Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract presentation" with value "Live demonstration". Since there have been only a few results, also nearby values are displayed.

Showing below up to 26 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Presenters-0650  + (In this talk, I will discuss the need for In this talk, I will discuss the need for low carbon and sustainable computing. The current emissions from computing are almost 4% of the world total. This is already more than emissions from the airline industry and ICT emissions are projected to rise steeply over the next two decades. By 2040 emissions from computing alone will account for more than half of the emissions budget to keep global warming below 1.5°C. Consequently, this growth in computing emissions is unsustainable. The emissions from production of computing devices exceed the emissions from operating them, so even if devices are more energy efficient producing more of them will make the emissions problem worse. Therefore we must extend the useful life of our computing devices. As a society we need to start treating computational resources as finite and precious, to be utilized only when necessary, and as effectively as possible. We need frugal computing: achieving our aims with less energy and material.ng our aims with less energy and material.)
  • Presenters-0449  + (In this webinar, I will present a new framIn this webinar, I will present a new framework termed “Bayesian Evidential Learning” (BEL) that streamlines the integration of these four components common to building Earth systems: data, model, prediction, decision. This idea is published in a new book: “Quantifying Uncertainty in Subsurface Systems” (Wiley-Blackwell, 2018) and applied to five real case studies in oil/gas, groundwater, contaminant remediation and geothermal energy. BEL is not a method, but a protocol based on Bayesianism that lead to the selection of relevant methods to solve complex modeling and decision problems. In that sense BEL, focuses on purpose-driven data collection and model-building. One of the important contributions of BEL is that is a data-scientific approach that circumvents complex inversion modeling relies on machine learning from Monte Carlo with falsified priors. The case studies illustrate how modeling time can be reduced from months to days, making it practical for large scale implementations. In this talk, I will provide an overview of BEL, how it relies on global sensitivity analysis, Monte Carlo, model falsification, prior elicitation and data scientific methods to implement the stated principle of its Bayesian philosophy. I will cover an extensive case study involving the managing of the groundwater system in Denmark.ging of the groundwater system in Denmark.)
  • Presenters-0022  + (In this workshop we will explore publicly In this workshop we will explore publicly available socioeconomic and hydrologic datasets that can be used to inform riverine flood risks under present-day and future climate conditions. We will begin with a summary of different stakeholders’ requirements for understanding flood risk data, through the lens of our experience working with federal, state and local clients and stakeholders. We will then guide participants through the relevant data sources that we use to inform these studies, including FEMA floodplain maps, census data, building inventories, damage functions, and future projections of extreme hydrologic events. We will gather and synthesize some of these data sources, discuss how each data source can be used in impact analyses; and discuss the limitations of each available data source. We will conclude with a brainstorming session to discuss how the scientific community can better produce actionable information for community planners, floodplain managers, and other stakeholders who might face increasing riverine flood risks in the future.easing riverine flood risks in the future.)
  • Presenters-0030  + (Increased computing power, high resolutionIncreased computing power, high resolution imagery, new geologic dating techniques, and a more sophisticated comprehension of the geodynamic and geomorphic processes that shape our planet place us on the precipice of major breakthroughs in understanding links among tectonics and surface processes. In this talk, I will use University of Washington’s “M9 project” to highlight research progress and challenges in coupled tectonics and surface processes studies over both short (earthquake) and long (mountain range) timescales. A Cascadia earthquake of magnitude 9 (M9) would cause shaking, liquefaction, landslides and tsunamis from British Columbia to northern California. The M9 project explores this risk, resilience and the mechanics of Cascadia subduction. At the heart of the project are synthetic ground motions generated from 3D finite difference simulations for 50 earthquake scenarios including factors not previously considered, such as the distribution and timing of energy release on the fault, the coherent variation of frequency content of fault motion with fault depth, and the 3D effects of the deep basins along Puget Sound. Coseismic landslides, likely to number in the thousands, represent one of the greatest risks to the millions of people living in Cascadia. Utilizing the synthetic ground motions and a Newmark sliding block analysis, we compute the landscape response for different landslide failure modes. Because an M9 subduction earthquake is well known to have occurred just over 300 years ago, evidence of coseismic landslides triggered by this event should still be present in Washington and Oregon landscapes. We are systematically hunting for these landslides using a combination of radiocarbon dating and surface roughness analysis, a method first developed to study landslides near to the Oso 2014 disaster site, to develop more robust regional landslide chronologies to compare to model estimations. Resolved ground motions and hillslope response for a single earthquake can then be integrated into coupled landscape evolution and geodynamic models to consider the topographic and surface processes response to subduction over millions of years. This example demonstrates the power of an integrative, multidisciplinary approach to provide deeper insight into coupled tectonic and surface processes phenomena over a range of timescales.sses phenomena over a range of timescales.)
