Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract presentation" with value "No abstract was required for this workshop". Since there have been only a few results, also nearby values are displayed.

Showing below up to 26 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Presenters-0242  + (No abstracts was required for this meeting)
  • Presenters-0428  + (Numerical modeling is at the core of prediNumerical modeling is at the core of prediction in coastal settings. Observational data is used in tandem with models for a variety of modeling tasks, but the perhaps the coupling could be tighter? I will discuss a range of Machine Learning tools that co-workers and I have integrated with coastal morphodynamic models that allow for a tight coupling of models and data, and provide morphodynamic insight.d data, and provide morphodynamic insight.)
  • Presenters-0573  + (Numerical models describe the world aroundNumerical models describe the world around us mathematically, allowing us to visualize changes to physical systems through both space and time. These models are essential tools for geoscientists, but writing your own model can be a daunting task. </br></br>In this clinic, we’ll develop an understanding of what numerical models are, and then we’ll delve into the math that functions as the basis for many models. Participants will learn how to apply basic conservation principles to developing equations that describe a physical system that changes through time. This workshop will expose participants to deriving differential equations, and using basic Python programming to visualize their solutions. Prior experience is not necessary.utions. Prior experience is not necessary.)
  • Presenters-0562  + (Numerical stratigraphic modelling of the iNumerical stratigraphic modelling of the impact of paleoclimate changes on earthscape evolution and sedimentary basin stratigraphy is of great value to better understand and predict the impact of global warming and increasingly frequent extreme events on the environment. To illustrate the contribution of stratigraphic modelling, we propose a modular model, ArcaDES (a.k.a. Dionisos), able to simulate geological processes in 3D on large scales of space and times (tens to hundreds of kilometres, and thousands to tens of millions of years). </br></br>ArcaDES is a 3D software written in C++ and implemented within the Arcane object-oriented high-performance computing platform co-developed by the CEA and IFPEN. This modular code includes three main components to handle hydrology, accommodation space and sediment transport. Taking into account precipitation, evaporation and soil infiltration capacity, the first component calculates steady-state runoff, surface and ground water flows, and water table elevation. The second component considers tectonic subsidence and uplift, flexure, sea level variations and sediment compaction to define the accommodation space. The third component deals with time-averaged physical laws describing erosion, transport by fluvial and marine currents, and deposition of sediments from fluvial to deep-marine systems to calculate sediment distribution and stratigraphic architecture. </br></br>This stratigraphic forward model is applied to two case studies: the Congo basin and the Alboran sea, to illustrate the impact of the last Holocene glaciations on the deep-sea fan of the Congo and the contouritic systems in the Alboran Sea.he contouritic systems in the Alboran Sea.)
  • Presenters-0045  + (Observations in coastal environments show Observations in coastal environments show that seabed resuspension can impact water quality and biogeochemical dynamics by vertically mixing sediment and water, and by redistributing material that has been entrained into the water column. Yet, ocean models that incorporate both sediment transport and biogeochemical processes are rare. The scientific community frequently utilizes hydrodynamic-sediment transport numerical models, but hydrodynamic-biogeochemical models ignore or simplify sediment processes, and have not directly accounted for the effect of resuspension on oxygen and nutrient dynamics.<br><br>This presentation focuses on development and implementation of HydroBioSed, a coupled hydrodynamic-sediment transport-biogeochemistry model that was developed within the open-source Regional Ocean Modeling System (ROMS) framework. HydroBioSed can account for processes including advection, resuspension, diffusion within the seabed and at the sediment-water interface, organic matter remineralization, and oxidation of reduced chemical species. Implementation of the coupled HydroBioSed model for different locations, including the Rhone River subaqueous delta and the northern Gulf of Mexico, have helped to quantify the effects of both sediment transport and biogeochemical processes. Results indicate that resuspension-induced exposure of anoxic, ammonium-rich portions of the seabed to the more oxic, ammonium-poor water column can significantly affect seabed-water column fluxes of dissolved oxygen and nitrogen. Also, entrainment of seabed organic matter into the water column may significantly draw down oxygen concentrations in some environments. Ongoing work focuses on how resuspension and redistribution of organic matter and sediment may influence oxygen dynamics in the Chesapeake Bay.t may influence oxygen dynamics in the Chesapeake Bay.)
