Search by property
From CSDMS
This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.
List of results
- Presenters-0537 + (Decision framing is a key, early step in a … Decision framing is a key, early step in any effective decision support engagement in which modelers aim to inform decision and policy making. In this clinic participants will work through and share the results of decision framing exercises for a variety of policy decisions. We will organize the exercise using the XLRM elicitation, commonly used in decision making under deep uncertainty (DMDU) stakeholder engagements. The XLRM framework is useful because it helps organize relevant factors into the components of a decision-centric analysis. The letters X, L, R, and M refer to four categories of factors important to RDM analysis: outcome measures (M) that reflect decision makers’ goals; policy levers (L) that decision makers use to pursue their goals; uncertainties (X) that may affect the connection between policy choices and outcomes; and relationships (R), often instantiated in mathematical simulation models, between uncertainties and levers and outcomes.een uncertainties and levers and outcomes.)
- Presenters-0624 + (Deep-learning emulators permit to reduce d … Deep-learning emulators permit to reduce dramatically the computational times for solving physical models. Trained from a state-of-the-art high-order ice flow model, the Instructed Glacier Model (IGM, https://github.com/jouvetg/igm) is an easy-to-use python code based on the Tensorflow library that can simulate the 3D evolution of glaciers several orders of magnitude faster than the instructor model with minor loss of accuracy. Switching to Graphics Processing Unit (GPU) permits additional significant speed-ups, especially when modeling large-scale glacier networks and/or high spatial resolutions. Taking advantage of GPUs, IGM can also track a massive amount of particles moving within the ice flow, opening new perspectives for modeling debris transportation of any size (e.g., erratic boulders). Here I give an overview of IGM, illustrate its potential to simulate paleo and future glacier evolution in the Alps together with particle tracking applications, and do a quick live demo of the model.ns, and do a quick live demo of the model.)
- Presenters-0470 + (Delta morphology)
- Presenters-0080 + (Deltas are highly sensitive to local human … Deltas are highly sensitive to local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. In this talk, I’ll discuss a recently developed risk framework for estimating the sensitivity of deltas to relative sea level rise, and the expected impact on flood risk. We apply this framework to an integrated set of global environmental, geophysical, and social indicators over 48 major deltas to quantify how delta flood risk due to extreme events is changing over time. Although geophysical and relative sea-level rise derived risks are distributed across all levels of economic development, wealthy countries effectively limit their present-day threat by gross domestic product–enabled infrastructure and coastal defense investments. However, when investments do not address the long-term drivers of land subsidence and relative sea-level rise, overall risk can be very sensitive to changes in protective capability. For instance, we show how in an energy-constrained future scenario, such protections will probably prove to be unsustainable, raising relative risks by four to eight times in the Mississippi and Rhine deltas and by one-and-a-half to four times in the Chao Phraya and Yangtze deltas. This suggests that the current emphasis on short-term solutions on the world’s deltas will greatly constrain options for designing sustainable solutions in the long term.ng sustainable solutions in the long term.)
- Presenters-0565 + (Developed barriers are tightly-coupled sys … Developed barriers are tightly-coupled systems driven by feedbacks between natural processes and human decisions to maintain development. Coastal property markets are dynamically linked to the physical environment: large tax revenues and high-value infrastructure necessitate defensive coastal management through beach nourishment, dune development, overwash removal, and construction of hard structures. In turn, changes to environmental characteristics such as proximity to the beach, beach width, and the height of dunes influence coastal property values. In this talk I will use a new exploratory model framework – the CoAStal Community-lAnDscape Evolution (CASCADE) model – to explore the coupled evolution of coastal real estate markets and barrier landscapes. The framework couples two geomorphic models of barrier evolution (Barrier3D and BRIE) with an agent-based real estate model – the Coastal Home Ownership Model (CHOM). CHOM receives information about the coastal environment and acts on that information to cause change to the environment, including decisions about beach nourishment and dune construction and maintenance. Through this coupled model framework, I will show how the effects of dune and beach management strategies employed in the wake of extreme storms cascade through decades to alter the evolution of barriers, inadvertently inhibiting their resilience to sea level rise and storms, and ultimately unraveling coastal real estate markets.ly unraveling coastal real estate markets.)
- Presenters-0613 + (Developers of solvers for PDE-based models … Developers of solvers for PDE-based models and other computationally intensive tasks are confronted with myriad complexity, from science requirements to algorithms and data structures to GPU programming models. We will share a fresh approach that has delivered order of magnitude speedups in computational mechanics workloads, minimizing incidental complexity while offering transparency and extensibility. In doing so, we'll examine the PETSc and libCEED libraries, validate performance models, and discuss sustainable architecture for community development. We'll also check out Enzyme, an LLVM-based automatic differentiation tool that can be used with legacy code and multi-language projects to provide adjoint (gradient) capabilities.o provide adjoint (gradient) capabilities.)
- Presenters-0618 + (Digital twins are increasingly important i … Digital twins are increasingly important in many domains, including for understanding and managing the natural environment. Digital twins of the natural environment are fueled by the unprecedented amounts of environmental data now available from a variety of sources from remote sensing to potentially dense deployment of earth-based sensors. Because of this, data science techniques inevitably have a crucial role to play in making sense of this complex, highly heterogeneous data. This webinar will reflect on the role of data science in digital twins of the natural environment, with particular attention on how resultant data models can work alongside the rich legacy of process models that exist in this domain. We will seek to unpick the complex two-way relationship between data and process understanding. By focusing on the interactions, we will end up with a template for digital twins that incorporates a rich, highly dynamic learning process with the potential to handle the complexities and emergent behaviors of this important area.emergent behaviors of this important area.)
- Presenters-0511 + (Does permafrost impart topographic signatu … Does permafrost impart topographic signatures, and how does subsequent warming affect hillslope and channel form? Permafrost controls the depth to immobile soil, and tundra vegetation influences infiltration and erosion thresholds. I will use high-resolution maps of arctic landscapes to examine morphometric properties like hillslope length, curvature and drainage density as functions of climate and vegetation. I will then compare these data to existing models of climate-modulated sediment flux and channel incision in Landlab, exploring the effect of more nuanced representations of permafrost flux laws and hydrology. I will also compare modeled landscapes forced with Pleistocene-Holocene climate to mid-latitude landscape form.ne climate to mid-latitude landscape form.)
