Browse wiki
From CSDMS
Understanding sediment dynamics during sto … Understanding sediment dynamics during storms and hurricanes is vital for predicting coastal morphodynamics and improving resilience strategies, especially for the Texas–Louisiana coast. </br>This study presents preliminary results from an integrated hydrodynamic-sediment transport model of Galveston Bay during Hurricane Harvey. To capture the complex interplay of different hydrological forces, the hydrodynamic model incorporates the combined impacts of wind, precipitation, river, wave, tide, and current. A three-dimensional sediment transport model with a 100-m resolution is developed in the Regional Ocean Modeling System (ROMS) for Galveston Bay. The open boundary conditions are generated from ROMS model (100m) and river discharges of Buffalo Bayou and San Jacinto River will be derived from WRF-Hydro model. The bay bottom sediment input parameters are derived from the Texas Sediment Geodatabase (TxSed), which includes a comprehensive inventory of sediment properties, ensuring simulations with an enhanced level of accuracy and regional specificity. For model modification, river discharge data from the United States Geological Survey (USGS) and/or a WRF-Hydro model will be employed to calibrate and adjust the hydrodynamic model. This study will eventually provide open boundaries and initial sediment conditions for a higher resolution (20m) bayou model focusing on Buffalo Bayou and other rivers feeding into Galveston Bay and will contribute to the development of a detailed river-estuary-ocean continuum model. The outcomes of this research are anticipated to inform future coastal management and resilience planning against storm-induced sediment and contaminant fluxes.m-induced sediment and contaminant fluxes. +
Coupled Hydrodynamic-Sediment Transport Model in Galveston Bay during Hurricane Harvey +
Baton Rouge +
United States +
rdu4@lsu.edu +
Rongqing +
Louisiana State University +
2252268934 +
Image: +
1) Solving the sea level equation +
4) Coupling biological and surface processes in landscape evolution models +
4) A Hands-On Workshop on GPU-Based Landscape Evolution Modeling +
United States +
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
02:35:39, 1 April 2024 +
Has query"Has query" is a predefined property that represents meta information (in form of a <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Subobject">subobject</a>) about individual queries and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
02:35:39, 1 April 2024 +
{{{OtherCountry}}} +
Processing error"Processing error" is a predefined property provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a> and represents errors that appeared in connection with improper value annotations or input processing.