  • Presenters-0522  + (One of the challenges for modelers is to gOne of the challenges for modelers is to get their results into the hands of potential users. We do this by creating informative and relevant maps, charts, and indicators. Sometimes we try to go further. We want end-users to 'feel' the model, using techniques like haptic interactions, extended reality. We do this to help the user to get a better understanding (exploration, interaction) or to develop a shared concept (by socializing around the model), or to provide the user with an immersive experience (using photorealistic rendering).</br>Using the BMI interface, which we also use for model coupling, we have changed several models from passive to interactive. We integrated these interactive models into different environments, such as the recently developed Virtual River Game, the Coastal Sandbox. Here we present recent developments, technical considerations and the results of the user studies that helped shape our vision towards more effective scientific communication and interaction. scientific communication and interaction.)
  • Presenters-0124  + (One of the most intriguing issues in fine One of the most intriguing issues in fine sediment transport, including turbidity currents, current-driven transport and wave-driven transport, is that the presence of sediments may significantly attenuate flow turbulence. Depending on the level of turbulence suppression, it may lead to the formation of lutocline (a sharp negative gradient of sediment concentration) which further encourages offshore-directed gravity flow; or it may cause catastrophic collapse of turbulence and sediment deposition. Through idealized 3D turbulence-resolving simulations of fine sediment (mud) transport in wave bottom boundary layer based on a pseudo-spectral scheme, our recent studies show that the transition of these flow modes can be caused by various degree of sediment-induced stable density stratification. This effort demonstrates the success of using a turbulence-resolving simulation tool to diagnose complex fine sediment transport processes. This talk further reports our recent development of this turbulence-resolving numerical model with a goal to provide a predictive tool for more realistic fine sediment transport applications.<br/><br/>Assuming a small Stokes number (St<0.3), which is appropriate for typical fine sediment, the Equilibrium approximation to the Eulerian two-phase flow equations is applied. The resulting simplified equations are solved with a high-accuracy hybrid spectral-compact finite difference scheme. The numerical approach extends the earlier pseudo-spectral model with a sixth-order compact finite difference scheme in the bed-normal direction. The compact finite difference scheme allows easy implementation of flow-dependent sediment properties and complex bottom boundary conditions. Hence, several new capabilities are included in the numerical simulation, such as rheological stress (enhance viscosity in high sediment concentration), hindered settling, erodible/depositional bottom boundary, and higher order inertia terms critical for fine sand fraction.<br/><br/>In the past decade, the role of wave bottom boundary layer in delivering fine sediment offshore via wave-supported gravity current (WSGC) has been well-recognized. We hypothesize that the generation, transport and termination of WSGC is directly associated with the flow modes discussed previously. In addition to the well-known Richardson number control (i.e., associated with sediment-induced density stratification), in this talk we will discuss how enhanced viscosity via rheological stress and high erodibility of the mud bed (e.g., low critical shear stress for unconsolidated mud bed) can trigger catastrophic collapse of turbulence and sediment deposition. The significance of bed erodibility in determining the resulting flow modes motivates future study regarding the effect of sand fraction on fine sediment transport via armoring. the effect of sand fraction on fine sediment transport via armoring.)
  • Presenters-0091  + (OpenFoamÒ is an open-source computational OpenFoamÒ is an open-source computational fluid dynamic platform, built upon a finite-volume framework with Messaging Passing Interface (MPI). In the past decade, OpenFoamÒ has become increasingly popular among researchers who are interested in fluvial and coastal processes. In this clinic, recent progress in developing OpenFoamÒ for several coastal applications will be discussed. In particular, we will focus on three subjects: (1) wave-induced seabed dynamics (pore-pressure response), (2) stratified flow application, particularly laboratory scale river plume modeling, and (3) 3D large-eddy simulation of wave-breaking and suspended sediment transport processes.<br>In particular, hand-on exercise will be given for 3D large-eddy simulation of wave-breaking processes to illustrate several important insights on how to use OpenFoamÒ to carry out high quality large-eddy simulations. Some cautionary notes and limitations will also be discussed.ry notes and limitations will also be discussed.)