- Presenters-0113 + (During a clinic session in the 2013 CSDMS … During a clinic session in the 2013 CSDMS annual meeting, the OpenFOAM®, an open source computational fluid dynamics (CFD) platform, was first introduced by Dr. Xiaofeng Liu (now at Penn State University) for modeling general earth surface dynamics. OpenFOAM® provides various libraries, solvers and toolboxes for solving various fluid physics via finite volume method. The objective of this clinic is to further discuss its recent development and applications to coastal sediment transport. The clinic will start with an overview of a range of coastal applications using OpenFOAM®. We will then focus on a recently released solver, SedFOAM, for modeling sand transport by using an Eulerian two-phase flow methodology. Specifically, we will focus on applying the model to study wave-driven sheet flows and the occurrence of momentary bed failure. The code can be downloaded via CSDMS code repository and participants will receive a hands-on training of the coding style, available numerical schemes in OpenFOAM®, computational domain setup, input/output and model result analysis. Knowledge of C++, object-oriented programming, and parallel computing is not required but will be helpful.uting is not required but will be helpful.)
- Presenters-0418 + (During the clinic we'll introduce the new … During the clinic we'll introduce the new Delft3D Flexible Mesh modeling environment. We'll discuss the basic features and set up a simple 2D morphological model. The ongoing developments and the possibility to use BMI for runtime interaction will be presented as well.</br></br>The user interface runs on Windows, so make sure that you have a Windows computer or virtual machine available during the meeting. The user interface will be provided precompiled; the computational kernels you'll have to compile yourself. We'll provide instructions on how to compile the FORTRAN/C kernels before the clinic.e the FORTRAN/C kernels before the clinic.)
- Presenters-0425 + (Earth scientists face serious challenges w … Earth scientists face serious challenges when working with large datasets. Pangeo is a rapidly growing community initiative and open source software ecosystem for scalable geoscience using Python. Three of Pangeo’s core packages are 1) Jupyter, a web-based tool for interactive computing, 2) Xarray, a data-model and toolkit for working with N-dimensional labeled arrays, and 3) Dask, a flexible parallel computing library. When combined with distributed computing, these tools can help geoscientists perform interactive analysis on datasets up to petabytes in size. In this interactive tutorial we will demonstrate how to employ this platform using real science examples from hydrology, remote sensing, and oceanography. Participants will follow along using Jupyter notebooks to interact with Xarray and Dask running in Google Cloud Platform.and Dask running in Google Cloud Platform.)
- Presenters-0594 + (Earth surface processes are modulated by f … Earth surface processes are modulated by fascinating interactions between climate, tectonics, and biota. These interactions are manifested over diverse temporal and spatial scales ranging from seconds to millions of years, and microns to thousands of kilometers, respectively. Investigations into Earth surface shaping by biota have gained growing attention over the last decades and are a research frontier. In this lecture, I present an integration of new observational and numerical modeling research on the influence of vegetation type and cover on the erosion of mountains. I do this through an investigation of millennial timescale catchment denudation rates measured along the extreme climate and ecologic gradient of the western margin of South America.nt of the western margin of South America.)
- Presenters-0010 + (Earthquakes are the most frequent source o … Earthquakes are the most frequent source of classic tsunami waves. Other processes that generate tsunami waves include, landslides, volcanic eruption and meteorite impacts. Furthermore, atmospheric disturbances can also generate tsunami waves or at least tsunami-like waves, but we are just at the beginning of understanding their physics and frequency. Classic tsunami waves long waves with wavelength that are much longer than the water depth. For earthquake-generated tsunami waves that is true. However, landslides and meteorite impacts generate tsunami waves that are shorter which has a profound effect on the tsunami evolution, but no less dangerous.<br>Fortunately, tsunamis do not occur frequently enough in any given region to make meaningful prediction of the future tsunami hazard based only on recorded history. The geologic record has to be interrogated. The inversion of meaningful and quantitative data from the geologic record is the main goal of my research. However, there are problems with the geologic record. The most important problem is that we often have trouble to identify tsunami deposits. Second, it is very often difficult to separate the tsunami record from the storm record in regions where storms and tsunamis are competing agents of coastal change. Other problems are concerned with he completeness of the deposits, but also the fact that sedimentary environment before the tsunami hit most likely was eroded is no longer part of the record makes inversion especially tricky. In my research, I assume that the tsunami deposit is identified, but perhaps not complete and what we know about the pre-event conditions is limited.<br>My talk will cover how the geologic record is used to invert quantitative information about the causative process. We are going to look at grain sizes from sand to boulders and what we can learn from the transport of these very different grain sizes about tsunamis and their impacts along respective coastal areas. The models that are employed to invert flow characteristics from deposits are based on Monte-Carlo simulations to overcome the issue of not knowing the pre-tsunami conditions with great confidence. If time permits, we also see how sea-level change affects tsunami impact at the coast. sea-level change affects tsunami impact at the coast.)
- Presenters-0625 + (Earth’s surface is the living skin of our … Earth’s surface is the living skin of our planet – it connects physical, chemical, & biological systems. Over geological time, this surface evolves with rivers fragmenting the landscape into environmentally diverse range of habitats. These rivers not only carve canyons & form valleys, but also serve as the main conveyors of sediment & nutrients from mountains to continental plains & oceans. Here we hypothesise that it is not just geodynamics or climate, but their interaction, which, by regulating topography and sedimentary flows, determines long-term evolution of biodiversity. As such, we propose that surface processes are a prime limiting factor of diversification of Life on Earth before any form of intrinsic biotic process.</br></br>To test this hypothesis, we use reconstructions of ancient climates & plate tectonics to simulate the evolution of landscape & sedimentary history over the entire Phanerozoic era, a period of 540 million years. We then compare these results with reconstructions of marine & continental biodiversity over geological times. Our findings suggest that biodiversity is strongly influenced by landscape dynamics, which at any given moment determine the carrying capacity of continental & oceanic domains, i.e., the maximum number of different species they can support at any given time.</br></br>In the oceans, diversity closely correlates with the sedimentary flow from the continents, providing the necessary nutrients for primary production. Episodes of mass extinctions in the oceans have occurred shortly after a significant decrease in sedimentary flow, suggesting that a nutrient deficit destabilizes biodiversity & makes it particularly vulnerable to catastrophic events.</br></br>On the continents, it took the gradual coverage of the surface with sedimentary basins for plants to develop & diversify, thanks to the development of more elaborate root systems. This slow expansion of terrestrial flora was further stimulated during tectonic episodes.ow expansion of terrestrial flora was further stimulated during tectonic episodes.)
