Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe input parameters model" with value "Multiple parameter files, initial conditions matrices". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:FluidMud  + (Measured or artificially generated wave and current forcing. Floc diameter, density. Downslope gravity. Vertical grid mesh. Erodibility. Parameters for Bingham rheology.)
  • Model:Manningseq-bouldersforpaleohydrology  + (Microsoft Excel tables)
  • Model:River Network Bed-Material Sediment  + (Minimum requirements include a river network with link id, downstream link id, upstream drainage area, link length, and link slope. All of these are attributes are included as part of the National Hydrography Dataset Version 2 Plus (NHDV2Plus).)
  • Model:Nitrate Network Model  + (Minimum requirements include a river network with link id, downstream link id, upstream drainage area, link length, and link slope. All of these are attributes are included as part of the National Hydrography Dataset Version 2 Plus (NHDV2Plus).)
  • Model:TOPMODEL  + (Model Inputs: * Project file: Text descripModel Inputs:</br>* Project file: Text description of application and input file names and paths. </br>* Catchment (watershed) data file: Watershed and subwatershed topographic index—ln(a/tan B) distributions and the following parameters: </br>** The mean soil surface transmissivity </br>** A transmissivity profile decay coefficient </br>** A root zone storage capacity </br>** An unsaturated zone time delay </br>** A main channel routing velocity and internal subwatershed routing velocity </br>To use the infiltration excess mechanism, a hydraulic conductivity (or distribution), a wetting front suction and the initial near surface water content should be added. </br></br>The initialization of each run requires an initial stream discharge and the root zone deficit. </br>* Hydrological input data file: rainfall, potential evapotranspiration, and observed discharge time series in m/h </br>* Topographic index map data file: the topographic index map may be prepared from a raster digital elevation file using the DTM-ANALYSIS program. This file includes number of pixels in X direction, number of pixels in Y direction, grid size, and topographic index values for each pair of X and Y.hic index values for each pair of X and Y.)
  • Model:SRH-1D  + (Model parameters, cross section geometry, bed material, flow and sediment input)
  • Model:CarboLOT  + (Model setup: grid extent and resolution, tModel setup: grid extent and resolution, time stepping and duration.</br>Environmental inputs (from global datasets, automated methods): bathymetry, seawater bottom temperatures, benthic irradiance, seafloor hardness, ocean wave climate</br>Organism characteristics (automated from Knowledge Base): dimensions, construction, reproduction and survivorshiponstruction, reproduction and survivorship)
  • Model:Bifurcation  + (Modify input parameters directly in Matlab script Inputs include initial conditions, upstream flow conditions, bifurcation geometry, bypass fraction, sea level (optional), differential subsidence rate (optional))
  • Model:DeltaRCM  + (Modify parameter values in Matlab code directly: Water/Sediment discharge; Grid size and grid parameters; Basin geometry; Input sand/mud ratio.)
  • Model:PyDeltaRCM  + (Modify parameters in example input file deltaRCM.yaml included in repository. Run with example script run_pyDeltaRCM.py. Modify water/sediment discharge (as number of parcels), grid size and spacing, basin geometry, mud/sand ratio, etc)
  • Model:DeltaRCM Vegetation  + (No files required. Sediment composition, vegetation parameters, SLRR, run time, grid size, water and sediment discharge and other similar parameters can be modified directly within the code.)
  • Model:GEOMBEST++  + (Note: See also the GEOMBEST++ Users Guide,Note: See also the GEOMBEST++ Users Guide, section 6</br></br>A minimum of four excel files are required to run a GEOMBEST-Plus simulation: an “erosionresponse” file, an “accretionresponse” file, a “run#” file, and a “tract#” file. If the simulation involves a single coastal tract then the files must be titled “erosionresponse”, “accretionreponse”, “run1” file and “tract1.” Caution: Note that the run# and tract# files will have the same name (tract1, run1, etc., see below) for all simulations and so attention to organization is critical. so attention to organization is critical.)