  • Presenters-0619  + (Opening of the CSDMS 2023 annual meeting)
  • Presenters-0095  + (Opening of the CSDMS annual meeting)
  • Presenters-0029  + (Opening of the meeting)
  • Presenters-0161  + (Opening of the meeting)
  • Presenters-0489  + (Opening of the meeting)
  • Presenters-0047  + (Our extensive transdisciplinary efforts siOur extensive transdisciplinary efforts since 2010 in the northern Gulf of Mexico (Mississippi, Alabama, and the Florida panhandle) have resulted in an advanced capability to model and assess hydrodynamic and ecological impacts of climate change at the coastal land margin (visit http://agupubs.onlinelibrary.wiley.com/hub/issue/10.1002/(ISSN)2328-4277.GULFSEARISE1/). The concerted efforts of natural and social scientists as well as engineers have contributed to a paradigm shift that goes well beyond “bathtub” approaches. Potential deleterious effects to barrier islands, shorelines, dunes, marshes, etc., are now better understood. This is because the methodology enables assessment of not just eustatic sea level rise (SLR), but gets to the basis of projections of climate change and the associated impacts, i.e., carbon emission scenarios. The paradigm shift, input from coastal resource managers, and future expected conditions now provides a rationale to evaluate and quantify the ability of natural and nature-based feature (NNBF) approaches to mitigate the present and future effects of surge and nuisance flooding.<br>Over the majority of the 20th century, the largely linear rate of eustatic SLR was realized by thermal expansion of seawater as a function of a gradual increase in the average annual global temperature. Global satellite altimetry indicates that the rate of global mean SLR has accelerated from approximately 1.6 to 3.4 mm/year. While the year-by-year acceleration of the rate of rise cannot be measured adequately, it is reasonable to assume that it was relatively stable throughout the 20th century. For the 21st century, general circulation models project that posed atmospheric carbon emission scenarios will result in higher global average temperatures. A warmer global system will introduce new mechanisms (e.g., land ice loss, isotatic adjustments, and changes in land water storage) that will contribute to relatively abrupt changes in sea state levels. The additions to thermal expansion will drive higher sea levels and the increases in sea level will be attained by further accelerations in the rate of the rise. Because of the nature of the new mechanisms that will govern sea levels, it is unlikely that future accelerations in the rate of rise will be smooth.<br>To further address the complications associated with relatively abrupt changes in SLR and related impacts of climate change at the coastal land margin we intend to: (1) refine, enhance, and extend the coupled dynamic, bio-geo-physical models of coastal morphology, tide, marsh, and surge; (2) advance the paradigm shift for climate change assessments by linking economic impact analysis and ecosystem services valuation directly to these coastal dynamics; (3) pursue transdisciplinary outcomes by engaging a management transition advisory group throughout the entire project process; and (4) deliver our results via a flexible, multi-platform mechanism that allows for region-wide or place-based assessment of NNBFs. This presentation will share examples of our recent efforts and discuss progress to-date.es of our recent efforts and discuss progress to-date.)