- Presenters-0480 + (Ecological Network Analysis (ENA) enables … Ecological Network Analysis (ENA) enables quantitative study of ecosystem models by formulating system-wide organizational properties, such as how much nutrient cycling occurs within the system, or how essential a particular component is to the entire ecosystem function. EcoNet is a free online software for modeling, simulation and analysis of ecosystem network models, and compartmental flow-storage type models in general. It combines dynamic simulation with Ecological Network Analysis. EcoNet does not require an installation, and runs on any platform equipped with a standard browser. While it is designed to be easy to use, it does contain interesting features such as discrete and continuous stochastic solutions methods.d continuous stochastic solutions methods.)
- Presenters-0461 + (Ecology is largely considered to have its … Ecology is largely considered to have its foundations in physics, and indeed physics frames many of the constraints on ecosystem dynamics. Physics has its limitations, however, especially when dealing with strongly heterogeneous systems and with the absence of entities. Networks are convenient tools for dealing with heterogeneity and have a long history in ecology, however most research in networks is dedicated to uncovering the mechanisms that give rise to network types. Causality in complex heterogeneous systems deals more with configurations of processes than it does with objects moving according to laws. Phenomenological observation of ecosystems networks reveals regularities that the laws of physics are unequipped to determine. The ecosystem is not a machine, but rather a transaction between contingent organization and entropic disorder.ingent organization and entropic disorder.)
- Presenters-0011 + (Economic losses and casualties due to rive … Economic losses and casualties due to riverine flooding increased in past decades and are most likely to further increase due to global change. To plan effective mitigation and adaptation measures and since floods often affect large areas showing spatial correlation, several global flood models (GFMs) were developed. Yet, they are either based on hydrologic or on hydrodynamic model codes. This may lower the accuracy of inundation estimates as large-scale hydrologic models often lack advanced routing schemes, reducing timeliness of simulated discharge, while hydrodynamic models depend on observed discharge or synthesized flood waves, hampering the representation of intra-domain processes.<br>To overcome this, GLOFRIM was developed. Currently, it allows for coupling one global hydrologic model, producing discharge and runoff estimates, with two hydrodynamics which perform the routing of surface water. By employing the Basic Model Interface (BMI) concept, both online and spatially explicit coupling of the models is supported. This way the coupled models remained unaffected, facilitating the separate development, storage, and updating of the models and their schematizations. Additionally, the framework is developed with easy accessibility and extensibility in mind, which allows other models to be added without extensive re-structuring. <br>In this presentation, the main underlying concepts of GLOFRIM as well as its workflow will be outlined, and first results showing the benefit of model coupling will be discussed. Besides, current limitations and need for future improvements will be pointed out. Last, current developments in code development, applications, and integrations with other research fields will be presented and discussed.other research fields will be presented and discussed.)
- Presenters-0547 + (Ecosystems are in transition globally with … Ecosystems are in transition globally with critical societal consequences. Global warming, growing climatic extremes, land degradation, human-introduced herbivores, and climate-related disturbances (e.g., wildfires) drive rapid changes in ecosystem productivity and structure, with complex feedbacks in watershed hydrology, geomorphology, and biogeochemistry. There is a need to develop models that can represent ecosystem changes by incorporating the role of individual plant patches. We developed ecohydrologic components in Landlab that can be coupled to create models to simulate local soil moisture dynamics and plant dynamics with spatially-explicit cellular automaton plant establishment, mortality, fires, and grazing. In this talk, I will present a model developed to explore the interplay between ecosystem state, change in climate, resultant grass connectivity, fire frequency, and topography. A transition from a cool-wet climate to a warm-dry climate leads to shrub expansion due to drought-induced loss of grass connectivity. Shrubs dominate the ecosystem if dry conditions persist longer. The transition back to a tree or grass-dominated ecosystem from a shrub-dominated ecosystem can only happen when climate shifts from dry to wet. The importance of the length of dry or wet spells on ecosystem structure is highlighted. Aspect plays a critical role in providing topographical refugia for trees during dry periods and influences the rate of ecosystem transitions during climate change.osystem transitions during climate change.)
- Presenters-0453 + (Ecosystems present spatial patterns contro … Ecosystems present spatial patterns controlled by climate, topography, soils, plant interactions, and disturbances. Geomorphic transport processes mediated by the state of the ecosystem leave biotic imprints on erosion rates and topography. This talk will address the following questions at the watershed scale: What are emergent properties of biotic landscapes, and how do they form? How do biotic landscapes respond to perturbations in space and time? First, formation of patterns and ecologic rates of change to perturbations in semiarid ecosystems will be investigated using Landlab. Second, we will examine eco-geosphere interactions and outcomes using a landscape evolution model. The role of solar radiation on ecogeomorphic forms, and watershed ecogeomorphic response to climate change will be elaborated. Finally, reflecting on the findings of previous research, some future directions in numerical modeling for linking ecosphere and geosphere will be discussed.ecosphere and geosphere will be discussed.)
