Browse wiki
From CSDMS
Numerical simulation of fluvial morphodyna … Numerical simulation of fluvial morphodynamic processes can identify important dynamics at time and space scales difficult to observe in the field. However, simulations involving large spatial scales and/or the long timescales characteristic of morphodynamic processes are often untenable due to long simulation times. The morphological acceleration factor (morfac) applies a scalar multiplier to the sediment continuity equation, and is often applied in morphodynamic simulations to reduce computational time. While the use of morfac in coastal simulations is relatively common, its applicability in field-scale fluvial models is generally confined to steady-flow simulations over reach-scale spatial domains. Here we explore the viability of using morfac to simulate large-scale, long-term morphodynamics in a gravel-bed river. Using Delft3D to simulate a 60-day period with a significant discharge event in the Nooksack River, Washington, we systematically adjust morfac values (ranging from 5 to 20) to compare with a baseline condition of no acceleration. Model results suggest that morfac based modification of the inflow hydrograph time-series significantly alters downstream flood wave propagation. Higher morfac values result in greater flood-wave attenuation and lower celerity, reducing the morphological impact at locations further downstream. In general, relative error compared to the baseline increases farther downstream, due to this altered flood-wave propagation. Furthermore, even for the lowest morfac values absolute cumulative volume change errors are on the order of 10%, indicating that the use of morfac in fluvial simulations is best restricted to short-term and/or smaller-scale modeling efforts. Funded by the National Science Foundation.Funded by the National Science Foundation. +
The efficacy of using a morphological acceleration factor to simulate large-scale and long-term fluvial morphodynamics +
Seattle +
United States +
University of Washington +
Seattle +
jamor@uw.edu +
Jacob +
University of Washington +
Morgan +
8162604621 +
Jacob_Morgan_CSDMS_Conference_Poster_final.pdf +
Image:Jacob_Morgan_CSDMS_Conference_Poster_final.png +
Software Carpentry Workshop +
3) Pangeo - Scalable Geoscience Tools Python +
2) Hydroshare - Data +
4) Making models - Data FAIR +
Washington +
United States +
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
20:51:07, 11 March 2019 +
Has query"Has query" is a predefined property that represents meta information (in form of a <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Subobject">subobject</a>) about individual queries and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
00:58:24, 30 May 2019 +