  • Presenters-0606  + (Increasing physical complexity, spatial reIncreasing physical complexity, spatial resolution, and technical coupling of numerical models for various earth systems require increasing computational resources, efficient code bases and tools for analysis, and community codevelopment. In these arenas, climate technology industries have leapfrogged academic and government science, particularly with regards to adoption of open community code and collaborative development and maintenance. In this talk, I will discuss industry coding practices I learned to bring into my workflow for efficient and rapid development, easier maintenance, collaboration and learning, and reproducibility.oration and learning, and reproducibility.)
  • Presenters-0423  + (Interested in which variables influence yoInterested in which variables influence your model outcome? SALib (Sensitivity Analysis Library) provides commonly used sensitivity analysis methods implemented in a Python programming language package. In this clinic we will use these methods with example models to apportion uncertainty in model output to model variables. We will use models built with the Landlab Earth-surface dynamics framework, but the analyses can be easily adapted for other model software. No prior experience with Landlab or Python is necessary.ience with Landlab or Python is necessary.)
  • Presenters-0488  + (Introduction for the CSDMS 2020 annual meeting, presenting last years accomplishments and available resources for the community.)
  • Presenters-0549  + (Introduction for the CSDMS 2021 annual meeting)
  • Presenters-0028  + (Introduction to the Natural Hazard workshop)
  • Presenters-0634  + (It is now well established that the evolutIt is now well established that the evolution of terrestrial species is highly impacted by long term topographic changes (e.g., high biodiversity in mountain ranges globally). Recent advances in landscape and biological models have opened the gate for deep investigation of the feedback between topographic changes and biological processes over millions of years timescale (e.g., dispersal, adaptation, speciation). In this clinic, we will use novel codes that couple biological processes with FastScape, a widely used landscape evolution model, and explore biological processes and speciation during and after mountain building under different magnitudes of tectonic rock uplift rates. We will explore and deduce how the magnitude and pace of mountain building impact biodiversity and how such interactions can be tracked in mountain ranges today. Python and Jupyter Notebook will be used in the clinic, and basic knowledge in python is desirable.nd basic knowledge in python is desirable.)
  • Presenters-0592  + (It is well established that coupling and sIt is well established that coupling and strong feedbacks may occur between solid Earth deformation and surface processes across a wide range of spatial and temporal scales. As both systems on their own encapsulate highly complex and nonlinear processes, fully-coupled simulations require advanced numerical techniques and a flexible platform to explore a multitude of scenarios. Here, we will demonstrate how the Advanced Solver for Problems in Earth's Convection and Tectonics (ASPECT) can be coupled with FastScape to examine feedbacks between lithospheric deformation and landscape evolution. The clinic will cover the fundamental equations being solved, how to design coupled simulations in ASPECT, and examples of coupled continental extension and landscape evolution.inental extension and landscape evolution.)
  • Presenters-0429  + (JOSS is a developer friendly, peer revieweJOSS is a developer friendly, peer reviewed academic journal for research software packages, providing a path to academic credit for scholarship disseminated via software. I'll give a tour of the journal, its submission/review process, and opportunities to get involved.rocess, and opportunities to get involved.)
  • Presenters-0577  + (Jupyter Notebooks can be powerful tools foJupyter Notebooks can be powerful tools for classroom teaching. This clinic explores different ways to use notebooks in teaching, common pitfalls to avoid, and best practices. It also introduces the CSDMS OpenEarthscape Hub, an online resource that instructors can use that eliminates the need to install software and provides students with direct access to various CSDMS tools.with direct access to various CSDMS tools.)
  • Presenters-0517  + (Jupyter notebooks provide a very convenienJupyter notebooks provide a very convenient way to communicate research results: they may contain narrative text, live code, equations and visualizations all in a single document. Beyond notebooks, the Jupyter ecosystem also provides many interactive, graphical components (widgets) that can be used within notebooks to further enhance the user experience. Those widgets serve a variety of purposes such as 2D (Ipympl, Bqplot, Ipycanvas) or 3D (Ipygany) scientific visualization, 2D (Ipyleaflet) or 3D (Pydeck) maps, etc. When the target audience is not familiar with coding, it is possible to turn Jupyter notebooks into interactive dashboards and publish them as stand-alone web applications (using Voilà).</br></br>In this workshop, we will learn how to leverage this powerful Jupyter environment to build custom, interactive dashboards for exploring models of Earth surface processes in contexts like research, teaching and outreach. After introducing the basics of Jupyter widgets, we will focus on more advanced examples based on Fastscape and/or Landlab. We willl also spend some time on hands-on exercises as well as brainstorming dashboard ideas.</br></br>Clinic materials and installation instructions can be found here: https://github.com/benbovy/jupyter-dash-csdms2021</br></br>Related links:</br></br>- https://github.com/fastscape-lem/gilbert-board</br>- https://github.com/fastscape-lem/ipyfastscapeps://github.com/fastscape-lem/ipyfastscape)
  • Presenters-0415  + (Jurjen will share how FloodTags uses humanJurjen will share how FloodTags uses human observations from online media to detect and analyze new (and past) flood events. He also introduces a new approach to citizen engagement via chatbots in instant messengers. With this, local needs are revealed in detail and low-threshold two-way communication about flood risk is possible, even down to community level. How can these new techniques be functional in current flood risk management practices?n current flood risk management practices?)