- Presenters-0475 + (Environmental management decisions increas … Environmental management decisions increasingly rely on quantitative integrated ecological models to forecast potential outcomes of management actions. These models are becoming increasingly complex through the integration of processes from multiple disciplines (e.g., linking physical process, engineering and ecological models). These integrated modeling suites are viewed by many decision makers as unnecessarily complex black boxes, which can lead to mistrust, misinterpretation and/or misapplication of model results. Numerical models have historically been developed without decision makers and stakeholders involved in model development, which further complicates communication as diverse project teams have differing levels of understanding of models and their uses. For example, explaining to a group of non-modelers how hydrodynamic model output was aggregated at ecologically-relevant scales can be difficult to explain to someone who was not exposed to that modeling decision. The mistrust of models and associated outputs can lead to poor decision-making, increase the risk of ineffective decisions and can lead to litigation over decisions. Improved integrated ecological model development practices are needed to increase transparency, include stakeholders and decision makers throughout the entire modeling process from conceptualization through application. </br></br>This clinic describes a suite of techniques, best practices, and tools for rapid developing applied integrated ecological models in conjunction with technical stakeholder audiences and agency practitioners. First, a workshop approach for applied ecosystem modeling problems is described that cultivates a foundational understanding of integrated ecological models through hands-on, interactive model development. In this workshop environment, interdisciplinary and interagency working groups co-develop models in real-time which demystifies technical issues and educates participants on the modeling process. Second, a Toolkit for interActive Modeling (TAM) is presented as a simple platform for rapidly developing index-based ecological models, which we have found useful for developing a strong modeling foundation for large, multidisciplinary teams involved in environmental decision making. Third, the EcoRest R package is described, which provides a library of functions for computing habitat suitability and decision support via cost-effectiveness and incremental cost analysis. Based on 10 workshops over the last 8 years, these techniques facilitated rapid, transparent development and application of integrated ecological models, informed non-technical stakeholders of the complexity facing decision-makers, created a sense of model ownership by participants, built trust among partners, and ultimately increased “buy-in” of eventual management decisions.“buy-in” of eventual management decisions.)
- Presenters-0107 + (Established in 2005, GEO (http://www.earth … Established in 2005, GEO (http://www.earthobservations.org/) is a voluntary partnership of governments and organizations that envisions “a future wherein decisions and actions for the benefit of humankind are informed by coordinated, comprehensive and sustained Earth observations and information.” GEO Member governments include 96 nations and the European Commission, and 87 Participating Organizations comprised of international bodies with a mandate in Earth observations. Together, the GEO community is creating a Global Earth Observation System of Systems (GEOSS) that will link Earth observation resources world-wide across multiple Societal Benefit Areas - agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water and weather - and make those resources available for better informed decision-making. Through the GEOSS Common Infrastructure (GCI), GEOSS resources, including Earth observation data (satellite, airborne, in situ, models), information services, standards and best practices, can be searched, discovered and accessed by scientists, policy leaders, decision makers, and those who develop and provide information services across the entire spectrum of users.</br></br>The presentation will cover the GCI overall architecture and some possible future developments.ure and some possible future developments.)
- Presenters-0499 + (Exchanges of sediment between marshes and … Exchanges of sediment between marshes and estuaries affect coastal geomorphology, wetland stability and habitat, but can be difficult to predict due to the many processes that influence dynamics in these systems. This study uses a modeling approach to analyze how spatially variability in marsh-edge erosion, vegetation, and hydrodynamic conditions affect sediment fluxes between marshes and estuaries in Barnegat Bay, New Jersey. Specifically, the three-dimensional Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical model was used. Model results showed that marsh-estuarine sediment fluxes varied spatially due to changes in wave thrust, currents, and sediment availability.rust, currents, and sediment availability.)
- Presenters-0646 + (Exploratory models that simulate landscape … Exploratory models that simulate landscape change incorporate only the most essential processes that are hypothesized to control a behavior of interest. These “rule-based” models have been used successfully to examine behaviors in natural landscapes over large spatial (many kms) and temporal scales (decades to millennia). In many geomorphic systems, the dynamics of developed landscapes differ significantly from natural landscapes. For example, humans can alter the physical landscape through the introduction of hard infrastructure and removal of vegetation. Humans can also modify the internal and external forces that naturally change landscapes, including flows of water, wind, and sediment as well as climatic factors. As with natural processes, in exploratory models human behavior must be parameterized. However, the level of detail to which human behavior can be reduced while still accurately reproducing feedbacks across the coupled human-natural landscape is a complex, user-based decision. </br></br>In this clinic, we will work in small groups and through a Jupyter Notebook to parameterize a new human behavior within a modular coastal barrier evolution model (Barrier3D, within the CASCADE modeling framework). The clinic will incorporate discussions and prompts about how to broadly identify important model “ingredients” and reduce model complexity, and will therefore be generalizable to other geomorphic landscapes.eralizable to other geomorphic landscapes.)
- Presenters-0629 + (Fill-Spill-Merge (FSM) is an algorithm tha … Fill-Spill-Merge (FSM) is an algorithm that distributes runoff on a landscape to fill or partially fill depressions. When a depression fills, excess water can overflow into neighbouring depressions or the ocean. In this clinic, we will use FSM to assess changes in a landscape’s hydrology when depressions in a DEM are partially or fully filled with water. We will discuss why it may be important to consider depressions more closely than just with removal. I will describe the design of the FSM algorithm, and then we will use FSM on a DEM to look at how landscape hydrology changes under different hydrologic conditions. </br></br>This clinic may be helpful to those interested in topics such as landscape hydrology, landscape evolution, flow routing, hydrologic connectivity, and lake water storage.ogic connectivity, and lake water storage.)
- Presenters-0569 + (Fire temporarily alters soil and vegetatio … Fire temporarily alters soil and vegetation properties, driving increases in runoff and erosion that can dramatically increase the likelihood of debris flows. In the immediate aftermath of fire, debris flows most often initiate when surface water runoff rapidly erodes sediment on steep slopes. Due to the complex interactions between runoff generation, sediment transport, and post-fire debris-flow initiation and growth, models that couple these processes can provide valuable insights into the ways in which topography, burn severity, and post-fire recovery influence debris-flow activity. Here, we describe such a model as well as attempts to parameterize temporal changes in model parameters throughout the post-fire recovery process. Simulations of watershed-scale response to individual rainstorms in several southern California burned areas suggest substantial reductions in debris-flow likelihood and volume within the first 1-2 years following fire. Results highlight the importance of considering local rainfall characteristics and sediment supply when using process-based numerical models to assess debris-flow potential. More generally, results provide a methodology for estimating the intensity and duration of rainfall associated with the initiation of runoff-generated debris flows as well as insights into the persistence of debris-flow hazards following fire.nce of debris-flow hazards following fire.)
