrf-phy.html#physics_scheme for more informationy.html#physics_scheme for more information  +
Active  +
The Weather Research and Forecasting (WRF)The Weather Research and Forecasting (WRF) Model is a next-generation mesoscale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs. It features multiple dynamical cores, a 3-dimensional variational (3DVAR) data assimilation system, and a software architecture allowing for computational parallelism and system extensibility. WRF is suitable for a broad spectrum of applications across scales ranging from meters to thousands of kilometers.ng from meters to thousands of kilometers.  +
Bill  +
160  +
Has query"Has query" is a predefined property that represents meta information (in form of a <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Subobject">subobject</a>) about individual queries and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
NCAR  +
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Skamarock  +
2.86  +
Climate  +
model  +, research  +, forecasting  +, weather  +, mesoscale numerical weather  +, numerical weather prediction  +, next-generation mesoscale numerical  +, weather prediction system  +, prediction system designed  +, weather research  +, numerical weather  +, weather prediction  +, operational forecasting  +, atmospheric research  +, next-generation mesoscale  +, mesoscale numerical  +, designed to serve  +, serve both operational  +, forecasting and atmospheric  +  and wrf  +
As code  +
http://forum.wrfforum.com/  +
Modular  +
http://www.wrf-model.org/index.php, http://www.mmm.ucar.edu/wrf/users/docs/user_guide/contents.html  +
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
02:19:51, 17 September 2020  +
8007  +
Weather Research and Forecasting Model  +
(303) 497-1000  +
1850 Table Mesa Dr  +
80305  +
Fortran95, Perl  +
WRF was developed at the National Center fWRF was developed at the National Center for Atmospheric Research (NCAR) which is operated by the University Corporation for Atmospheric Research (UCAR). NCAR and UCAR make no proprietary claims, either statutory or otherwise, to this version and release of WRF and consider WRF to be in the public domain for use by any person or entity for any purpose without any fee or charge. UCAR requests that any WRF user include this notice on any partial or full copies of WRF. WRF is provided on an "AS IS" basis and any warranties, either express or implied, including but not limited to implied warranties of non-infringement, originality, merchantability and fitness for a particular purpose, are disclaimed. In no event shall UCAR be liable for any damages, whatsoever, whether direct, indirect, consequential or special, that arise out of or in connection with the access, use or performance of WRF, including infringement actions. WRF® is a registered trademark of the University Corporation for Atmospheric Research (UCAR).rporation for Atmospheric Research (UCAR).  +
Fortran90  +  and C  +
Through web repository  +
http://www2.mmm.ucar.edu/wrf/users/  +
Continental  +, Global  +, Landscape-Scale  +, Regional-Scale  +  and Watershed-Scale  +
Colorado  +
Linux  +  and Mac OS  +
Project manager  +