  • Presenters-0472  + (Landlab)
  • Presenters-0020  + (Landlab is a Python toolkit for building, Landlab is a Python toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Hydroshare is an online collaborative environment for sharing data and models. Hydroshare allows users to run models remotely, without needing to install software locally. This clinic will illustrate example Landlab models and how to run them on Hydroshare. This clinic will provide an introduction to Landlab’s features and capabilities, including how to create a model grid, populate it with data, and run numerical algorithms for surface hydrology, hillslope sediment transport, and stream incision. We will illustrate how models can be used for both research and teaching purposes.d for both research and teaching purposes.)
  • Presenters-0469  + (Landlab is a Python-based toolkit for builLandlab is a Python-based toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. This clinic will first provide a short hands-on introduction to Landlab's features and capabilities. We will highlight examples from several existing models built within the Landlab framework, including: coupling of local ecohydrologic processes, spatial plant interactions, and disturbances (fires and grazing); landscape evolution impacted by plants; overland flow impacted by changing soil properties; and effects of topographic structure on species distribution and evolution. Models will be run with various scenarios for climate change and anthropogenic disturbances, and evolution of state variables and fluxes across the landscape will be explored. We will also show the use of gridded climate data products to drive Landlab simulations. Participants are encouraged to install Landlab on their computers prior to the clinic. Installation instructions can be found at: http://landlab.github.io (select "Install" from the menu bar at the top of the page).from the menu bar at the top of the page).)
  • Presenters-0092  + (Landlab is a Python-language programming lLandlab is a Python-language programming library that supports efficient creation of two-dimensional (2D) models of diverse earth-surface systems. For those new to Landlab, this clinic will provide a hands-on introduction to Landlab's features and capabilities, including how to create a grid, populate it with data, and run basic numerical algorithms. For experienced Landlab users, we will review some of the new features in this first full-release version, explore how to created integrated models by combining pre-built process components, and learn the basics of writing new components. Participants are encouraged to install Landlab on their computers prior to the clinic. Installation instructions can be found at: http://landlab.github.io (select "Install" from the menu bar at the top of the page). Clinic participants who have particular questions or applications in mind are encouraged to email the conveners ahead of the CSDMS meeting so that we can plan topics and exercises accordingly.can plan topics and exercises accordingly.)
  • Presenters-0645  + (Landscape evolution involves manifold procLandscape evolution involves manifold processes from different disciplines, including geology, geomorphology and ecohydrology, often interacting nonlinearly at different space-time scales. While this gives rise to fascinating patterns of interconnected networks of ridges and valleys, it also challenges Landscape Evolution Models (LEMs), which typically rely on long-term numerical simulations and mostly have only current topographies for comparison. While adding process complexity (and presumably realism) is certainly useful to overcome some of these challenges, is also exacerbates issues related to proper calibration and simulation.</br>This talk advocates more focus on the theoretical analysis of LEMs to alleviate some of these issues. By focusing on the essential elements that distinguish landscape evolution, the resulting minimalist LEMs become more amenable to dimensional analysis and other methods of nonlinear field equations, used for example in fluid mechanics and turbulence, offering fertile ground to sharpen model formulation (i.e., the stream-power erosion term), unveil distinct dynamic regimes (e.g., unchannelized, from incipient valley formation, transitional and statistically self-similar fractal regime), and properly formulate questions related to the existence of steady state solution (as opposed to a situation of space time chaos, similar to a geomorphological turbulence). We also discuss benchmarks for evaluating numerical simulation and novel avenues for numerical methods, as well as ways to bridge between spatially discrete models (i.e., river networks) and continuous, partial-differential-equation models.ous, partial-differential-equation models.)
  • Presenters-0078  + (Landscape evolution models often generalizLandscape evolution models often generalize hydrology by assuming steady-state discharge to calculate channel incision. While this assumption is reasonable for smaller watersheds or larger precipitation events, non-steady hydrology is a more applicable condition for semi-arid landscapes, which are prone to short-duration, high-intensity storms. In these cases, the impact of a hydrograph (non-steady method) may be significant in determining long-term drainage basin evolution. This project links a two-dimensional hydrodynamic algorithm with a detachment-limited incision component in the Landlab modeling framework. Storms of varying intensity and duration are run across two synthetic landscapes, and incision rate is calculated throughout the hydrograph. For each case, peak discharge and total incision are compared to the values predicted by steady-state to evaluate the impact of the two hydrologic methods. We explore the impact of different critical shear stress values on total incision using the different flow methods. Finally, a watershed will be evolved to topographic steady-state using both the steady- and non-steady flow routing methods to identify differences in overall relief and drainage network configuration. Preliminary testing with no critical shear stress threshold has shown that although non-steady peak discharge is smaller than the peak predicted by the steady-state method, total incised depth from non-steady methods exceeds the steady-state derived incision depth in all storm cases. With the introduction of a incision threshold, we predict there will be cases where the steady-state method overestimates total incised depth compared to the non-steady method. Additionally, we hypothesize that watersheds evolved with the non-steady method will be characterized by decreased channel concavities. This work demonstrates that when modeling landscapes characterized by semi-arid climates, choice of hydrology method can significantly impact the resulting morphology.ificantly impact the resulting morphology.)
