Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe input parameters model" with value "Microsoft Excel tables". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:Subside  + (Loading distribution, EET, Mantle viscosity)
  • Model:Inflow  + (Main input parameters: * River velocity, width, depth, and sediment concentration. * Bathymetry)
  • Model:Sakura  + (Main input parameters: * River velocity, width, depth, and sediment concentration * Bathymetry)
  • Model:WSGFAM  + (Main inputs are bathymetry, riverine sediment discharge time-series, and ambient wave and current time-series. Critical velocity for sea bed erosion, bottom drag coefficient and critical bulk Richardson number can also be adjusted.)
  • Model:DFMFON  + (Mangrove properties, Delft3D-FM model)
  • Model:Marsh column model  + (Many, see Mudd et al. (2009) ECSS v 82(3) 377-389)
  • Model:Wetland3P  + (Marsh vegetation and mudflat sediment characteristics Backbarrier basin width Reference wind speed Tidal range Reference sediment concentration)
  • Model:WINDSEA  + (Maximum gradient windspeed 10 m above wateMaximum gradient windspeed 10 m above water (m/s), Radius of maximum wind (km), Pressure difference between eye and ambient (mm Hg), Forward speed of hurricane (m/s), Maximum number of nodes in x direction (postive east), Maximum number of nodes in y direction (positive north), Space step in x direction (m), Space step in y direction (m), X location of eye (m), Y location of eye (m), Storm direction (degrees counterclockwise from east)ction (degrees counterclockwise from east))
  • Model:STORM  + (Maximum number of timesteps over which winMaximum number of timesteps over which winds computed, X-dir. position of storm center at beginning, Y-dir. position of storm center at beginning, Storm velocity (m/sec), Storm direction (degrees counterclockwise from east), Pressure at eye (Pascals), Pressure at edge (Pascals), Radius of maximum storm winds(m), Storm radius (m). maximum storm winds(m), Storm radius (m).)
  • Model:FluidMud  + (Measured or artificially generated wave and current forcing. Floc diameter, density. Downslope gravity. Vertical grid mesh. Erodibility. Parameters for Bingham rheology.)
  • Model:River Network Bed-Material Sediment  + (Minimum requirements include a river network with link id, downstream link id, upstream drainage area, link length, and link slope. All of these are attributes are included as part of the National Hydrography Dataset Version 2 Plus (NHDV2Plus).)
  • Model:Nitrate Network Model  + (Minimum requirements include a river network with link id, downstream link id, upstream drainage area, link length, and link slope. All of these are attributes are included as part of the National Hydrography Dataset Version 2 Plus (NHDV2Plus).)
  • Model:TOPMODEL  + (Model Inputs: * Project file: Text descripModel Inputs:</br>* Project file: Text description of application and input file names and paths. </br>* Catchment (watershed) data file: Watershed and subwatershed topographic index—ln(a/tan B) distributions and the following parameters: </br>** The mean soil surface transmissivity </br>** A transmissivity profile decay coefficient </br>** A root zone storage capacity </br>** An unsaturated zone time delay </br>** A main channel routing velocity and internal subwatershed routing velocity </br>To use the infiltration excess mechanism, a hydraulic conductivity (or distribution), a wetting front suction and the initial near surface water content should be added. </br></br>The initialization of each run requires an initial stream discharge and the root zone deficit. </br>* Hydrological input data file: rainfall, potential evapotranspiration, and observed discharge time series in m/h </br>* Topographic index map data file: the topographic index map may be prepared from a raster digital elevation file using the DTM-ANALYSIS program. This file includes number of pixels in X direction, number of pixels in Y direction, grid size, and topographic index values for each pair of X and Y.hic index values for each pair of X and Y.)
  • Model:SRH-1D  + (Model parameters, cross section geometry, bed material, flow and sediment input)
  • Model:CarboLOT  + (Model setup: grid extent and resolution, tModel setup: grid extent and resolution, time stepping and duration.</br>Environmental inputs (from global datasets, automated methods): bathymetry, seawater bottom temperatures, benthic irradiance, seafloor hardness, ocean wave climate</br>Organism characteristics (automated from Knowledge Base): dimensions, construction, reproduction and survivorshiponstruction, reproduction and survivorship)
  • Model:Bifurcation  + (Modify input parameters directly in Matlab script Inputs include initial conditions, upstream flow conditions, bifurcation geometry, bypass fraction, sea level (optional), differential subsidence rate (optional))
  • Model:DeltaRCM  + (Modify parameter values in Matlab code directly: Water/Sediment discharge; Grid size and grid parameters; Basin geometry; Input sand/mud ratio.)
  • Model:PyDeltaRCM  + (Modify parameters in example input file deltaRCM.yaml included in repository. Run with example script run_pyDeltaRCM.py. Modify water/sediment discharge (as number of parcels), grid size and spacing, basin geometry, mud/sand ratio, etc)
  • Model:MARSSIM V4  + (Multiple parameter files, initial conditions matrices)
  • Model:DeltaRCM Vegetation  + (No files required. Sediment composition, vegetation parameters, SLRR, run time, grid size, water and sediment discharge and other similar parameters can be modified directly within the code.)