- Presenters-0509 + (Flood hazard in rivers can evolve from cha … Flood hazard in rivers can evolve from changes in the frequency and intensity of flood-flows (hydrologic effects) and in the channel capacity to carry flood-flows (morphologic effects). However, river morphology is complex and often neglected in flood planning. Here, we separate the impacts of morphology vs. hydrology on flood risk for 48 river gauges in Northwestern Washington State. We find that morphologic vs. hydrologic forcings are comparable but not regionally consistent. Prominent morphologic effects on flood-risk are forced by extreme natural events and anthropogenic disturbances. Based on morphologic changes, we identify five categories of river behavior relevant for flood-risk management.havior relevant for flood-risk management.)
- Presenters-0004 + (Flood modelling at global scales represent … Flood modelling at global scales represents a revolution in hydraulic science and has the potential to transform decision-making and risk management in a wide variety of fields. Such modelling draws on a rich heritage of algorithm and data set development in hydraulic modelling over the last 20 years, and is now beginning to yield new insights into current and future flood risk. This paper reviews this progress and outlines recent efforts to develop a 30m resolution true hydrodynamic model of the entire conterminous US. The model is built using an automated framework which uses US National Elevation Dataset, the HydroSHEDS river network, regionalised frequency analysis to determine extreme flow and rainfall boundary conditions and the USACE National Levee Dataset to characterize flood defences. Comparison against FEMA and USGS flood maps shows the continental model to have skill approaching that of bespoke models built with local data. The paper describes the development and testing of the model, and it use to estimate current and future flood risk in the US using high resolution population maps and development projections.pulation maps and development projections.)
- Presenters-0017 + (Flooding is one of the costliest natural d … Flooding is one of the costliest natural disasters and recent events, including several hurricanes as well as flash floods, have been particularly devastating. In the US alone, the last few years have been record-breaking in terms of flood disasters and triggered many reactions in public opinions. Governments are now reviewing the available information to better mitigate the risks from flooding.<br>Typically, in the US, flood hazard mapping is done by federal agencies (USACE, FEMA and USGS), with traditionally, little room and need for research model development in flood hazard applications. Now, with the advent of the National Water Model, the status quo of flood hazard prediction in the US may be changing; however, inundation extent and floodplain depths in the National Water Model are still under early-stage development.<br>This Clinic provides a beginner introduction to the latest capabilities in large-scale 2-D modeling using the LISFLOOD-FP model developed by the University of Bristol with a nearly 20-year code history. This model has a very long history in research applications, while the algorithms behind the model made their way also into many existing industry model codes. The session will give participants insights into 2-D flood inundation modeling with LISFLOOD-FP and also a look at more sophisticated sub-grid channel implementations for large-scale application. More specifically, we will look at the data sets needed by the model and then run a simulation of the annual flooding on the Inner Niger Delta in Mali. The Clinic will also give participants the opportunity to look at some high-resolution LiDAR-based model results.ook at some high-resolution LiDAR-based model results.)
- Presenters-0136 + (Floodplain construction involves the inter … Floodplain construction involves the interplay between channel belt sedimentation and avulsion, overbank deposition of fines, and sediment reworking by channel migration. There has been considerable progress in numerical modelling of these processes over the past few years, for example, by using high resolution flow and sediment transport models to simulate river morphodynamics, albeit over relatively small time and space scales. Such spatially-distributed hydrodynamic models are also regularly used to simulate floodplain inundation and overbank sedimentation during individual floods. However, most existing models of long-term floodplain construction and alluvial architecture do not account for flood hydraulics explicitly. Instead, floodplain sedimentation is typically modelled as an exponential function of distance from the river, and avulsion thresholds are defined using topographic indices (e.g., lateral:downstream slope ratios or metrics of channel belt super-elevation). This presentation aims to provide an overview of these issues, and present results from a hydrodynamically-driven model of long-term floodplain evolution. This model combines a simple network-based model of channel migration with a 2D grid-based model of flood hydrodynamics and overbank sedimentation. The latter involves a finite volume solution of the shallow water equations and an advection-diffusion model for suspended sediment transport. Simulation results are compared with observations from several large lowland floodplains, and the model is used to explore hydrodynamic controls on long-term floodplain evolution and alluvial ridge construction.evolution and alluvial ridge construction.)
- Presenters-0564 + (Flow routing map is the cornerstone of spa … Flow routing map is the cornerstone of spatially distributed hydrologic models. In this clinic we will introduce HexWatershed, a scale-free, mesh independent flow direction model. It supports DOE’s Energy Exascale Earth System Model (E3SM) to generate hydrologic parameters and river network representations on both structured and unstructured meshes. </br></br>In this presentation, we will overview the capabilities of HexWatershed with an emphasis on river network representation and flow direction modeling. We will also provide participants with the tools to begin their own research with hydrologic model workflows. Through hands-on tutorials and demonstrations, participants will gain some insights into the relationship between meshes and flow direction, and how HexWatershed handles river network in various meshes. We will also demonstrate how to use the HexWatershed model outputs in the large-scale hydrologic model, Model for Scale Adaptive River Transport (MOSART). Participants will be provided with additional resources that can be used to extend the tutorial problems and gain additional familiarity with the tools and workflows introduced. Participants are welcome to bring and utilize their own computers capable of accessing the internet and running a web browser. Tutorials will involve simple scripting operations in the Python language. The conda utility will be used to install libraries. Both QGIS and VisIt packages will be used for visualization.t packages will be used for visualization.)
- Presenters-0507 + (Fluvial incision since late Miocene time ( … Fluvial incision since late Miocene time (5 Ma) has shaped the transition between the Central Rocky Mountains and adjacent High Plains. Despite a clear contrast in erodibility between the mountains and plains, erodibility has not been carefully accounted for in previous attempts to model the geomorphic evolution of this region. The focus of this work to date has been to constrain erodibility values with a simplistic, toy model, and to reconstruct the paleosurface of the Miocene Ogallala Formation prior to its dissection beginning at 5 Ma. This surface reconstruction will be used as an initial condition in subsequent modeling. initial condition in subsequent modeling.)
