Search by property
From CSDMS
This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.
List of results
- Model:LavaFlow2D + (--)
- Model:Instructed Glacier Model + (--)
- Model:HydroCNHS + (--)
- Model:SFINCS + (--)
- Model:Oceananigans.jl + (--)
- Model:ArcDelRCM + (--)
- Model:GeoFlood + (--)
- Model:PySBeLT + (--)
- Model:RivGraph + (--)
- Model:NEWTS + (--)
- Model:WTM + (--)
- Model:MPeat2D + (--)
- Model:TopoPyScale + (--)
- Model:Rabpro + (--)
- Model:UIDS + (--)
- Model:CWatM + (--)
- Model:WSIMOD + (--)
- Model:OpenAMUNDSEN + (--)
- Model:COAWST + (--)
- Model:PCR-GLOBWB + (--)
- Model:DynQual + (--)
- Model:SICOPOLIS + (--)
- Model:FractionalNoises2D + (--)
- Model:FTCS1D-NonLinear + (--)
- Model:CAM-CARMA + (--)
- Model:BackwaterWrightParker + (--)
- Model:RHESSys + (---)
- Model:MizuRoute + (---)
- Model:MCPM + (-Creep simulated as a linear diffusion process, with vegetation dependent diffusivity -Suspended sediment concentration variable in time and space throughout the cross section)
- Model:SiStER + (1) Conservation of mass and momentum 2) Non linear viscosity law + elasticity + plasticity 3) Conservation of energy)
- Model:Subside + (1D and 2D flexure equations)
- Model:LONGPRO + (1D channel flow: See Henderson (1966, p. 143), Total sediment transport: See Yang's (1973); mass conservation: See Slingerland (1986); Settling velocity: See Dietrich's equation)
- Model:Plume + (2D advection-diffusion equation)
- Model:SIMSAFADIM + (2D fluid flow potential, 2D dispersive/diffusive/advective transport, Lotka/Volterra polulation dynamics equations for carbonate producing organisms, deposition calculation based on equations of settling rates)
- Model:WAVEREF + (Airy wave theory)
- Model:QDSSM + (Basin digital elevation model.)
- Model:CarboLOT + (Bathymetry, seawater temperatures, ocean wave climate, benthic irradiance, seafloor hardness)
- Model:MARSSIM + (Bedrock erodibility, mass wasting diffusivity, bed material grain size, flow hydrologic parameters, relative evaporation rate, cratering size distribution and rate, eolian deposition parameters, etc.)
- Model:GroundwaterDupuitPercolator + (Boussinesq aquifer equation, Darcy's law.)
- Model:GENESIS + (Breaking wave conditions are estimated fro … Breaking wave conditions are estimated from input wave information using linear wave theory. Longshore sand transport rates are estimated using a modified version of the CERC equation and the equation governing shoreline change is formulated by conservation of sand volume.formulated by conservation of sand volume.)
- Model:BEDLOAD + (Bridge function, see Bridge and Dominic (1984) or Einstein's equation)
- Model:Bing + (Bulk density, viscosity, shear/yield strength)
- Model:Shoreline + (CERC formula for sediment transport rate (see Komar) Kamphuis formula for sediment transport rate. Conservation of sediment mass.)
- Model:CruAKTemp + (CRU-NCEP SNAP)
- Model:PsHIC + (Calculate the hypsometric integral by HI … Calculate the hypsometric integral by </br>HI = (Zbar-Zo)/(Zmax-Zo)</br>where Zbar is the average elevation of the contributing area to a pixel</br>Zo is the local elevation (the elevation of a pixel)</br>Zmax is the maximum elevation of a pixel contributing area.</br>For more details read: </br>Cohen, S., G. Willgoose, and G. Hancock (2008), A methodology for calculating the spatial distribution of the area-slope equation and the hypsometric integral within a catchment, Journal of Geophysical Research, 113, F03027.rnal of Geophysical Research, 113, F03027.)
- Model:CosmoLand + (Cosmogenic nuclide production decay with depth. Power-law distribution of landslide size. Calculates a fluvial storage reservoir.)
- Model:MarshMorpho2D + (Creep coefficient for mud Creep coefficien … Creep coefficient for mud</br>Creep coefficient for marsh peat</br>Tidal dispersion coefficient</br>Erosion coefficient</br>Critical shear stress for vegetated areas</br>Critical shear stress for unvegetated areas</br>Increase in τcr with depth below MLW</br>Settling velocity in unvegetated areas</br>Settling velocity in vegetated areas</br>Tidal range</br>Tidal period</br>External sediment supply</br>Rate of relative sea level rise</br>Manning coefficient for unvegetated mud</br>Manning coefficient for vegetated areas</br>Maximum organic accretion rate</br>Sediment dry bulk density</br>Morphological time step</br>Spatial resolution</br></br>v2.0 also includes:</br></br>Time series of wind speed and direction</br>Edge erodibility</br>Fraction of eroded edge material that is oxidized (i.e., removed from the mass balance)</br>Rate of pond deepening</br>Rate of pond expansion</br>Elevation thresholds for pond formationon Elevation thresholds for pond formation)
- Model:DLBRM + (Croley, T. E., II, and He, C. (2005). “Distributed-parameter large basin runoff model. I: Model development.” J. Hydrol. Eng., 10(3), 173–181.)
- Model:BOM + (Current speed, temperature, salinity, sea surface elevation, wind speed, river fluxes. Based on Navier Stokes equations, Boussinesq approximation, terrain following coordinates (sigma))
- Model:SETTLE + (Dietrich's equation)
- Model:Avulsion + (Distribution of avulsion angles)
- Model:Drainage Density + (Drainage density is calculated as the inverse of the minimum distance to channel averaged over all nodes in the Landlab domain.)