  • Presenters-0006  + (Landscapes developed in rock layers of difLandscapes developed in rock layers of differing erodibility are common on Earth, as well as on other planets. Hillslopes carved into the soft rock are typically characterized by steep, linear-to-concave up slopes or “ramps” mantled with material derived from the resistant layers above, often in the form of large blocks. To better understand the role of sediment size in hillslope evolution, we developed a 1-D numerical model of a hogback. The hybrid continuum-discrete model uses a traditional continuum treatment of soil transport while allowing for discrete, rules-based motion of large blocks of rocks. Our results show that feedbacks between weathering and transport of the blocks and underlying soft rock can create relief over time and lead to the development of concave-up slope profiles in the absence of rilling processes. In addition, the model reaches a quasi-steady state in which the topographic form and length of the ramp remains constant through time. We use an analytic approach to explore the mechanisms by which our model self-organizes to this state, including adjustment of soil depth, erosion rates, and block velocities along the ramp. An agreement of analytic solutions with the model shows that we understand its behavior well, and can carefully explore implications for hillslope evolution in the field. Current work explores the interactions between blocky hillslopes and channels in a 2-D numerical model built in Landlab. Our models provide a framework for exploring the evolution of layered landscapes and pinpoint the processes for which we require a more thorough understanding to predict their evolution over time.ding to predict their evolution over time.)
  • Presenters-0443  + (Landscapes of the US Central Lowland were Landscapes of the US Central Lowland were repeatedly affected by the Laurentide Ice Sheet. Glacial processes diminished relief and disrupted drainage networks. Deep valleys carved by glacial meltwater were disconnected from the surrounding uplands. The upland area lacking surface water connection to the drainage network is referred to as non-contributing area (NCA). Decreasing fractions of NCA on older surfaces suggests that NCA becomes drained over time. We propose that the integration could occur via: 1) capture of NCA as channels propagate into the upland or, 2) subsurface or intermittent surface connection of NCA to external drainage networks providing increased discharge to promote channel incision. We refer the two cases as “disconnected” and “connected” since the crucial difference between them is the hydrological connection of the upland to external drainage. We investigate the differences in evolution and morphology of channel networks in low relief landscapes under disconnected and connected regimes using the LandLab landscape evolution modeling platform. We observe substantially faster rates of erosion and integration of the channel network in the connected case. The connected case also creates longer, more sinuous channels than the disconnected case. Sensitivity tests indicate that hillslope diffusivity has little influence on the evolution and morphology. The fluvial erosion coefficient has significant impact on the rate of evolution, and it influences the morphology to a lesser extent. Our results and a qualitative comparison with landscapes of the glaciated US Central Lowland suggest that connection of NCAs is a potential control on the evolution and morphology of post-glacial landscapes.and morphology of post-glacial landscapes.)
  • Presenters-0552  + (Landslides mobilize tons of sediment in thLandslides mobilize tons of sediment in the blink of an eye. From an engineering perspective, one typically looks at topographical relief as a causal factor triggering landslides. From a geomorphological perspective, one could wonder how landslides and landslide derived sediment alter the evolution of landscapes. Curious to find out what landslides do with the evolution of landscapes? Tune in for this webinar to figure out how to use the Landlab HyLands component to address this question.yLands component to address this question.)
  • Presenters-0653  + (Launched in 2021 through a cooperative agrLaunched in 2021 through a cooperative agreement with the National Science Foundation’s Coastlines and People (CoPe) Program, the Megalopolitan Coastal Transformation Hub is a partnership among 13 institutions, focused on four intertwined goals:</br> </br>1) Doing science that is useful and used, specifically by facilitating flexible, equitable, and robust long-term planning to manage climate risk in the urban megaregion spanning Philadelphia, New Jersey, and New York City</br>2) Doing science that advances human understanding of how coastal climate hazards, coastal landforms, and human decisions at household, municipal, market, and policy scales interact to shape climate risk,</br>3) Training the next generation of leaders in transdisciplinary climate research and engagement,</br>4) Building a sustainable academic/stakeholder co-production partnership model for just, equitable, and inclusive climate action in diverse coastal, urban megaregions around the world.</br> </br>MACH's initial work has focused particularly on Philadelphia and its surroundings. Core themes within this work include:</br> </br>1) Characterization of compound flood and heat+flood hazard and risk</br>2) The role of insurance in the interrelated insurance/mortgage/ housing markets</br>3) The impacts of flood risk on municipal finances</br>4) Improving equity considerations in the design of strategies to manage flood risks</br>5) Household decision-making regarding flood risk in low-income, renter-dominated neighborhoods</br> </br>This talk will introduce MACH and highlight emerging lessons from MACH's transdisciplinary research and engagement model.isciplinary research and engagement model.)