  • Presenters-0422  + (Our understanding of human systems has beeOur understanding of human systems has been synthesized and advanced by computationally representing human decision-making in agent-based models. Whether representing individuals, households, firms, or larger organization, agent-based modelling approaches are often used to model processes (e.g., urban growth, agricultural land management) that directly effect and are affected by natural systems. Contemporary efforts coupling models of human and natural systems have demonstrated that results significantly differ from isolated representations of either system. However, coupling models of human and natural systems is conceptually and computationally challenging. In addition to discussing these challenges and approaches to overcoming them, this talk will also suggest that research quantifying natural processes at the decision-making scale of the land user is needed. Using structure-from-motion and unmanned aerial vehicle (UAV) imagery, we can accurately quantify natural processes like soil erosion to a high level of accuracy and that frequently modelled processes (e.g., flow accumulation) typically differ from reality. Novel data from the field or parcel scale are needed to calibrate and validate our representation of natural processes if we are to advance our representation of feedbacks between natural processes and human decision-making. By improving our representation of both natural processes and human decision-making at the scale of the decision-maker, we add confidence in our ability to scale out to larger spatial extents that are reflective of natural processes (e.g., watershed) or policy driving human decisions from municipal, state, or national governments.municipal, state, or national governments.)
  • Presenters-0471  + (Overview and Update of CSDMS accomplishments)
  • Presenters-0583  + (Panel discussion)
  • Presenters-0446  + (Panel discussion on AI/ML)
  • Presenters-0412  + (Parametric insurance represents a major brParametric insurance represents a major breakthrough in the accessibility of risk financing for natural disasters. Instead of compensating for actual assessed loss, parametric (or index-based) insurance instead uses measurement of the hazard itself as a proxy for loss, paying out a pre-agreed amount for an event with certain intensity, location and, sometimes, duration. This allows for rapid settlement and reduced costs – of claims adjustment / processing and in the margin added by risk takers for uncertainty in projected outcomes. The quantitative, independent and objective nature of EO data, and also its availability in real time, makes it ideal as a basis for parametric insurance, particularly in the developing world where claims data for policy pricing is non-existent. Examples of parametric products based on EO data already in the market include protection against high and low rainfall, use of vegetation greenness indices, and footprint mapping as a basis for flood protection.t mapping as a basis for flood protection.)
  • Presenters-0589  + (Part 1 will focus on the use of Doodler (hPart 1 will focus on the use of Doodler (https://github.com/Doodleverse/dash_doodler), a 'human-in-the-loop' labeling tool for image segmentation (described in this paper: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021EA002085). We'll cover the two primary uses of Doodler; a) for relatively rapid image segmentation of a small set of images, and b) for making libraries of labeled imagery for training Machine Learning models to automate the process of image segmentation on larger datasets. We'd ideally like participants to label the same imagery in-class so we can discuss image interpretation and label agreement. This may even result in a publishable dataset; participants would receive co-authorship and could opt-in/out.</br></br>We will provide example datasets and models, but participants will also be encouraged to bring their own imagery sets. That way, participants will have time to familiarize themselves with the burgeoning Doodleverse tools (https://github.com/Doodleverse) in between classes on their own data.rse) in between classes on their own data.)
  • Presenters-0590  + (Part 2 will focus on the use of SegmentatiPart 2 will focus on the use of Segmentation Gym (https://github.com/Doodleverse/segmentation_gym), for training and implementing deep-learning-based image segmentation models. Participants will be given datasets and models to use for their own model building and implementation, or optionally they may use their own data, for example label images they made in Part 1. Hardware needs, and common problems and their workarounds will be discussed.s and their workarounds will be discussed.)
  • Presenters-0141  + (Participants in this clinic will learn howParticipants in this clinic will learn how to compile and run a Regional Ocean Modeling (ROMS) test case for an idealized continental shelf. The hydrodynamic model that we will use includes wave forcing and suspended sediment transport.<br/><br/>ROMS is an open source, three dimensional primitive equation hydrodynamic ocean model that uses a structured curvilinear horizontal grid and a stretched terrain following vertical grid. For more information see https://www.myroms.org. It currently has more than 4,000 registered users, includes modules for sediment transport and biogeochemistry, and has several options for turbulence closures and numerical schemes. Model input is specified using a combination of ASCII text files and NetCDF (Network Common Data Form) files. Output is written to NetCDF files. In part because ROMS was designed to provide flexibility for the choice of model parameterizations and processes, and to run in parallel, implementing the code can seem daunting, but in this clinic we will present an idealized ROMS model that can be run on the CSDMS cluster.<br/><br/>As a group, we will compile and run an idealized ROMS model on the CSDMS computer, Beach. The group will choose a modification to the standard model. While the modified model runs, we will explore methods for visualizing model output. Participants who have an account on Beach can try to run the model themselves. Clinic participants who have Matlab set up to visualize NetCDF files will be able to browse model output files during the clinic.<br/><br/>Following the clinic, participants should have access to tools for looking at ROMS output, an example ROMS model run, and experience with ROMS input and output files.t, an example ROMS model run, and experience with ROMS input and output files.)
