CSDMS 2021: Changing Landscapes and Seascapes: Modeling for Discovery, Decision Making, and Communication

Decision Framing

Moira Zellner

Northeastern University, United States
Robert Lempert RAND Corp United States

Decision framing is a key, early step in any effective decision support engagement in which modelers aim to inform decision and policy making. In this clinic participants will work through and share the results of decision framing exercises for a variety of policy decisions. We will organize the exercise using the XLRM elicitation, commonly used in decision making under deep uncertainty (DMDU) stakeholder engagements. The XLRM framework is useful because it helps organize relevant factors into the components of a decision-centric analysis. The letters X, L, R, and M refer to four categories of factors important to RDM analysis: outcome measures (M) that reflect decision makers’ goals; policy levers (L) that decision makers use to pursue their goals; uncertainties (X) that may affect the connection between policy choices and outcomes; and relationships (R), often instantiated in mathematical simulation models, between uncertainties and levers and outcomes.

Please acknowledge the original contributors when you are using this material. If there are any copyright issues, please let us know ( and we will respond as soon as possible.

Of interest for:
  • Terrestrial Working Group
  • Coastal Working Group
  • Marine Working Group
  • Education and Knowledge Transfer (EKT) Working Group
  • Cyberinformatics and Numerics Working Group
  • Hydrology Focus Research Group
  • Chesapeake Focus Research Group
  • Critical Zone Focus Research Group
  • Human Dimensions Focus Research Group
  • Geodynamics Focus Research Group
  • Ecosystem Dynamics Focus Research Group
  • Coastal Vulnerability Initiative
  • Continental Margin Initiative
  • Artificial Intelligence & Machine Learning Initiative
  • Modeling Platform Interoperability Initiative
  • River Network Modeling Initiative