Property:Extended data description

From CSDMS

This is a property of type Text.

Showing 20 pages using this property.
G
Global ocean bathymetry estimated from sea-surface satellite altimetry (Geosat and ERS-1) measurements and constrained by ship depth measurements.  +
Gridded Population of the World, version 3 (GPWv3) is the latest developments in the rendering of human populations in a common geo-referenced framework, produced by the Center for International Earth Science Information Network (CIESIN) of the Earth Institute at Columbia University. GPWv3 depicts the distribution of human population across the globe. It is the most detailed version of GPW to date with more than three times the amount of data as version 2, and includes population estimates to 2015. Developed between 2003 and 2005, GPWv3 provides globally consistent and spatially explicit human population information and data for use in research, policy making, and communications. GPWv3 incorporates a number of improvements to the two prior iterations of GPW. Input administrative data have been improved for nearly all of the 232 countries included in the dataset. (The number of administrative units has increased three-fold since GPWv2 and twenty-fold since GPWv1.) Additionally, the input data years have been updated for over two-thirds of the countries. The population data estimates, previously only available for 1990 and 1995, are also now provided for the period 1990–2015, by quinquennial years. The population estimates for 2005, 2010, and 2015 were produced in collaboration with the United Nations Food and Agriculture Programme (FAO) as GPW: Future Estimates. Finally, the map collection has been vastly expanded to include population density, and sub-national administrative boundary maps at country, continental, and global levels.  +
H
HYDRO1k is a geographic database developed to provide comprehensive and consistent global coverage of topographically derived data sets, including streams, drainage basins and ancillary layers derived from the USGS' 30 arc-second digital elevation model of the world (GTOPO30). HYDRO1k provides a suite of geo-referenced data sets, both raster and vector, which will be of value for all users who need to organize, evaluate, or process hydrologic information on a continental scale. Developed at the U.S. Geological Survey's Center for Earth Resources Observation and Science (EROS), the HYDRO1k project's goal is to provide to users, on a continent by continent basis, hydrologically correct DEMs along with ancillary data sets for use in continental and regional scale modeling and analyses.  +
HydroSHEDS is a mapping product that provides hydrographic information for regional and global-scale applications in a consistent format. It offers a suite of geo-referenced data sets (vector and raster) at various scales, including river networks, watershed boundaries, drainage directions, and flow accumulations. HydroSHEDS is based on high-resolution elevation data obtained during a Space Shuttle flight for NASA's Shuttle Radar Topography Mission (SRTM). The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that had previously been unachievable. Available resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent.  +
I
International Bathymetric Chart of the Arctic Ocean (IBCAO). The goal of this initiative is to develop a digital data base that contains all available bathymetric data north of 64 degrees North, for use by mapmakers, researchers, and others whose work requires a detailed and accurate knowledge of the depth and the shape of the Arctic seabed. IBCAO Version 3.0 represents the largest improvement since 1999 taking advantage of new data sets collected by the circum-Arctic nations, opportunistic data collected from fishing vessels, data acquired from US Navy submarines and from research ships of various nations. Built using an improved gridding algorithm, this new grid is on a 500 meter spacing, revealing much greater details of the Arctic seafloor than IBCAO Version 1.0 (2.5 km) and Version 2.0 (2.0 km). The area covered by multibeam surveys has increased from ~6 % in Version 2.0 to ~11% in Version 3.0.  +
G
