Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "One-line model description" with value "Dynamic evolution of longitudinal profiles". Since there have been only a few results, also nearby values are displayed.

Showing below up to 26 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:BRaKE  + (Computes evolution of a bedrock river longitudinal profile in the presence of large, hillslope-derived blocks.)
  • Model:ZoneController  + (Controls zones and populates them with taxa.)
  • Model:CBIRM  + (Coupled Barrier Island-Resort Model)
  • Model:GSSHA  + (Coupled distributed engineering hydrology, sediment, contaminant fate/transport)
  • Model:MIDAS  + (Coupled flow- heterogeneous sediment routing model)
  • Model:CMFT  + (Coupled salt Marsh - tidal Flat Transect model)
  • Model:FractureGridGenerator  + (Create a 2D grid with randomly generated fractures.)
  • Model:Lithology  + (Create a Lithology object with different properties)
  • Model:Cross Shore Sediment Flux  + (Cross-Shore Sediment Flux Equations)
  • Model:CryoGrid3  + (CryoGrid 3 is a simple land-surface scheme dedicated to modeling of ground temperatures in permafrost environments.)
  • Model:DHSVM  + (DHSVM is a distributed hydrologic model that explicitly represents the effects of topography and vegetation on water fluxes through the landscape.)
  • Model:CMIP  + (Data component provides monthly mean temperature for Permafrost Region 1902-2100)
  • Model:WINDSEA  + (Deep water significant wave height and period simulator during a hurricane routine)
  • Model:Flexure  + (Deform the lithosphere with 1D or 2D flexure.)
  • Model:DeltaRCM Vegetation  + (Delta-building model DeltaRCM expanded to include vegetation)
  • Model:Demeter  + (Demeter - A Land Use and Land Cover Change Disaggregation Model)
  • Model:GeoClaw  + (Depth-averaged fluid dynamics for modeling geophysical flows and wave propagation)
  • Model:Diffusion  + (Diffusion of marine sediments due to waves, bioturbation)
  • Model:TopoFlow-Channels-Diffusive Wave  + (Diffusive Wave process component for flow routing in a D8-based, spatial hydrologic model)
  • Model:DLBRM  + (Distributed Large Basin Runoff Model)
  • Model:DR3M  + (Distributed Routing Rainfall-Runoff Model--version II)
  • Model:GEOtop  + (Distributed hydrological model, water and energy budgets)
  • Model:TopoFlow-Diversions  + (Diversions component for a D8-based, spatial hydrologic model.)
  • Model:DynEarthSol3D  + (DynEarthSol3D is a finite element solver that models the momentum balance and the heat transfer of elasto-visco-plastic material in the Lagrangian form.)
  • Model:TopoFlow-Channels-Dynamic Wave  + (Dynamic Wave process component for flow routing in a D8-based, spatial hydrologic model)
  • Model:Glimmer-CISM  + (Dynamic thermo-mechanical ice sheet model)
  • Model:AgDegNormalGravMixHyd  + (E-book: A module that calculates the evolution of a gravel bed river under an imposed cycled hydrograph.)
  • Model:AgDegBW  + (E-book: Calculator for aggradation and degradation of a river reach using a backwater formulation.)
  • Model:RiverWFRisingBaseLevelNormal  + (E-book: Calculator for disequilibrium aggradation of a sand-bed river in response to rising base level.)
  • Model:DeltaNorm  + (E-book: Calculator for evolution of long profile of a river ending in a 1D migrating delta, using the normal flow approximation.)
  • Model:GravelSandTransition  + (E-book: Calculator for evolution of long profile of river with a migrating gravel-sand transition and subject to subsidence or base level rise.)
  • Model:DeltaBW  + (E-book: Calculator for evolution of long profile of a river ending in a 1D migrating delta, using a backwater formulation.)
  • Model:GSDCalculator  + (E-book: Calculator for statistical characteristics of grain size distributions.)
  • Model:AgDegNormalFault  + (E-book: Illustration of calculation of aggradation and degradation of a river reach using the normal flow approximation; with an extension for calculation of the response to a sudden fault along the reach.)
  • Model:DepDistTotLoadCalc  + (E-book: Illustration of calculation of depth-discharge relation, bed load transport, suspended load transport and total bed material load for a large, low-slope sand-bed river.)
  • Model:WPHydResAMBL  + (E-book: Implementation of the Wright-Parker (2004) formulation for hydraulic resistance combined with the Ashida-Michiue (1972) bedload formulation.)
  • Model:SuspSedDensityStrat  + (E-book: Module for calculating the effect of density stratification on the vertical profiles of velocity and suspended sediment.)
  • Model:FallVelocity  + (E-book: Particle fall velocity calculator)
  • Model:RouseVanoniEquilibrium  + (E-book: Program for calculating the Rouse-Vanoni profile of suspended sediment.)
  • Model:AgDegNormalSub  + (E-book: Program to calculate the evolution of upward-concave bed profiles in rivers carrying uniform sediment in subsiding basins.)
  • Model:AgDegNormGravMixPW  + (E-book: calculator for aggradation and degradation of sediment mixtures in gravel-bed streams)
  • Model:DredgeSlotBW  + (E-book: calculator for aggradation and degradation of sediment mixtures in gravel-bed streams subject to cyclic hydrographs.)
  • Model:BedrockAlluvialTransition  + (E-book: calculator for aggradation and degradation with a migrating bedrock-alluvial transition at the upstream end.)
  • Model:RecircFeed  + (E-book: calculator for approach to equilibrium in recirculating and feed flumes)
  • Model:SteadyStateAg  + (E-book: calculator for approach to equilibrium in recirculating and feed flumes)
  • Model:BackwaterWrightParker  + (E-book: calculator for backwater curves in sand-bed streams, including the effects of both skin friction and form drag due to skin friction)
  • Model:SubsidingFan  + (E-book: calculator for evolution of profiles of fans in subsiding basins)
  • Model:AgDegNormGravMixSubPW  + (E-book: calculator for evolution of upward-concave bed profiles in rivers carrying sediment mixtures in subsiding basins.)
  • Model:AgDegNormal  + (E-book: illustration of calculation of aggradation and degradation of a river reach using the normal flow approximation.)
  • Model:BackwaterCalculator  + (E-book: program for backwater calculations in open channel flow)