- Presenters-0134 + (Food security and poverty in Bangladesh ar … Food security and poverty in Bangladesh are very dependent on natural resources, which fluctuate with a changing environment. The ecosystem services supporting the rural population are affected by several factors including climate change, upstream river flow modifications, commercial fish catches in the Bay of Bengal, and governance interventions. The ESPA Deltas project aims to holistically describe the interaction between the interlinked bio-physical environment and the livelihoods of the rural poorest in coastal Bangladesh, who are highly dependent on natural resources and live generally on less than US$1.50 per day. Here we describe a new integrated model that allows a long-term analysis of the possible changes in this system by linking projected changes in physical processes (e.g. river flows, nutrients), with productivity (e.g. fish, rice), social processes (e.g. access, property rights, migration) and governance (e.g. fisheries, agriculture, water and land use management). Bayesian Networks and Bayesian Processes allow multidisciplinary integration and exploration of specific scenarios. This integrated approach is designed to provide Bangladeshi policy makers with science-based evidence of possible development trajectories. This includes the likely robustness of different governance options on natural resource conservation and poverty levels. Early results highlight the far reaching implications of sustainable resource use and international cooperation to secure livelihoods and ensure a sustainable environment in coastal Bangladesh.ainable environment in coastal Bangladesh.)
- Presenters-0659 + (Fora.ai is an intuitive digital environmen … Fora.ai is an intuitive digital environment that enables diverse stakeholder groups to collaboratively interact with embedded simulation models to understand real world socio-environmental problems and create novel and impactful solutions. Stakeholders interact with this digital representation and with each other, iteratively creating, revising and testing solutions until diverse needs are addressed. Workshop participants will use fora.ai’s interactive game-board to collectively build green infrastructure solutions to flooding in a neighborhood in Chelsea, Massachusetts. The virtual environment allows for participation in a facilitated process in which users will: 1) input their individual priorities, 2) collaboratively run simulations to understand flooding issues in the neighborhood, 3) co-design green infrastructure scenarios to address these problems, 4) see how their changes affect the simulation, and 5) deliberate on the tradeoffs that arise from each solution due to competing priorities. Participants will be introduced to the flooding model and, with facilitator assistance, engage in multiple iterations of the process of prioritization, solution-building, and reflection on results. This process will allow them to refine their proposed solutions towards a design they would jointly support for implementation, with an understanding of its benefits and drawbacks. The workshop will end with a focus group debrief. Laptops or tablets required.roup debrief. Laptops or tablets required.)
- Presenters-0031 + (From G.K. Gilbert's "The Convexity of Hill … From G.K. Gilbert's "The Convexity of Hilltops" to highly-optimized numerical implementations of drainage basin evolution, models of landscape evolution have been used to develop insight into the development of specific field areas, create testable predictions of landform development, demonstrate the consequences of our current theories for geomorphic processes, and spark imagination through hypothetical scenarios. In this talk, I discuss how the types questions tackled with landscape evolution models have changed as observational data (e.g., high-resolution topography) and computational technology (e.g., accessible high performance computing) have become available. I draw on a natural experiment in postglacial drainage basin incision and a synthetic experiment in a simple tectonic setting to demonstrate how landscape evolution models can be used to identify how much information the topography or other observable quantities provide in inferring process representation and tectonic history. In the natural example, comparison of multiple calibrated models provides insight into which process representations improve our ability to capture the geomorphic history of a site. Projections into the future characterize where in the landscape uncertainty in the model structure dominates over other sources of uncertainty. In the synthetic case, I explore the ability of a numerical inversion to recover geomorphic-process relevant (e.g., detachment vs. transport limited fluvial incision) and tectonically relevant (e.g., date of fault motion onset) system parameters. of fault motion onset) system parameters.)
- Presenters-0501 + (GCAM is an open-source, global, market equ … GCAM is an open-source, global, market equilibrium model that represents the linkages between energy, water, land, climate, and economic systems. One of GCAM's many outputs is projected land cover/use by subregion. Subregional projections provide context and can be used to understand regional land dynamics; however, Earth System Models (ESMs) generally require gridded representations of land at finer scales. Demeter, a land use and land cover disaggregation model, was created to provide this service. Demeter directly ingests land projections from GCAM and creates gridded products that match the desired resolution, and land class requirements of the user., and land class requirements of the user.)
- Presenters-0610 + (GPUs can make models, simulations, machine … GPUs can make models, simulations, machine learning, and data analysis much faster, but how? And when? In this clinic we'll discuss whether you should use a GPU for your work, whether you should buy one, which one to buy, and how to use one effectively. We'll also get hands-on and speed up a landscape evolution model together. This clinic should be of interest both to folks who would like to speed up their code with minimal effort as well as folks who are interested in the nitty gritty of pushing computational boundaries.ritty of pushing computational boundaries.)
- Presenters-0640 + (GeoClaw (http://www.geoclaw.org) is an ope … GeoClaw (http://www.geoclaw.org) is an open-source software package for solving two-dimensional depth-averaged equations over general topography using high-resolution finite volume methods and adaptive mesh refinement. Wetting-and-drying algorithms allow modeling inundation and overland flows. The primary applications where GeoClaw has been used are tsunami modeling and storm surge, although it has also been applied to dam break and other overland flooding problems.</br></br>The first part of this clinic will present an overview of the capabilities of GeoClaw, including a number of new features have been added in the past few years. These include:</br> </br> - Depth-averaged Boussinesq-type dispersive equations that better model short-wavelength tsunamis, such as those generated by landslides or asteroid impacts. Solving these equations requires implicit solvers (due to the higher-order derivatives in the equations). This is now working with the adaptive mesh refinement (AMR) algorithms in GeoClaw, which are critical for problems that require high-resolution coastal modeling while also modeling trans-oceanic propagation, for example.</br> </br> - Better capabilities for extracting output at frequent times on a fixed spatial grid by interpolation from the AMR grids during a computation. The resulting output can then be use for making high-resolution animations or for post-processing (e.g. the velocity field at frequent times can be used for particle tracking, as needed when tracking tsunami debris, for example).</br> </br> - Ways to incorporate river flows or tidal currents into GeoClaw simulation.</br></br> - Better coupling with the D-Claw code for modeling debris flows, landslides, lahars, and landslide-generated tsunamis. (D-Claw is primarily developed by USGS researchers Dave George and Katy Barnhart).</br> </br>The second part of the clinic will be a hands-on introduction to installing GeoClaw and running some of the examples included in the distribution, with tips on how best to get started on a new project.</br></br>GeoClaw is distributed as part of Clawpack (http://www.clawpack.org), and is available via the CSDMS model repository. For those who wish to install the software in advance on laptops, please see http://www.clawpack.org/installing.html. We will also go through this briefly and help with any issues that arise on your laptop (provided it is a Mac or Linux machine; we do not support Windows.) You may need to install some prerequisites in advance, such as Xcode on a Mac (since we require "make" and other command line tools), a Fortran compiler such as gfortran, and basic scientific Python tools such as NumPy and Matplotlib. See https://www.clawpack.org/prereqs.html.See https://www.clawpack.org/prereqs.html.)
