Search by property
From CSDMS
This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.
List of results
- Model:WBM-WTM + (--)
- Model:Hydromad + (--)
- Model:LOGDIST + (--)
- Model:SVELA + (--)
- Model:Subside + (--)
- Model:HydroPy + (A documentation paper for HydroPy is available at https://doi.org/10.5194/gmd-14-7795-2021)
- Model:Elv-GST + (A manual is being prepared. Please contact us for some assistance in getting started.)
- Model:Tracer dispersion calculator + (A manuscript titled "Streamwise and vertical dispersal of tracer stones in an equilibrium bed" will be submitted soon to Water Resources Research.)
- Model:TopoFlow + (About this component: *The TopoFlow hydrol … About this component:</br>*The TopoFlow hydrologic model was originally written in IDL and had a complete point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has a "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*Each of the hydrologic process components used by TopoFlow can now be used either as components in a larger model (such as TopoFlow) or as stand-alone "submodels".</br>*TopoFlow has a 90+ page HTML help system and intuitive GUI that is ideal for teaching.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_topoflow.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".</br>*This version was converted from IDL to Python with the help of i2py 2.0.ed from IDL to Python with the help of i2py 2.0.)
- Model:TopoFlow-Channels-Diffusive Wave + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Channels-Dynamic Wave + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Channels-Kinematic Wave + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Diversions + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Infiltration-Green-Ampt + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Snowmelt-Energy Balance + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Evaporation-Read File + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Snowmelt-Degree-Day + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Meteorology + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Infiltration-Smith-Parlange + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Saturated Zone-Darcy Layers + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Infiltration-Richards 1D + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Evaporation-Energy Balance + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:TopoFlow-Evaporation-Priestley Taylor + (About this component: *This component was … About this component:</br>*This component was developed as part of the TopoFlow hydrologic model, which was originally written in IDL and had a point-and-click GUI. For more information on TopoFlow, please goto: https://csdms.colorado.edu/wiki/Model:TopoFlow.</br>*When used from within the CSDMS Modeling Tool (CMT), this component has "config" button which launches a graphical user interface (GUI) for changing input parameters. The GUI is a tabbed dialog with a Help button at the bottom that displays HTML help in a browser window.</br>*This component also has a configuration (CFG) file, with a name of the form: <case_prefix>_channels_diff_wave.cfg. This file can be edited with a text editor.</br>*The Numerical Python module (numpy) is used for fast, array-based processing.</br>*This model has an OpenMI-style interface, similar to OpenMI 2.0. Part of this interface is inherited from "CSDMS_base.py".his interface is inherited from "CSDMS_base.py".)
- Model:DrEICH algorithm + (Active development and maintenance of the code has moved to GitHub and been incorporated within broader LSDTopoTools software package: https://github.com/LSDtopotools/LSDTopoTools2)
- Model:WOFOST + (All links to documentation of WOFOST are available on the WOFOST page on the WageningenUR web site given above.)
- Model:OlaFlow + (All the model information can be found in: https://sites.google.com/view/olaflowcfd/home)
- Model:Gospl + (Associated paper: Salles et al., (2020). gospl: Global Scalable Paleo Landscape Evolution. Journal of Open Source Software, 5(56), 2804, https://doi.org/10.21105/joss.02804)
- Model:AlluvStrat + (Barely started; using this as a testbed for the new CSDMS BMI interface.)
- Model:Terrainbento + (Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E.: Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution, Geosci. Model Dev., 12, 1267-1297, https://doi.org/10.5194/gmd-12-1267-2019, 2019.)
- Model:REF-DIF + (Both codes are undergoing extensive revisions needed to incorporate them into the framework of the NearCoM Nearshore Community Model.)
- Model:AquaTellUs + (Code is research grade.)
- Model:GSSHA + (Current version is 5.0)
- Model:MODFLOW + (Disclaimer Although every effort is made … Disclaimer</br></br>Although every effort is made to provide timely and accurate information, the authors, the U.S. Geological Survey (USGS), and the U.S. Government make no warranty, expressed or implied, as to the timeliness or accuracy of the contents of this web site, which may be updated and revised at any time. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Any links to non-Government web sites are provided for convenience only and do not imply endorsement by the U.S. Government. imply endorsement by the U.S. Government.)