Browse wiki

From CSDMS
In the southern San Andreas Fault zone, thIn the southern San Andreas Fault zone, the San Gorgonio Pass (SGP) stands as a region of intricate structural complexity, pivotal for the assessment of seismic hazards due to its potential role in modulating earthquake rupture propagation. This investigation delves into the SGP's crucial function in earthquake dynamics amid ongoing discussions on slip partitioning among its fault strands, aiming to fill a substantial knowledge gap concerning fault activity spanning the last 1 to 100 thousand years. The challenge of estimating slip rates, exacerbated by a dearth of datable materials within the SGP's challenging terrain, calls for innovative methodologies to assess uplift rates along previously overlooked fault segments. In our study, we use thermoluminescence (TL) thermochronology to evaluate differential uplift by analysing bedrock erosion rates. Although AHe dating sheds light on thermal histories and erosion rates across millions of years, it falls short in detailing the recent uplift history vital for grasping Quaternary fault dynamics. In contrast, cosmogenic 10Be dating proves effective in measuring surface erosion rates over millennial timescales, providing insights into contemporary geological activities. TL dating, with its capacity to discern bedrock exhumation over 10-100 ka, acts as a bridge between the temporal scales of AHe thermochronology (Ma) and cosmogenic 10Be denudation rates (ka). By juxtaposing erosion rates across different faults within the SGP, our research aims to pinpoint active fault segments, thereby enriching our understanding of fault dynamics and seismic risk in the southern San Bernardino Mountains. in the southern San Bernardino Mountains.  +
Image:StudyArea.png  +
Identifying active uplift across fault strands in the southern San Bernardino mountains: a TL thermochronology based Approach  +
Arlington  +
nathan.brown@uta.edu  +, sgmoon@g.ucla.edu  +  and moargueta@ucla.edu  +
Nathan  +, Seulgi  +  and Marina  +
University of Texas Arlington  +  and University of California Los Angeles  +
Brown  +, Moon  +  and Argueta  +
Arlington  +  and LOS ANGELES  +
ayush.joshi@uta.edu  +
University of Texas Arlington  +
5) Coastal evolution analysis and inundation modeling with GRASS GIS  +
2) Introduction & Building with Google Earth Engine: Batteries Included  +
4) A Hands-On Workshop on GPU-Based Landscape Evolution Modeling  +
United States  +
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
22:30:26, 16 February 2024  +
Has query"Has query" is a predefined property that represents meta information (in form of a <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Subobject">subobject</a>) about individual queries and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
22:30:26, 16 February 2024  +
{{{OtherCountry}}}  +
Texas  +  and California  +
Terrestrial Working Group  +  and Geodynamics Focus Research Group  +