- Presenters-0439 + (GeoClaw (http://www.geoclaw.org) is an ope … GeoClaw (http://www.geoclaw.org) is an open-source software package for solving two-dimensional depth-averaged equations over general topography using high-resolution finite volume methods and adaptive mesh refinement. Wetting-and-drying algorithms allow modeling inundation or overland flows. The primary applications where GeoClaw has been used are tsunami modeling and storm surge, although it has also been applied to dam break problems and other overland floods.</br></br>This tutorial will give an introduction to setting up a tsunami modeling problem in GeoClaw, including:</br>* Overview of capabilities,</br>* Installing the software,</br>* Using Python tools provided in GeoClaw to acquire and work with topography DEMs and other datasets,</br>* Setting run-time parameters, including specifying adaptive refinement regions,</br>* The VisClaw plotting software to visualize results using Python tools or display on Google Earth.</br></br>GeoClaw is distributed as part of Clawpack (http://www.clawpack.org). Those who wish to install the software in advance on laptops, please see http://www.clawpack.org/installing.html.</br></br>https://razmag.ir/review-of-mesotherapy/</br>Tutorials can be found here: https://github.com/clawpack/geoclaw_tutorial_csdms2019ub.com/clawpack/geoclaw_tutorial_csdms2019)
- Presenters-0106 + (GeoClaw is an open source Fortran/Python p … GeoClaw is an open source Fortran/Python package based on Clawpack (conservation laws package), which implements high-resolution finite volume methods for solving wave propagation problems with adaptive mesh refinement. GeoClaw was originally developed for tsunami modeling and been validated via benchmarking workshops of the National Tsunami Hazard Mitigation Program for use in hazard assessment studies funded through this program. Current project include developing new tsunami inundation maps for the State of Washington and the development of new probabilistic tsunami hazard assessment (PTHA) methodologies. The GeoClaw code has also been extended to the study of storm surge and forms the basis for D-Claw, a debris flow and landslide code being developed at the USGS and recently used to model the 2014 Oso, Washington landslide, for example.14 Oso, Washington landslide, for example.)
- Presenters-0024 + (Getting usable information out of climate … Getting usable information out of climate and weather models can be a daunting task. The direct output from the models typically has unacceptable biases on local scales, and as a result a large number of methods have been developed to bias correct or downscale the climate model output. This clinic will describe the range of methods available as well as provide background on the pros and cons of different approaches. This will cover a variety of approaches from relatively simple methods that just rescale the original output, to more sophisticated statistical methods that account for broader weather patterns, to high-resolution atmospheric models. We will focus on methods for which output or code are readily available for end users, and discuss the input data required by different methods. We will follow this up with a practical session in which participants will be supplied a test dataset and code with which to perform their own downscaling. Participants interested in applying these methods to their own region of interest are encouraged to contact the instructor ahead of time to determine what inputs would be required.o determine what inputs would be required.)
- Presenters-0459 + (Global models of Earth’s climate have expa … Global models of Earth’s climate have expanded beyond their geophysical heritage to include terrestrial ecosystems, biogeochemical cycles, vegetation dynamics, and anthropogenic uses of the biosphere. Ecological forcings and feedbacks are now recognized as important for climate change simulation, and the models are becoming models of the entire Earth system. This talk introduces Earth system models, how they are used to understand the connections between climate and ecology, and how they provide insight to environmental stewardship for a healthy and sustainable planet. Two prominent examples discussed in the talk are anthropogenic land use and land-cover change and the global carbon cycle. However, there is considerable uncertainty in how to represent ecological processes at the large spatial scale and long temporal scale of Earth system models. Further scientific advances are straining under the ever-growing burden of multidisciplinary breadth, countered by disciplinary chauvinism and the extensive conceptual gap between observationalists developing process knowledge at specific sites and global scale modelers. The theoretical basis for Earth system models, their development and verification, and experimentation with these models requires a new generation of scientists, adept at bridging the disparate fields of science and using a variety of research methodologies including theory, numerical modeling, observations, and data analysis. The science requires a firm grasp of models, their theoretical foundations, their strengths and weaknesses, and how to appropriately use them to test hypotheses of the atmosphere-biosphere system. It requires a reinvention of how we learn about and study nature.on of how we learn about and study nature.)
- Presenters-0466 + (Google Earth Engine is a powerful geograph … Google Earth Engine is a powerful geographic information system (GIS) that brings programmatic access and massively parallel computing to petabytes of publicly-available Earth observation data using Google’s cloud infrastructure. In this live-coding clinic, we’ll introduce some of the foundational concepts of workflows in Earth Engine and lay the groundwork for future self-teaching. Using the JavaScript API, we will practice: raster subsetting, raster reducing in time and space, custom asset (raster and vector) uploads, visualization, mapping functions over collections of rasters or geometries, and basic exporting of derived products., and basic exporting of derived products.)
- Presenters-0628 + (Google Earth Engine(GEE) is a multi-petaby … Google Earth Engine(GEE) is a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities. Now imagine all you need to work on it is a browser and an internet connection. This hands-on workshop will introduce you to and showcase cloud-native geospatial processing. </br></br>We will explore the platform’s built-in catalog of 100+ petabytes of geospatial datasets and build some analysis workflows. Additional topics will also include uploading & ingesting your own data to Google Earth Engine, time series analysis essential for change monitoring, and data and code principles for effective collaboration. The hope is to introduce to cloud native geospatial analysis platform and to rethink data as we produce and consume more.</br></br>If you want to follow along, bring your laptops, and register for an Earth Engine account here https://signup.earthengine.google.com</br></br>P.S I recommend using a personal account :) you get to keep itusing a personal account :) you get to keep it)
- Presenters-0125 + (Granular materials are ubiquitous in the e … Granular materials are ubiquitous in the environment, in industry and in everyday life and yet are poorly understood. Modelling the behavior of a granular medium is critical to understanding problems ranging from hazardous landslides and avalanches in the Geosciences, to the design of industrial equipment. Typical granular systems contain millions of particles, but the underlying equations governing that collective motion are as yet unknown. The search for a theory of granular matter is a fundamental problems in physics and engineering and of immense practical importance for mitigating the risk of geohazards. Direct simulation of granular systems using the Discrete Element Method is a powerful tool for developing theories and modelling granular systems. I will describe the simulation technique and show its application to a diverse range of flows.s application to a diverse range of flows.)