  • Presenters-0503  + (Macrobenthic species that live within or oMacrobenthic species that live within or on top of estuarine sediments can destabilize local mud deposits through bioturbating activities. The resulting enhanced sediment availability will affect large-scale morphological change. We numerically model two contrasting bioturbating species by means of our novel literature-based eco-morphodynamic model. We find significant effects on local mud accumulation and bed elevation change leading to a large-scale reduction in deposited mud. In turn, the species-dependent mud content redefines their habitat and constricted species abundances. Combined species runs reveal a new ecological feedback facilitating survival of the dominant species as a result of combined eco-engineering activity.sult of combined eco-engineering activity.)
  • Presenters-0032  + (Major fault systems are the primary manifeMajor fault systems are the primary manifestation of localized strain at tectonic plate boundaries. Slip on faults creates topography that is constantly reworked by erosion and sediment deposition. This in turn affects the stress state of the brittle upper crust. Numerical models commonly predict that surface processes can modulate the degree of strain localization, i.e., the partitioning of strain onto a given number of master faults and/or the lifespan of individual faults. The detailed mechanisms, potential magnitude, and geological evidence for such feedbacks however remain debated. We address this problem from the perspective of continental rifts, and at the scale of individual fault-bounded structures. Half-grabens in particular constitute ideal natural laboratories to investigate brittle deformation mechanisms (e.g., fault localization, elasto-plastic flexure...) in relation to continued erosion of the master fault footwall and sediment deposition on the hanging wall. Through an energy balance approach, we show that suppressing relief development in a half-graben can significantly enhance the lifespan of its master fault if the upper crust is moderately strong. Simple geodynamic simulations where tectonic topography is either entirely leveled or perfectly preserved confirm our analytical predictions.<br><br>Natural systems, however, lie somewhere in between these two endmembers. To better represent the true efficiency of surface processes at redistributing surficial masses, we couple a 2-D long-term tectonic code with a landscape evolution model that incorporates stream power erosion, hillslope diffusion, and sediment deposition. We identify a plausible range of landscape evolution parameters through morphological analyses of real normal fault-bounded massifs from the East African Rift and Western United States. This allows us to assess the sensitivity of half-graben evolution to a documented range of rheological, climatic, and lithological conditions. We find that half-grabens that reach topographic steady-state after a short amount of extension (~1 km) are more likely to accumulate master fault offsets on par with the thickness of the upper crust. Conversely, a longer phase of topographic growth ––for example due to low rock erodibility–– will favor the initiation of a new master fault and the abandonment of the initial one. A less erodible crust could thus be more prone to extension on a series of horsts and grabens, while more erodible units would deform as long-lived half-grabens. Lithological controls on erodibility could therefore constitute a form of structural inheritance in all geodynamic contexts. of structural inheritance in all geodynamic contexts.)
  • Presenters-0473  + (Major societal and environmental challengeMajor societal and environmental challenges require forecasting how natural processes and human activities affect one another. There are many areas of the globe where climate affects water resources and therefore food availability, with major economic and social implications. Today, such analyses require significant effort to integrate highly heterogeneous models from separate disciplines, including geosciences, agriculture, economics, and social sciences. Model integration requires resolving semantic, spatio-temporal, and execution mismatches, which are largely done by hand today and may take more than two years. The Model INTegration (MINT) project will develop a modeling environment which will significantly reduce the time needed to develop new integrated models, while ensuring their utility and accuracy. Research topics to be addressed include: 1) New principle-based semiautomatic ontology generation tools for modeling variables, to ground analytic graphs to describe models and data; 2) A novel workflow compiler using abductive reasoning to hypothesize new models and data transformation steps; 3) A new data discovery and integration framework that finds new sources of data, learns to extract information from both online sources and remote sensing data, and transforms the data into the format required by the models; 4) A new methodology for spatio-temporal scale selection; 5) New knowledge-guided machine learning algorithms for model parameterization to improve accuracy; 6) A novel framework for multi-modal scalable workflow execution; and 7) Novel composable agroeconomic models.d 7) Novel composable agroeconomic models.)