  • Presenters-0090  + (Participants in this clinic will learn howParticipants in this clinic will learn how to run a Regional Ocean Modeling System (ROMS) test case for an idealized continental shelf model domain within the CSDMS Web Modeling Toolkit (WMT). The model implementation that we will use includes wave forcing, a riverine source, suspended sediment transport.<br><br>ROMS is an open source, three-dimensional primitive equation hydrodynamic ocean model that uses a structured curvilinear horizontal grid and a stretched terrain following vertical grid. For more information see https://www.myroms.org. It currently has more than 4,000 registered users, and the full model includes modules for sediment transport and biogeochemistry, and several options for turbulence closures and numerical schemes. In part because ROMS was designed to provide flexibility for the choice of model parameterizations and processes, and to run in parallel, implementing the code can seem daunting, but in this clinic, we will present an idealized ROMS model that can be run on the CSDMS cluster via the WMT. One goal is to provide a relatively easy introduction to the numerical modeling process that can be used within upper level undergraduate and graduate classes to explore sediment transport on continental shelves.<br><br>As a group, we will run an idealized ROMS model on the CSDMS computer, Beach. The group will choose a modification to the standard model. While the modified model runs, we will explore methods for visualizing model output. Participants who have access to WMT can run the model themselves. Clinic participants who have access to Matlab and/or Panoply will be able to browse model output files during the clinic.<br><br>Following the clinic, participants should have access to an example ROMS model run, experience running ROMS within the WMT and with ROMS input and output files, and. ROMS lesson plans.S within the WMT and with ROMS input and output files, and. ROMS lesson plans.)
  • Presenters-0612  + (Participatory modeling (PM) is a collaboraParticipatory modeling (PM) is a collaborative approach to formalize shared representations of a problem and design and test solutions through a joint modeling process. PM is well-suited for addressing complex social and environmental problems like climate change, social and economic injustice, and sustainable resource management. This workshop will introduce and test a prototype version of Fora.ai, a new PM platform developed at Northeastern University. Fora.ai is a simple digital environment that enables groups to collaboratively understand real world problems and create novel solutions. Stakeholders interact through this digital representation with input from other stakeholders, then iteratively revise and test solutions until diverse needs are addressed. Fora.ai provides quick simulation results for data-driven proof of concepts that are ready to be presented, designed, and implemented in the real world, giving everyone in a team the power to share their unique perspective and build the world they want to live in together.d the world they want to live in together.)
  • Presenters-0638  + (Participatory modeling (PM) is a collaboraParticipatory modeling (PM) is a collaborative approach to formalize shared representations of a problem and design and test solutions through a joint modeling process. PM is well-suited for addressing complex social and environmental problems like climate change, social and economic injustice, and sustainable resource management. This workshop will introduce and test a prototype version of Fora.ai, a new PM platform developed at Northeastern University. Fora.ai is a simple digital environment that enables groups to collaboratively understand real world problems and create novel solutions. Stakeholders interact through this digital representation with input from other stakeholders, then iteratively revise and test solutions until diverse needs are addressed. Fora.ai provides quick simulation results for data-driven proof of concepts that are ready to be presented, designed, and implemented in the real world, giving everyone in a team the power to share their unique perspective and build the world they want to live in together.d the world they want to live in together.)