Browse wiki

From CSDMS
Inhabitants of Bangladesh and West Bengal Inhabitants of Bangladesh and West Bengal rely significantly on groundwater for drinking water. Estimates suggest that 7 to 11 million drinking water wells are contaminated by high concentrations of naturally occurring arsenic. The arsenic likely derives from the pyrite-rich sediment of the Ganges basin, however, the cause and timing of mobilization of the arsenic have been difficult to determine. Generally, shallow and deep aquifers contain low concentrations of arsenic, while mid-depth aquifers (20 to 100 m) are often contaminated. The Ganges river is extremely active and has dissected large portions of previously deposited sediments, introducing significant subsurface heterogeneity and complicating the search for safe drinking water. Here, we have aggregated a variety of datasets into a PostgreSQL database, which we use to build predictive models of arsenic concentration in groundwater. We use the Bangladesh Arsenic Mitigation Water Supply Project (BAMWSP) dataset of ~4.5 million wells to train our models. The predictors for our models are largely based on ~15,000 stratigraphic sediment samples from ~10 transect and ~400 total cores. Approximately 5,000 of these samples have been analyzed for grain size, magnetic susceptibility, chemical composition, and organic matter content. We use elevation and population density as additional predictors. With this database, we will create a regional statistical model that may lead to better prediction of arsenic contaminated wells. By compiling and analyzing these data, we hope to improve water security in this rapidly developing region.ecurity in this rapidly developing region.  +
Predicting arsenic contamination in groundwater wells in the Bengal Basin  +
Nashville  +
jonathan.gilligan@vanderbilt.edu  +  and steven.goodbred@vanderbilt.edu  +
Jonathan  +  and Steven  +
Gilligan  +  and Goodbred  +
chris.tasich@vanderbilt.edu  +
Vanderbilt University  +
770 540 7859  +
Chris_Tasich_CSDMS_Conference_Poster_final.pdf  +
Image:Chris_Tasich_CSDMS_Conference_Poster_final.png  +
3) Pangeo - Scalable Geoscience Tools Python  +
1) PyMT - The CSDMS Python Modeling tool  +
2) Deep Neural Networks Classification  +
Tennessee  +
United States  +
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
17:36:19, 1 April 2019  +
Has query"Has query" is a predefined property that represents meta information (in form of a <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Subobject">subobject</a>) about individual queries and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
21:23:29, 28 May 2019  +
Tennessee  +