  • Presenters-0498  + (Man-made objects - 'junk', bombs, artificiMan-made objects - 'junk', bombs, artificial reefs, containers - litter the seafloor. Many of the munitions remain active (unstable) and polluting, and are a danger for seabed engineering projects. </br>We numerically modeled how they may move during powerful storms. Kinematic analysis per wave cycle (by period and orbital velocity) created a matrix of the movement probabilities, which were convolved with spatial (mapped) values of the same across the German Bight, taking bomb type and sediment type into account. The model can look at historical patterns of migration, and even predict movement in real-time as a storm evolves hour by hour.real-time as a storm evolves hour by hour.)
  • Presenters-0504  + (Mangroves are a halophytic tree communitieMangroves are a halophytic tree communities distributed along tropical and subtropical coastlines. They provide invaluable services, such as blue carbon storage, coastal protection and habitat for thousands of species. Despite their global importance, their responses to rapid climate change are yet to be fully understood. Particularly, it is unclear how mangroves will respond to future increases in net evaporation rates (i.e. evaporation - precipitation), which generally lead to an increase in the concentration of soil stressors such as sulfide and sulfate. We addressed this knowledge gap by collecting remote sensing data from a number of remote mangrove islands across the Caribbean and couple them with a numerical model that describes mangrove vegetated area as a function of net evaporation rate, outer edge island salinity, and hydraulic conductivity of the soil. We found that this modeling framework can capture the variability observed in our mangrove island database, suggesting that an increase in net evaporation rates lead to significant reductions in mangrove island vegetation. Moreover, based on future net evaporation rate scenarios from Global Climate models we find this trend will likely continue and predict that mangrove islands across the Caribbean will experience significant reduction in vegetated area.e significant reduction in vegetated area.)
  • Presenters-0426  + (Many geophysical models require parametersMany geophysical models require parameters that are not tightly constrained by observational data. Calibration represents methods by which these parameters are estimated by minimizing the difference between observational data and model simulated equivalents (the objective function). Additionally, uncertainty in estimated parameters is determined.</br></br>In this clinic we will cover the basics of model calibration including: (1) determining an appropriate objective function, (2) major classes of calibration algorithms, (3) interpretation of results.</br></br>In the hands-on portion of the the clinic, we will apply multiple calibration algorithms to a simple test case. For this, we will use Dakota, a package that supports the application of many different calibration algorithms. of many different calibration algorithms.)
  • Presenters-0515  + (Many geoscientists and geoscience organizaMany geoscientists and geoscience organizations vowed to work towards equity and committed to anti-racist action in 2020. But getting started on and staying committed to diversity, equity, and inclusion (DEI) work takes time, energy, and education. This clinic will be a learning and sharing space for everyone who is on a journey towards building a more equitable research unit. Everyone can participate in this clinic, regardless of whether you are just starting your journey or you have travelled many miles and whether your research unit is one person or 100 people.</br></br>The clinic will begin with discussion and thought exercises about your personal identity. We will then think about what it means for our individual research units to be diverse, equitable, and inclusive. Finally, we will discuss actions you can take to build an anti-racist research unit. Participants will be invited to share their current DEI actions and discuss how they can be adapted for, or expanded in, other settings. The clinic aims to foster an environment in which participants can learn from each other, but participants will not be required to share. Upon completion of this clinic every participant should have a plan for implementing at least one new DEI action, including milestones and accountability checks.ding milestones and accountability checks.)
  • Presenters-0598  + (Many problems of interest to CSDMS membersMany problems of interest to CSDMS members involve solving systems of conservation laws or balance laws for water wave propagation and inundation, erosion and sediment transport, landscape evolution, or for the flow of overland floods, glaciers, lava, or groundwater. It is often natural to solve these partial differential equations numerically with finite volume methods, in which the domain of interest is divided in finite grid cells and the quantities of interest within each grid cell are updated every time step due to fluxes across the cell boundaries and/or processes within the cell. I will give a brief introduction to some of the general theory of finite volume methods and considerations that affect their accuracy and numerical stability, with illustrations from some of the applications mentioned above. some of the applications mentioned above.)
  • Presenters-0497  + (Meandering is one of the most unique proceMeandering is one of the most unique processes in Earth surface dynamics. Integrating the Kinoshita high-sinuosity curve describing meander channel planform geometry into the modified version of Beck equations describing the riverbed topography, a prototype for a synthetic riverbed topography generating model is made for idealized meandering rivers. Such method can be readily extended to apply on any arbitrary river centerline resulting in the synthetic riverbed topography model, pyRiverBed, presented herein. A meander migration and neck cutoff submodel is also embedded in pyRiverBed, however, unlike existing meander evolution models, the present model aims its emphasis towards generating the riverbed topography for each snapshot during the migration process. The present model can help meandering river researchers to interpolate field measured bathymetry data using the synthetic bed, to design non-flatbed laboratory flumes for experiments, and to initialize their hydrodynamics and sediment transport numerical models. It can also provide guidance in stream restoration projects on designing a channel with morphodynamic equilibrium bed.hannel with morphodynamic equilibrium bed.)