  • Model:GEOMBEST++Seagrass  + (Note: See the GEOMBEST++Seagrass Users GuiNote: See the GEOMBEST++Seagrass Users Guide, section 6</br></br>A minimum of four Microsoft Excel files are required to run a simulation: an “erosionresponse” file, an “accretionresponse” file, a “run#” file, and a “tract#” file. If the simulation involves a single coastal tract then the files must be titled “erosionresponse”, “accretionreponse”, “run1” file and “tract1.” Caution: Note that the run# and tract# files will have the same name (tract1, run1, etc.) for all simulations, so attention to organization is critical. so attention to organization is critical.)
  • Model:STVENANT  + (Number of cross sections, Time (s) and spaNumber of cross sections, Time (s) and space (m) descretisation steps, Chezy friction coefficient (m**1/2 s**-1), Period (s) and amplitude (m) of incoming waves, Number of time steps desired, Channel width at the Ith cross section (m), Still water depth (m)h cross section (m), Still water depth (m))
  • Model:1D Hillslope MCMC  + (Number of iterations (or links in the chaiNumber of iterations (or links in the chain)</br>Initial parameters from which to start the Markov Chain Monte Carlo simulations</br>Hillslope morphology measured from topograph for comparison (in dimensionless E* R* format; see Roering et al. 2007 or Hurst et al. 2012).Roering et al. 2007 or Hurst et al. 2012).)
  • Model:FLDTA  + (Open channel geometry, discharge at its head, flow elevation at its terminus)
  • Model:OpenFOAM  + (OpenFOAM needs to read a range of data strOpenFOAM needs to read a range of data structures such as strings, scalars, vectors, tensors, lists and fields. The input/output (I/O) format of files is designed to be extremely flexible to enable the user to modify the I/O in OpenFOAM applications as easily as possible.</br></br>See also user manual easily as possible. See also user manual)
  • Model:PIHM  + (PIHM is an integrated finite volume hydrolPIHM is an integrated finite volume hydrologic model. It simulates channel routing, overland flow and groundwater flow in fully coupled scheme. It uses semi-discrete Finite Volume approach to discretize PDE (equations governing physical processes) into ODE to form a system of ODEs and solved with SUNDIALS solver (LBL).<br>PIHM incorporates an object-oriented model data structure which provides extensibility and efficient storage of data at the same time. PIHM v2.0 requires the following input files:</br>* projectName.txt : This file will have the project name as its content.</br>* .mesh File : Spatial information of Nodes and Irregular Meshes (TINs)</br>* .att File : Attribute defining different classes an element belongs to</br>* .soil File : Soil properties</br>* .geol : Geologic properties</br>* .lc file : Vegetation parameters of different land cover types</br>* .riv file : Spatial, geometry and material information of river segments</br>* .forc file : All the forcing variables (forcing time-series)</br>* .ibc file : Boundary condition information for elements</br>* .para file : Control parameters (solver options; model modes; error control)</br>* .init : If initial condition input is through a file</br>* .calib : Calibration parameters and process controlsib : Calibration parameters and process controls)
  • Model:GSFLOW  + (PRMS: http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/software/oui_and_mms_s/prms.shtml MODFLOW http://water.usgs.gov/nrp/gwsoftware/modflow2005/modflow2005.html)
  • Model:Drainage Density  + (Parameters ---------- grid : ModelParameters</br> ----------</br> grid : ModelGrid</br> channel__mask : Array that holds 1's where</br> channels exist and 0's elsewhere</br> area_coefficient : coefficient to multiply drainage area by,</br> for calculating channelization threshold</br> slope_coefficient : coefficient to multiply slope by,</br> for calculating channelization threshold</br> area_exponent : exponent to raise drainage area to,</br> for calculating channelization threshold</br> slope_exponent : exponent to raise slope to,</br> for calculating channelization threshold</br> channelization_threshold : threshold value above</br> which channels existd value above which channels exist)