Latest version (5.0) The latest version of the "Global Map of Irrigation Areas" is version 5, which can be downloaded from this page. The documentation of the map includes an explanation of the methodology, information per country, an assessment of the map quality, and references to the background and history of the irrigation mapping project. The map shows the amount of area equipped for irrigation around the year 2005 in percentage of the total area on a raster with a resolution of 5 minutes. Additional map layers show the percentage of the area equipped for irrigation that was actually used for irrigation and the percentages of the area equipped for irrigation that was irrigated with groundwater, surface water or non-conventional sources of water. An explanation of the different terminology to indicate areas under irrigation is given in this glossary. Please note that information for the additional layers on area actually irrigated or on the water source for irrigation was derived from statistical survey data (e.g. census reports). Therefore all grid cells belonging to the same statistical unit will have the same value. Consequently, the accuracy at pixel level will be very limited, depending on the size of the statistical unit. Users are requested to refer to the map as follows: "Stefan Siebert, Verena Henrich, Karen Frenken and Jacob Burke (2013). Global Map of Irrigation Areas version 5. Rheinische Friedrich-Wilhelms-University, Bonn, Germany / Food and Agriculture Organization of the United Nations, Rome, Italy".  +
M
Layers (NetCDF) of monthly and yearly average suspended sediment flux in global rivers, predicted by the WBMsed model.  +
G
Lithology describes the geochemical, mineralogical, and physical properties of rocks. It plays a key role in many processes at the Earth surface, especially the fluxes of matter to soils, ecosystems, rivers, and oceans. The Lithological map of the World is based on the Global Lithological Map database v1.1 (GLiM, Hartmann and Moosdorf, 2012). GLiM represents the rock types of the emerged surface of the Earth using 1,235,400 polygons assembled from 92 regional geological maps, translated into lithological units using additional literature. According to the GLiM, the total surface of continents and islands is covered by 64 % sediments (a third of which is carbonates), 13% metamorphics, 7% plutonics, and 6% volcanics, and 10% are covered by water or ice. The high resolution of the GLiM allows observation of regional lithological distributions which often vary from the global average. The GLiM enables regional analysis of Earth surface processes at global scales. A coarse gridded version of the GLiM is available at the PANGEA Database (http://dx.doi.org/10.1594/PANGAEA.788537), the original GIS data are downloadable using this link (https://www.dropbox.com/s/9vuowtebp9f1iud/LiMW_GIS%202015.gdb.zip?dl=0).  +
P
Multiple general circulation models were run for paleoclimate simulations at 21, 6, and 0 (pre-inudstrial) ka.  +
N
NARWidth is composed of planform morphometric measurements of North American rivers at approximately mean discharge. It was created using image processing algorithms on Landsat TM and ETM+ imagery. NARWidth is intended to be used in a wide variety of scientific and engineering applications including hydrologic, hydraulic, and biogeochemical models.  +
G
NGDC is the US national archive for multibeam bathymetric data and presently holds over 15.7 million nautical miles of ship tracklines (1187 surveys) received from sources worldwide. In addition to deepwater data, the multibeam database also includes hydrographic multibeam survey data from the NOS. Associated NOS data products, including 3D images and grids, are available via the NOS Hydrographic Survey Data Map Service.  +
M
NGDC's GEODAS Marine Trackline Geophysics database contains bathymetry, magnetics, gravity and seismic navigation data collected during marine cruises from 1953 to the present. Coverage is worldwide. Data sources include both US and foreign oceanographic institutions and government agencies. This database is distributed both On-line and on DVD using the GEODAS Search and Retrieval software. Searches by geographic area, year of cruise, institution, platform, cruise, date or parameter are available. Downloads can be customized to area, parameter and format. Digital data files are in the MGD77 exchange format, and contain a documentation header record and a series of data records. Header records document the content and structure of the data records. Data records contain geophysical data (bathymetry, magnetics, gravity and seismic shot-point ids) with time and position. NGDC also archives analog geophysical data including seismic reflection and refraction, side-scan sonar, and other data types. Analog underway geophysical data are inventoried and searchable through the GEODAS Search and Retrieval software. NGDC is pleased to accept contributions of underway geophysical data on almost any media, preferably in the MGD77 format. Any data received are in the international public domain, readily available globally to any interested individual or group.  +
G
NOAA was engaged in a program to compile Great Lakes bathymetric data and make them readily available to the public, especially to the communities concerned with Great Lakes science, pollution, coastal erosion, response to climate changes, threats to lake ecosystems, and health of the fishing industry. This program was managed by NGDC and relied on the cooperation of NOAA/Great Lakes Environmental Research Laboratory, NOAA/National Ocean Service, the Canadian Hydrographic Service, other agencies, and academic laboratories. Compilation of new bathymetry for the Great Lakes was an important part of this program, carried out cooperatively between NOAA (NGDC and GLERL), and the Canadian Hydrographic Service. This new bathymetry provided a more detailed portrayal of lakefloor topography, and revealed some lakefloor features seen for the first time.  +