  • Presenters-0525  + (Melting of the Greenland Ice Sheet contribMelting of the Greenland Ice Sheet contributes to rising global sea levels. However, local sea level along much of the Greenland coast is falling due to postglacial rebound and a decrease in gravitational attraction from the ice sheet. This affects Greenlandic coastal communities, which have to adapt their coastal infrastructure, shipping routes, and subsistence fisheries. The “Greenland Rising” project is a collaboration between Lamont-Doherty Earth Observatory and the Greenland Institute of Natural Resources that focuses on assessing and preparing for changing sea level along Greenland’s coastline. While sea level is predicted to fall, the exact magnitude varies widely depending on past and present ice change as well as the viscoelastic properties of the subsurface. I will demonstrate how current sea level change depends on these parameters and how we can integrate numerical models of glacial isostatic adjustment with observations of past sea level and present-day uplift to constrain them. I will further briefly describe the role of co-production in this project, which has allowed us to coordinate bathymetric surveys with local stakeholders from the municipality, industry, and local Hunters and Fishers organization. Combining numerical predictions of sea level change with baseline bathymetry and benthic mapping promises to provide communities with a clearer picture of future environmental change.er picture of future environmental change.)
  • Presenters-0108  + (Model analysis frameworks specify ideas byModel analysis frameworks specify ideas by which models and data are combined to simulate a system on interest. A given modeling framework will provide methods for model parameterization, data and model error characterization, sensitivity analysis (including identifying observations and parameters important to calibration and prediction), uncertainty quantification, and so on. Some model analysis frameworks suggest a narrow range of methods, while other frameworks try to place a broader range of methods in context. Testing is required to understand how well a model analysis framework is likely to work in practice. Commonly models are constructed to produce predictions, and here the accuracy and precision of predictions are considered.<br><br>The design of meaningful tests depends in part on the timing of system dynamics. In some circumstances the predicted quantity is readily measured and changes quickly, such as for weather (temperature, wind and precipitation), floods, and hurricanes. In such cases meaningful tests involve comparing predictions and measured values and tests can be conducted daily, hourly or even more frequently. The benchmarking tests in rainfall-runoff modeling, such as HEPEX, are in this category. The theoretical rating curves of Kean and Smith provide promise for high flow predictions. Though often challenged by measurement difficulties, short timeframe systems provide the simplest circumstance for conducting meaningful tests of model analysis frameworks.<br><br>If measurements are not readily available and(or) the system responds to changes over decades or centuries, as generally occurs for climate change, saltwater intrusion of groundwater systems, and dewatering of aquifers, prediction accuracy needs to be evaluated in other ways. For example, in recent work two methods were used to identify the likely accuracy of different methods used to construct models of groundwater systems (including parameterization methods): (1) results of complex and simple models were compared and (2) cross-validation experiments. These and other tests can require massive computational resources for any but the simplest of problems. In this talk we discuss the importance of model framework testing in these longer-term circumstances and provide examples of tests from several recent publications. We further suggest that for these long-term systems, the design and performance of such tests are essential for the responsible development of model frameworks, are critical for models of these environmental systems to provide enduring insights, and are one of the most important uses of high performance computing in natural resource evaluation.uses of high performance computing in natural resource evaluation.)
  • Presenters-0579  + (Modelling and simulation are critical apprModelling and simulation are critical approaches to addressing geographic and environmental issues. To date, enormous relevant geo-analysis models have been developed to simulate geographic phenomena and processes that can be used to solve environmental, atmospheric and ecological problems. These models developed by different groups or people are heterogeneous and difficult to share with others. As a result, numerous international groups or organizations have designed and developed standards to unify geo-analysis models, such as OpenMI, BMI and OpenGMS-IS. Models that follow a specific standard can be shared and reused in their own standard framework, however, they still can't be reused by other standards. Thus, model interoperation may help models be shared and reused by different standards.</br>This research aims at designing an interoperability solution that can help users reuse geo-analysis models based on other standards. In this research, we discussed several solutions for model interoperation and analyzed the features of different standards. Firstly, we developed three solutions for models interoperation between different standards and discussed their advantages and disadvantages. Then, we analyzed the key features of model interoperation, including model field mapping, function conversion, data exchange, and component reorganization. Finally, we have developed an interoperability engine for interoperation between models based on OpenMI, BMI, or OpenGMS-IS. We also provided case studies (using e.g. SWMM, FDS, and the Permamodel Frost Number component) to successfully demonstrate the model interoperation.ully demonstrate the model interoperation.)
