Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe output parameters model" with value "Time series of 2D/3D map data and selected point data, particle tracks". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:STORM  + (The windfield for a cyclone based on pressure distribution and radius to maximum winds (SI units).)
  • Model:DHSVM  + (There are a number of different types of oThere are a number of different types of output that the model can produce. In short, the following possibilities are available:</br></br>DHSVM hydrologic output</br>* Default output (these files are always produced)</br>* Model state files</br>* Network flow files</br>* Travel time based hydrograph file</br>* Optional output files</br></br>Sediment Module output</br>* Default output (these files are always produced)</br>* Network flow files</br>* Optional output filesNetwork flow files * Optional output files)
  • Model:ROMS  + (There are hundreds of output parameters and fields that are written to several NetCDF files.)
  • Model:ChesROMS  + (There are hundreds of output parameters and fields that are written to several NetCDF files.)
  • Model:CBOFS2  + (There are hundreds of output parameters and fields that are written to several NetCDF files.)
  • Model:UMCESroms  + (There are hundreds of output parameters and fields that are written to several NetCDF files.)
  • Model:TopoFlow-Channels-Diffusive Wave  + (This component computes the following variThis component computes the following variables, as grids:</br> Q = discharge (m^3/s)</br> u = flow velocity (m/s)</br> d = flow depth (m)</br> f = friction factor (none)</br> Rh = hydraulic radius (m)</br> S_free = free-surface slope (m/m)</br>The user can choose which, if any, of these to save. Each may be saved as a grid sequence, indexed by time, in a netCDF file, at a specified sampling rate. Each may also be saved for a set of "monitored" grid cells, each specified as a (row,column) pair in a file with the name: <case_prefix>_outlets.txt. With this option, computed values are saved in a multi-column text file at a specified sampling rate. Each column in this file corresponds to a time series of values for a particular grid cell. For both options the sampling rate must no smaller than the process timestep. rate must no smaller than the process timestep.)
  • Model:TopoFlow-Channels-Dynamic Wave  + (This component computes the following variThis component computes the following variables, as grids:</br> Q = discharge (m^3/s)</br> u = flow velocity (m/s)</br> d = flow depth (m)</br> f = friction factor (none)</br> Rh = hydraulic radius (m)</br> S_free = free-surface slope (m/m)</br>The user can choose which, if any, of these to save. Each may be saved as a grid sequence, indexed by time, in a netCDF file, at a specified sampling rate. Each may also be saved for a set of "monitored" grid cells, each specified as a (row,column) pair in a file with the name: <case_prefix>_outlets.txt. With this option, computed values are saved in a multi-column text file at a specified sampling rate. Each column in this file corresponds to a time series of values for a particular grid cell. For both options the sampling rate must no smaller than the process timestep. rate must no smaller than the process timestep.)
  • Model:TopoFlow-Channels-Kinematic Wave  + (This component computes the following variThis component computes the following variables, as grids:</br> Q = discharge (m^3/s)</br> u = flow velocity (m/s)</br> d = flow depth (m)</br> f = friction factor (none)</br> Rh = hydraulic radius (m)</br> S_free = free-surface slope (m/m)</br>The user can choose which, if any, of these to save. Each may be saved as a grid sequence, indexed by time, in a netCDF file, at a specified sampling rate. Each may also be saved for a set of "monitored" grid cells, each specified as a (row,column) pair in a file with the name: <case_prefix>_outlets.txt. With this option, computed values are saved in a multi-column text file at a specified sampling rate. Each column in this file corresponds to a time series of values for a particular grid cell. For both options the sampling rate must no smaller than the process timestep. rate must no smaller than the process timestep.)
  • Model:CellularFanDelta  + (Time series of 2D topography/bathymetry and water discharge. 3D stratigraphy grid (currently model is single grain-size, so stratigraphy only stores deposit age))
  • Model:Delft3D  + (Time series of 2D/3D map data and selected point data, particle tracks)
  • Model:TUGS  + (Time variation of longitudinal profile, sediment flux and grain size distributions of bedload, surface and subsurface sediment.)
  • Model:Barrier Inlet Environment (BRIE) Model  + (Timeseries of: Overwash fluxes (m3/m/s) Inlet fluxes (m3/m/s) Shoreface toe location (m) Shoreline location (m) Back-barrier location (m) Barrier Height (m) Inlet locations alongshore (m))
  • Model:PHREEQC  + (To many to list here, see ''Description of Input and Examples for PHREEQC Version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations'.)
  • Model:PyDeltaRCM  + (Toggle on/off in input file: - PNG files of eta, stage, depth - grids of eta, stage, depth (as netCDF4) - grids of sand fraction in stratigraphy (as netCDF4))
  • Model:TopoFlow  + (Too many to list here. Please see the HTML help system and the wiki pages for all of the process components.)
  • Model:MODFLOW  + (Too many to mention here, see: http://water.usgs.gov/nrp/gwsoftware/modflow2000/modflow2000.html)
  • Model:YANGs  + (Total load mass flux)
  • Model:Area-Slope Equation Calculator  + (Two output maps ESRI ASCII format: # Alpha (coefficient); # Constant.)
  • Model:SISV  + (Typical flow quantities: Velocities, Concentrations, Vorticity, Passive marker location)
  • Model:OlaFlow  + (VOF, U, turbulence variables...)