Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe output parameters model" with value "See documentation: https://pymt-gridmet.readthedocs.io". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:Avulsion  + (River positions with time)
  • Model:MRSAA  + (River profiles, sediment transport rates, alluvial cover depths and channel bed elevations.)
  • Model:OTTAR  + (River width)
  • Model:SPARROW  + (SPARROW is designed to describe the spatiaSPARROW is designed to describe the spatial patterns in water quality and the factors that affect it. SPARROW models are developed using mass balance constraints to quantify the relation between stream constituent load (the mass of the constituent being transported by the stream) and the sources and losses of mass in watersheds. Thus the models are inherently designed to predict load (mass per time) for all stream reaches in the modeling region. However, the predictions of stream load can be modified to provide a variety of water-quality metrics that can support various types of assessments.</br></br>The SPARROW prediction metrics include constituent yields, concentrations, and source contributions to stream loads: </br>*Constituent yields</br>*Constituent concentrations</br>*Source contributions to stream loadsions *Source contributions to stream loads)
  • Model:SWAN  + (SWAN can provide output on uniform, recti-SWAN can provide output on uniform, recti-linear spatial grids that are independent from the input grids and from the computational grid. In the computation with a curvi-linear computational grid, curvi-linear output grids are available in SWAN. This also holds for triangular meshes. An output grid has to be specified by the user with an arbitrary resolution, but it is of course wise to choose a resolution that is fine enough to show relevant spatial details. It must be pointed out that the information on an output grid is obtained from the computational grid by bi-linear interpolation (output always at computational time level). This implies that some inaccuracies are introduced by this interpolation. It also implies that bottom or current information on an output plot has been obtained by interpolating twice: once from the input grid to the computational grid and once from the computational grid to the output grid. If the input-, computational- and output grids are identical, then no interpolation errors occur.</br></br></br>In the regions where the output grid does not cover the computational grid, SWAN assumes output values equal to the corresponding exception value. For example, the default exception value for the significant wave height is -9. The exception values of output quantities can be changed by means of the QUANTITY command.</br></br></br>In nonstationary computations, output can be requested at regular intervals starting at a given time always at computational times. given time always at computational times.)
  • Model:Sedflux  + (Sediment properties that include (but are Sediment properties that include (but are not limited to) bulk density, grain size, porosity, and permeability. These are averaged over are user-specified vertical resolution (typically mm to cm).</br></br>Sea-floor properties that include slope, water depth, and sand fraction.ude slope, water depth, and sand fraction.)
  • Model:SRH-1D  + (Sediment transport rates, cross section geometry, bed material, flow and sediment output)
  • Model:NearCoM  + (See documentation.)
  • Model:GeoTiff Data Component  + (See documentation: https://bmi-geotiff.readthedocs.io)
  • Model:Topography Data Component  + (See documentation: https://bmi-topography.readthedocs.io)
  • Model:Hilltop and hillslope morphology extraction  + (See included readme)
  • Model:FUNWAVE  + (See manual, that is uploaded.)
  • Model:Glimmer-CISM  + (See paper)
  • Model:Nitrate Network Model  + (See results of related publication by J. A. Czuba.)
  • Model:River Network Bed-Material Sediment  + (See results of related publications by J. A. Czuba.)
  • Model:RiverMUSE  + (See the readme file.)
  • Model:OpenFOAM  + (See user manual)
  • Model:ADCIRC  + (See: (http://adcirc.org) *Screen Output (See: (http://adcirc.org) </br>*Screen Output (fort.6)</br>* General Diagnostic Output (fort.16)</br>* Iterative Solver ITPACKV 2D Diagnostic Output (fort.33)</br>* 3D Density, Temperature and/or Salinity at Specified Recording Stations (fort.41)</br>* 3D Velocity at Specified Recording Stations (fort.42)</br>* 3D Turbulence at Specified Recording Stations (fort.43)</br>* 3D Density, Temperature and/or Salinity at All Nodes in the Model Grid (fort.44)</br>* 3D Velocity at All Nodes in the Model Grid (fort.45)</br>* 3D Turbulence at All Nodes in the Model Grid (fort.46)</br>* Elevation Harmonic Constituents at Specified Elevation Recording Stations (fort.51)</br>* Depth-averaged Velocity Harmonic Constituents at Specified Velocity Recording Stations (fort.52)</br>* Elevation Harmonic Constituents at All Nodes in the Model Grid (fort.53)</br>* Depth-averaged Velocity Harmonic Constituents at All Nodes in the Model Grid (fort.54)</br>* Harmonic Constituent Diagnostic Output (fort.55)</br>* Elevation Time Series at Specified Elevation Recording Stations (fort.61)</br>* Depth-averaged Velocity Time Series at Specified Velocity Recording Stations (fort.62)</br>* Elevation Time Series at All Nodes in the Model Grid (fort.63)</br>* Depth-averaged Velocity Time Series at All Nodes in the Model Grid (fort.64)</br>* Hot Start Output (fort.67, fort.68)</br>* Atmospheric Pressure Time Series at Specified Meteorological Recording Stations (fort.71)</br>* Wind Velocity Time Series at Specified Meteorological Recording Stations (fort.72)</br>* Atmospheric Pressure Time Series at All Nodes in the Model Grid (fort.73)</br>* Wind Stress or Velocity Time Series at All Nodes in the Model Grid (fort.74)</br>* Depth-averaged Scalar Concentration Time Series at Specified Concentration Recording Stations (fort.81)</br>* Depth-averaged Scalar Concentration Time Series at All Nodes in the Model Grid (fort.83)</br>* Depth-averaged Density Fields at Specified Recording Stations (fort.91)</br>* Depth-averaged Density Fields at All Nodes in the Model Grid (fort.93)s at All Nodes in the Model Grid (fort.93))
  • Model:SWAT  + (See: https://swat.tamu.edu/)
  • Model:STWAVE  + (Selected Wave Spectra Selected Wave Parameters Wave Parameter Fields Breaker Index Fields Radiation Stress Gradient Fields)