  • Presenters-0580  + (Modelling network-scale sediment (dis)connModelling network-scale sediment (dis)connectivity and its response to anthropic pressures provides a foundation understanding of river processes and sediment dynamics that can be used to forecast future trajectories of river form and process.</br>We present the basin-scale, dynamic sediment connectivity model D-CASCADE, which combines concepts of network modelling with empirical sediment transport formulas to quantify spatiotemporal sediment (dis)connectivity in river networks. The D-CASCADE framework describes sediment connectivity in terms of transfer rate through space and time while accounting for several hydro-morphological and anthropic factors affecting sediment transport. Add-ons can be integrated into D-CASCADE to model local changes in river geomorphology driven by sediment-induced variations in features.</br>Here, we show an application of D-CASCADE to the well-documented Bega River catchment, NSW, Australia, where major geomorphic changes have occurred in the network post-European settlement (ES) after the 1850s, including widespread channel erosion and sediment mobilization. By introducing historic drivers of change in the correct chronological sequence, the D-CASCADE model successfully reproduced the timing and magnitude of major phases of sediment transport and associated channel adjustments over the last two centuries. With this confidence, we then ran the model to test how well it performs at estimating future trajectories of basin-scale sediment transport and sediment budgets at the river reach scale.sediment budgets at the river reach scale.)
  • Presenters-0614  + (Modelling river physical processes is of cModelling river physical processes is of critical importance for flood protection, river management and restoration of riverine environments. Because of the continuous increment of computational power and the development of novel numerical algorithms, numerical models are nowadays widely and standardly used. The freeware BASEMENT is a flexible tool for one and two-dimensional river process simulations that bundles solvers for hydrodynamic, morphodynamic, scalar advection-diffusion and feedbacks with riparian vegetation. The adoption of a fully costless workflow and a light GUI facilitate its broad utilization in research, practice and education.</br>In this seminar I introduce the different tools within the BASEMENT suite, present some domains of application and ongoing developments.s of application and ongoing developments.)
  • Presenters-0026  + (Modern photogrammetry allows us to make veModern photogrammetry allows us to make very accurate three-dimensional models using images from consumer-grade cameras. Multiview stereo photogrammetry, also known as structure from motion (SfM) is now easily accessible. Coupled with drones, this is transformative technology that lets us all make better maps than the National Geodetic Survey could not long ago. This hands-on course will demonstrate the basic tools and provide some tips that will allow you to map your favorite field area with 3 - 5 cm horizontal resolution and vertical RMS errors of less than 10 cm. Even better resolution can be obtained for smaller areas, such as outcrops, archaeological digs, or your daughter's art project.<br>We will use Agisoft Photoscan Pro software...please download the free demo (Pro) version before the class. It works equally well on Mac, Windows, and Linux. If you have a choice, chose a machine with an NVidia graphics card. We encourage you to collect a set of images to bring to the class. Guidelines on how best to take images intended for SfM will be send around before the meeting. for SfM will be send around before the meeting.)
  • Presenters-0570  + (Montane Cloud Forests (MCFs) are globally Montane Cloud Forests (MCFs) are globally relevant ecological zones that spend the majority of their growing season in cloud and fog. Prior eco-physiological studies have demonstrated that MCFs are incredibly efficient at assimilating CO2 during photosynthesis. This increased efficiency is attributed to how plants in these ecosystems operate within their unique microclimates. Specifically, MCF trees maintain high photosynthesis rates under fog and low cloud conditions. While this has been observed and quantified in lab and field experiments, current sub-models of plant-atmosphere interactions within Earth systems models (ESMs) cannot recreate enhanced levels of gas exchange measured in ecophysiology studies. This lack of understanding leads to high uncertainty in ESM estimates of evapotranspiration and carbon assimilation rates for MCF ecosystems. It is critical to improve our estimates of MCF hydrologic and photosynthetic processes as these ecosystems are vulnerable to drought and microclimatic conditions are likely to be altered by climate change. This talk will explore the gaps in our process-based understanding of water, energy, and carbon budgets for MCFs, how these gaps lead to uncertainties in ESMs at different spatial and temporal scales, and how we can address these gaps in future work. we can address these gaps in future work.)
  • Presenters-0009  + (Natural disasters push the process of scieNatural disasters push the process of scientific discovery to its limits: Their enormous scale makes them difficult to recreate in the lab, their destructive power and rare occurrence limit the possibility of acquiring field data, and their profoundly nonlinear behavior over a wide range of scales poses significant modeling challenges. In this talk, I explore how we can leverage insights from four different natural systems to contribute to our fundamental scientific understanding of the role that multiphase processes play in the onset and evolution of extreme events and to our ability to mitigate associated risks. our ability to mitigate associated risks.)
  • Presenters-0012  + (No abstract)
  • Presenters-0079  + (No abstract)
  • Presenters-0086  + (No abstract has been submitted)
  • Presenters-0110  + (No abstract submitted)
  • Presenters-0254  + (No abstract was needed for this meeting)
  • Presenters-0193  + (No abstract was needed for this meeting)
  • Presenters-0148  + (No abstract was needed for this workshop)
  • Presenters-0149  + (No abstract was needed for this workshop)