C
NOAA's National Centers for Environmental Information (NCEI) builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NCEI, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs cell size ranges from 1/9 arc-second (~3 meters) to 36 arc-seconds (~1 km).  +
H
On-line access to information on historical (archived) water levels and streamflow. Using map-based or text-based searches, users can locate over 1200 hydrometric stations measuring water levels and view hydrographs of historical waer level and streamflow data. Alternatively, users can use a separate tool to select and access historical data from over 2500 active stations and 5500 discontinued stations. In addition, a third tool allows users to generate historical water level and/or streamflow statistics for any of these (more than) 8000 stations.  +
O
OneGeology's aim is to create dynamic digital geological map data for the world. It is an international initiative of the geological surveys of the world who are working together to achieve this ambitious and exciting venture. Please follow the links in this section to find out more about OneGeology, what it is, why we are doing it and how such a big initiative can be achieved.  +
A
Presented are four companion digital models of the age, age uncertainty, spreading rates and spreading asymmetries of the world's ocean basins as geographic and Mercator grids with 2 minute resolution. The grids include data from all the major ocean basins as well as detailed reconstructions of back-arc basins. The age, spreading rate and asymmetry at each grid node is determined by linear interpolation between adjacent seafloor isochrons in the direction of spreading. Ages for ocean floor between the oldest identified magnetic anomalies and continental crust are interpolated by geological estimates of the ages of passive continental margin segments. The age uncertainties for grid cells coinciding with marine magnetic anomaly identifications, observed or rotated to their conjugate ridge flanks, are based on the difference between gridded age and observed age. The uncertainties are also a function of the distance of a given grid cell to the nearest age observation, and the proximity to fracture zones or other age discontinuities. Asymmetries in crustal accretion appear to be frequently related to asthenospheric flow from mantle plumes to spreading ridges, resulting in ridge jumps towards hotspots. We also use the new age grid to compute global residual basement depth grids from the difference between observed oceanic basement depth and predicted depth using two alternative age-depth relationships. The new set of grids helps to investigate prominent negative depth anomalies, which may be alternatively related to subducted slab material descending in the mantle or to asthenospheric flow. A combination of our digital grids and the associated relative and absolute plate motion model with seismic tomography and mantle convection model outputs represent a valuable set of tools to investigate geodynamic problems.  +
R
RESSED is a Microsoft® Access ® database containing information from the original Soil Conservation Service (SCS) datasheets (SCS Form 34) for the United States. The database is provided for download (i.e., this website does not contain tools for utilizing the RESSED database). The Subcommittee on Sedimentation hopes to provide updates to this database via periodic postings on this site. Such database improvements may be predicated on acquisition of adequate funding for RESSED. Additionally, scanned copies of the original data sheets are available for selected viewing, downloading, or printing. The data sheets are in Adobe® Acrobat® Portable Document Format (PDF).  +
S
Sage contains a compilation of monthly mean river discharge data for over 3500 sites worldwide. The data sources are RivDis2.0, the United States Geological Survey, Brazilian National Department of Water and Electrical Energy, and HYDAT-Environment Canada. The period of record for each station is variable, from 3 years to greater than 100. All data is in m3/s.  +
SoilGrids produces maps of soil properties for the entire globe at medium spatial resolution (250 m cell size) using state-of-the-art machine learning methods to generate the necessary models. It takes as inputs soil observations from about 240 000 locations worldwide and over 400 global environmental covariates describing vegetation, terrain morphology, climate, geology and hydrology.  +