Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe input parameters model" with value "Input parameters: * DEM * Precipitation * Potential Evapotranspiration". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:AlluvStrat  + (Input file: channel width and depth, a few others)
  • Model:ESCAPE  + (Input files for eSCAPE are based on YAML sInput files for eSCAPE are based on YAML syntax. </br></br>domain: definition of the unstructured grid containing the vtk grid filename and the associated field (here called Z) as well as the flow direction method to be used flowdir that takes an integer value between 1 (for SFD) and 12 (for Dinf) and the boundary conditions (bc: ‘flat’, ‘fixed’ or ‘slope’)</br>time: the simulation time parameters defined by start, end, tout (the output interval) and dt (the internal time-step).</br>Follows the optional forcing conditions:</br></br>sea: the sea-level declaration with the relative sea-level position (m) and the sea-level curve which is a file containing 2 columns (time and sea-level position).</br>climatic & tectonic have the same structure with a sequence of events defined by a starting time (start) and either a constant value (uniform) or a map.</br>Then the parameters for the surface processes to simulate:</br></br>spl: for the stream power law with a unique parameter Ke representing the The erodibility coefficient which is scale-dependent and its value depend on lithology and mean precipitation rate, channel width, flood frequency, channel hydraulics. It is worth noting that the coefficient m and n are fixed in this version and take the value 0.5 & 1 respectively.</br>diffusion: hillslope, stream and marine diffusion coefficients. hillslopeK sets the simple creep transport law which states that transport rate depends linearly on topographic gradient. River transported sediment trapped in inland depressions or internally draining basins are diffused using the coefficient (streamK). The marine sediment are transported based on a diffusion coefficient oceanK. The parameter maxIT specifies the maximum number of steps used for diffusing sediment during any given time interval dt.</br>Finally, you will need to specify the output folder:</br></br>output: with dir the directory name and the option makedir that gives the possible to delete any existing output folder with the same name (if set to False) or to create a new folder with the give dir name plus a number at the end (e.g. outputDir_1 if set to True)umber at the end (e.g. outputDir_1 if set to True))
  • Model:LTRANS  + (Input files: # the NetCDF files from the RInput files:</br># the NetCDF files from the ROMS hydrodynamic model</br># a comma delimited file that contains the particle locations, </br># comma delimited files that contain habitat boundaries for the Settlement Module. The latter is only needed if the Settlement Module is turned on.ded if the Settlement Module is turned on.)
  • Model:IDA  + (Input flow directions: 8 bit unsigned inInput flow directions:</br> 8 bit unsigned integers</br></br> The numbers corresponding to each of the 9 possible flow directions are</br> shown below:</br></br> 32 64 128</br></br> 16 0 1</br></br> 8 4 2</br></br> So a cell with the value '1' means that the flow in that cell goes to the</br> East, while a value of '32' means that the cell's flow goes to the</br> North West. The value '0' implies that the cell is a sink and flow does not</br> leave it</br></br> Row major order is used.not leave it Row major order is used.)
  • Model:QDSSM  + (Input is in the form of values per time stInput is in the form of values per time step for the following variables: files of rain fall, river inlet, sea-level, substratum thickness, tectonics, subsidence, while the model is calibrated through environmental coefficients, threshold slopes, threshold discharge, and set for interval time steps, number of time steps, environmental coefficients (m2/yr) and substratum grain size.icients (m2/yr) and substratum grain size.)
  • Model:CVPM  + (Input parameters are provided through several user-supplied files (see the CVPM modeling system user's guide).)
  • Model:DHSVM  + (Input parameters are: * Digital ElevationInput parameters are:</br>* Digital Elevation Model (DEM) of the basin</br>* Soil textural and hydraulic information</br>* Vegetation information</br>* Meteorological conditions at a subdaily timestep, in particular precipitation, air temperature, humidity, wind speed, incoming shortwave radiation and incoming longwave radiation</br>* Information about the stream and road network (location, width, etc.)m and road network (location, width, etc.))
  • Model:Meander Centerline Migration Model  + (Input parameters belong to five families: Input parameters belong to five families:</br>* parameters related to flow field</br>* parameters related to the floodplain structure</br>* parameters related to the river geometry</br>* parameters related to the time marching of the simulation</br>* parameters related to the output printing parameters related to the output printing)
  • Model:Spbgc  + (Input parameters: * Geometrical parameters: Nx, Ny, domain size * Flow Parameters: Reynolds, Peclet * Particle Parameters: Settling velocities. The complete list of input parameters is set and described in the file input.inp)
  • Model:WASH123D  + (Input parameters: # Geomety in terms of fInput parameters:</br># Geomety in terms of finite element mesh</br># matreial properties,</br># initila conditions,</br># boundary conditions,</br># meteogoligcal data, and</br># reaction networks for biogeochemical transport. </br></br>Detailed input/output refers to Yeh et al., 2005 Technical Report on WASH123D et al., 2005 Technical Report on WASH123D)
  • Model:CREST  + (Input parameters: * DEM * Precipitation * Potential Evapotranspiration)
  • Model:Gvg3Dp  + (Input parameters: *Geometrical parameters: Nx, Ny, Nz. *Grid: Uniform or nonuniform. *Flow Parameters: Reynolds, Peclet *Particle Parameters: Settling velocities. *Flags: Output writing flags. Inflow/Outflow to the domain flags.)
  • Model:CosmoLand  + (Input: *Landslide: recurrence interval, siInput:</br>*Landslide: recurrence interval, size parameters</br>*Cosmogenic: production rate, decay rate, attenuation, density diffusive erosion rate drainage basin size, critical drainage area for a channel</br>*River channel scaling parameters: width, sediment depth, drainage densitys: width, sediment depth, drainage density)
  • Model:LEMming2  + (Inputs include grid definitions, erosion rule parameters, uplift time series, stratigraphic geometry, and rock type and rockfall debris erodibility.)
  • Model:SNOWPACK  + (It requires the following meteorological pIt requires the following meteorological parameters:</br>* air temperature (TA)</br>* relative humidity (RH)</br>* wind speed (VW)</br>* incoming short wave radiation (ISWR) and/or reflected short wave radiation (RSWR)</br>* incoming long wave radiation (ILWR) and/or surface temperature (TSS)</br>* precipitation (PSUM) and/or snow height (HS)</br>* ground temperature (TSG, if available. Otherwise, you will have to use MeteoIO's data generators to generate a value) or geothermal heat flux</br>* snow temperatures at various depths (TS1, TS2, etc if available and only for comparisons, see section Snow and/or soil temperatures)see section Snow and/or soil temperatures))
  • Model:Gc2d  + (Landscape elevation, ELA with time)
  • Model:LONGPRO  + (Length of reach, distance between nodes, tLength of reach, distance between nodes, timestep, number of timesteps, median grain size, elevation of the water surface, slope of initial river bed, Qmax, Xmax, mainning N, Initial elevation, node along X-as at which tectonic elev. Changes start, sediment conc. of lateral inflow, mass feed rate at upstream boundary,flow, mass feed rate at upstream boundary,)
  • Model:Subside  + (Loading distribution, EET, Mantle viscosity)
  • Model:Inflow  + (Main input parameters: * River velocity, width, depth, and sediment concentration. * Bathymetry)
  • Model:Sakura  + (Main input parameters: * River velocity, width, depth, and sediment concentration * Bathymetry)
  • Model:WSGFAM  + (Main inputs are bathymetry, riverine sediment discharge time-series, and ambient wave and current time-series. Critical velocity for sea bed erosion, bottom drag coefficient and critical bulk Richardson number can also be adjusted.)