- Presenters-0518 + (Great mentors engage early career scientis … Great mentors engage early career scientists in research, open doors, speak the ‘unspoken rules’, and inspire the next generation. Yet many of us step into mentoring roles without feeling fully confident in the role, or uncertain how to create an inclusive environment that allows early career scientists from varied backgrounds to thrive. In this interactive workshop, we will share experiences and explore tools that can help build successful mentoring relationships, create supportive cohorts, and feel confident in becoming a great mentor.feel confident in becoming a great mentor.)
- Presenters-0674 + (Have you ever needed to use a software pac … Have you ever needed to use a software package and it won't build on your machine? Have you ever needed to distribute a set of software packages but your collaborators are grumbling that installing all of them is too much of a pain? These are common problems and there are tools that can help to take the pain away. Docker allows you to (1) prepare operating system images with software pre-installed on them, (2) run code inside these containerized OSes independent of the host machine, and (3) share these images online. Additionally, there are ready-made Docker images available for many popular software packages. In this webinar, I'll show how to use ready-made Docker images, how to make your own images, and how this tool can solve some of the more annoying problems that we encounter in scientific software development. If, like me, you viscerally hate learning to use new software tools, I get it, but I swear this one will get you out of a horrible jam some time.l get you out of a horrible jam some time.)
- Presenters-0558 + (Hazard assessment for post-wildfire debris … Hazard assessment for post-wildfire debris flows, which are common in the steep terrain of the western United States, has focused on the susceptibility of upstream basins to generate debris flows. However, reducing public exposure to this hazard also requires an assessment of hazards in downstream areas that might be inundated during debris flow runout. Debris flow runout models are widely available, but their application to hazard assessment for post-wildfire debris flows has not been extensively tested. I will discuss a study in which we apply three candidate debris flow runout models in the context of the 9 January 2018 Montecito event. We evaluate the relative importance of flow volume and flow material properties in successfully simulating the event. Additionally, I will describe an in-progress user needs assessment designed to understand how professional decision makers (e.g., county emergency managers, floodplain manager, and Burned Area Emergency Response team members) might use post-fire debris flow inundation hazard assessment information.</br></br>https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021JF006245</br></br>Katy Barnhart is a Research Civil Engineer at the U.S. Geological Survey’s Geologic Hazards Science Center. She received her B.S.E. (2008) in Civil and Environmental Engineering from Princeton University and her M.S. (2010) and Ph.D. (2015) in Geological Sciences from the University of Colorado at Boulder. Her research uses numerical modeling to understand past and forecast future geomorphic change on a variety of timescales.morphic change on a variety of timescales.)
- Presenters-0571 + (Here we present direct numerical simulatio … Here we present direct numerical simulation for the hysteresis of the Antarctic ice sheet and use linear response theory to use these kind of simulations to project Antarctica's sea level contribution to the end of the century.</br></br> </br>Related publications:</br>* A. Levermann et al. 2020. Projecting Antarctica's contribution to future sea level rise from basal ice-shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth System Dynamics 11 (2020) 35-76, doi 10.5194/esd-11-35-2020. </br>* J. Garbe, T. Albrecht, A. Levermann, J.F. Donges, R. Winkelmann, 2020. The Hysteresis of the Antarctic Ice Sheet. Nature 585 (2020), 538-544, doi: 10.1038/s41586-020-2727-5., 538-544, doi: 10.1038/s41586-020-2727-5.)
- Presenters-0636 + (HexWatershed is a hydrologic flow directio … HexWatershed is a hydrologic flow direction model that supports structured and unstructured meshes. It uses state-of-the-art topological relationship-based stream burning and depression-filling techniques to produce high-quality flow-routing datasets across scales. HexWatershed has substantially improved over the past two years, including support for the DGGRID discrete global grid system (DGGS). </br></br>This presentation will provide an overview of HexWatershed, highlighting its capabilities, new features, and improvements. Through hands-on tutorials and demonstrations, attendees will gain insights into the underlying philosophy of the HexWatershed model, and how to use HexWatershed products to run large-scale hydrologic models in watersheds worldwide. Specifically, this tutorial will cover major components in the HexWatershed ecosystem, including the computational mesh generation process, river network representation, and flow direction modeling.</br>We will provide participants with resources to extend the tutorial problems and gain additional familiarity with the tools and workflows introduced. </br></br>Attendees are encouraged to bring their laptops with internet access and a functional web browser. Tutorials will involve scripting operations in the Python language, such as Jupyter Notebook. We will use the Conda utility to install dependency libraries and Visual Studio Code to run the notebooks.d Visual Studio Code to run the notebooks.)
- Presenters-0460 + (High-resolution topographic (HRT) data is … High-resolution topographic (HRT) data is becoming more easily accessible and prevalent, and is rapidly advancing our understanding of myriad surface and ecological processes. Landscape connectivity is the framework that describes the routing of fluids, sediments, and solutes across a landscape and is a primary control on geomorphology and ecology. Connectivity is not a static parameter, but rather a continuum that dynamically evolves on a range of temporal and spatial scales, and the observation of which is highly dependent on the available methodology. In this clinic we showcase the utility of HRT for the observation and characterization of landscapes and compare results with those of coarser spatial resolution data-sets. We highlight the potential for integrating HRT observations and parameters such as vegetation density, surface relief, and local slope variability with numerical surface process models. Participants will gain an understanding of the basics of HRT, data availability and basic analysis, and the use of HRT parameters in modeling.and the use of HRT parameters in modeling.)