Template:Drop box What is CSDMS
The CSDMS Project is an NSF-funded, international effort to develop a suite of modular numerical models able to simulate the evolution of landscapes and sedimentary basins, on time scales ranging from individual events to many millions of years. CSDMS is an acronym for Community Surface Dynamics Modeling System. Ideas behind the CSDMS concept were discussed by participants of an international workshop, Numerical Experiments in Stratigraphy (University of Kansas, May 15-17, 1996), with formal presentation of these findings at the third annual conference of the International Association of Mathematical Geology (Barcelona, 1997: Syvitski, et al, 1997). The formal CSDMS idea, however, took shape at a panel convened by the Geology/Paleontology Program of NSF in March 1999. That panel identified a CSDMS as a high priority NSF research initiative in sedimentary geology, and since then the concept has been widely discussed in the North American sediment-dynamics community.
The history behind CSDMS began in the mid-1960s, with a very interesting article (Bonham-Carter and Sutherland, 1967; also see Harbaugh and Bonham-Carter, 1970). Graeme Bonham-Carter coded up sediment transport equations related to a river's discharge into the ocean, to provide us with new insights into the formation of sedimentary deposits. The exercise was completed at a time when application of the Navier-Stokes equation to sediment transport remained in its infancy, and when we fed computer cards into memory-poor, slow-speed mainframes. Ten years later saw the first volume describing the full spectrum of numerical models related to ocean dynamics (Goldberg et al, 1977). The emphasis of these articles was on getting the dynamics correct and this resulted in some papers (e.g. Smith, 1977; Komar, 1977) being conceptually ahead of available field tools and data.
Through the next decade, as computers advanced with our ability to develop code, the softrock community applied its maturing understanding of hydraulics and sediment transport to the formation and modification of sedimentary deposits. In 1988, a large representation of this community met in the mountains of Colorado, and the concept of quantitative dynamic stratigraphy (QDS) was born (Cross, 1989). At the meeting, a mechanistic view of QDS was contrasted with the more rapidly maturing rule-based (sometimes known as geometric-based) stratigraphic models (see Syvitski, 1989, for discussion). The need to understand local to regional boundary conditions, either over long periods of simulated time, or for conditions where we have little field data (i.e. extreme event modeling) went on to change the way sedimentologists conducted their field and numerical experiments.
Through the next decade, the QDS community and discipline grew and influenced the field of both sedimentology and stratigraphy (Agterberg and Bonham-Carter, 1989; Martinez and Harbaugh, 1993; Franseen et al., 1991; Harff et al., 1998; Harbaugh et al., 1999; Paola, 2000; Syvitski and Bahr, 2001, Syvitski et al.,, 2007). Now we approach a time when these marvelous individual efforts can be multiplied in their effectiveness if better coordinated, and openness is developed between the modelers and field-oriented geoscientists.
The earth system surface dynamic models, like the established Community Climate System Model or the Regional Ocean Modeling System, are based on algorithms that mathematically describe the processes and conditions relevant to water, sediment and solute transport, and would incorporate all the important input and boundary conditions that define an environmental system. The CSDMS effort is coordinated and funded by government agencies and industry, to support the development of optimum algorithms, input parameters, feedback loops, and observations at the relevant scales necessary, to better provide an understanding of earth-surface systems. The Community Surface Dynamics Modeling System is being designed to address issues, for example, when the earth was abiotic, hotter or colder, when there was no flocculation, when the moon was closer, or the oceans were more saline. CSDMS provides modeling support to those working on modern environmental applications, future global warming scenarios, natural disaster mitigation efforts, natural hazard efforts, reservoir characterization, oil exploration, and national security. New satellite and geophysical databases will only realize their full potential in collaboration with efforts like the Community Surface Dynamics Modeling System.
CSDMS Reports
- Project Management, Engagement, and Sustainability Plan (PMESP) 2023 (June 2023, year 1-2, PDF format)
- Project Management, Engagement, and Sustainability Plan (PMESP) 2022 (December 2022, year 1, PDF format)
- Discontinued between 2018-2022
- CSDMS final & annual report (2013 - 2017 & 2017-2018 annual, PDF format)
- CSDMS annual report 2017 (August 2017, PDF format)
- CSDMS annual report 2016 (July 2016, PDF format)
- CSDMS annual report 2015 (August 2015, PDF format)
- CSDMS annual report 2014 (August 2014, PDF format)
- CSDMS annual report 2013 (August 2013, PDF format)
- CSDMS final report (2007 - 2012, PDF format)
- CSDMS semiannual report (March - July 2012, PDF format)
- CSDMS Annual Report 2011 to NSF (January 2012, PDF format)
- CSDMS semiannual report (March - July 2011, PDF format)
- CSDMS Annual Report 2010 to NSF (January 2011, PDF format)
- CSDMS semiannual report (March - July 2010, PDF format)
- CSDMS Annual Report 2009 to NSF (January 2010, PDF format)
- CSDMS semiannual report (February - July 2009, PDF format)
- CSDMS Annual Report 2008 to NSF (January 2009, PDF format)
- CSDMS Semi-Annual Report (February - August 2008, PDF format)
- CSDMS Annual Report 2007 to NSF (February 2008, PDF format)
- CSDMS press release (April 2007, PDF format)
- CSDMS semiannual report (November 2007, PDF format)
CSDMS Contact Information
Phone: 303-735-5482 Fax: 303-735-8180 Email (General): CSDMS@colorado.edu Email (web support): CSDMSweb@colorado.edu Email (HPCC support): CSDMSsupport@colorado.edu |
Physical address | Mailing address |
CSDMS Integration Facility | CSDMS/James Syvitski |
4001 Discovery Drive | University of Colorado |
University of Colorado | UCB 450 |
Boulder, CO 80303 | Boulder, CO 80309 USA |
More about directions to the CSDMS Integration Facility
- Moved or found another job? Let us know! Please fill out this form and we will update your information.
- Contact information for CSDMS Integration Facility personnel can be found on our staff page.
CSDMS would like to acknowledge INSTAAR, the Institute for Arctic and Alpine Research, for providing the physical space for the CSDMS Integration Facility.
Local Links:
University of Colorado
Institute for Arctic and Alpine Research (INSTAAR)