Browse wiki

From CSDMS
Landscape evolution involves manifold procLandscape evolution involves manifold processes from different disciplines, including geology, geomorphology and ecohydrology, often interacting nonlinearly at different space-time scales. While this gives rise to fascinating patterns of interconnected networks of ridges and valleys, it also challenges Landscape Evolution Models (LEMs), which typically rely on long-term numerical simulations and mostly have only current topographies for comparison. While adding process complexity (and presumably realism) is certainly useful to overcome some of these challenges, is also exacerbates issues related to proper calibration and simulation.</br>This talk advocates more focus on the theoretical analysis of LEMs to alleviate some of these issues. By focusing on the essential elements that distinguish landscape evolution, the resulting minimalist LEMs become more amenable to dimensional analysis and other methods of nonlinear field equations, used for example in fluid mechanics and turbulence, offering fertile ground to sharpen model formulation (i.e., the stream-power erosion term), unveil distinct dynamic regimes (e.g., unchannelized, from incipient valley formation, transitional and statistically self-similar fractal regime), and properly formulate questions related to the existence of steady state solution (as opposed to a situation of space time chaos, similar to a geomorphological turbulence). We also discuss benchmarks for evaluating numerical simulation and novel avenues for numerical methods, as well as ways to bridge between spatially discrete models (i.e., river networks) and continuous, partial-differential-equation models.ous, partial-differential-equation models.  +
aporpora@princeton.edu  +
CSDMS 2024: Coastlines, Critical Zones and Cascading Hazards: Modeling Dynamic Interfaces from Deep Time to Human Time  +
Princeton University  +
Invited oral presentation  +
New Jersey  +
On the Practical Importance of Theory in Landscape Evolution Models  +
United States  +
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
16:29:23, 9 January 2024  +
Has query"Has query" is a predefined property that represents meta information (in form of a <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Subobject">subobject</a>) about individual queries and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
22:34:21, 11 June 2025  +
Terrestrial Working Group  +, Coastal Working Group  +, Education and Knowledge Transfer (EKT) Working Group  +, Cyberinformatics and Numerics Working Group  +, Hydrology Focus Research Group  +, Chesapeake Focus Research Group  +, Critical Zone Focus Research Group  +, Human Dimensions Focus Research Group  +, Geodynamics Focus Research Group  +, Ecosystem Dynamics Focus Research Group  +, Coastal Vulnerability Initiative  +, Continental Margin Initiative  +, Artificial Intelligence & Machine Learning Initiative  +  and River Network Modeling Initiative  +