Browse wiki

From CSDMS
The interplay between tectonics and surfacThe interplay between tectonics and surface processes has long been recognized and explored through field observations, laboratory studies, and analogue and numerical modeling. However, the dependencies that link tectonics and the surface are complex and often difficult to unravel and visualize with current methods and concepts. To address these difficulties, it is common to create predictive models with algorithms that simplify these natural processes and limit their dependencies on one another.<br><br>In this clinic, we share some simple methods for isolating two tectonic processes: fault damage and fault slip, and explore how they influence the rates and patterns of surface processes. These tectonic processes are introduced as 3D patterns of rock damage and kinematics in a landscape evolution model using Matlab and CHILD. First, we discuss methods for scaling rock damage to erodibility for use in a stream power model. The erodibility field is based on the generic 3D geometry of planar fault damage zones. Next, we include fault slip by using a 3D kinematic solution for dip-slip, oblique-slip, and strike-slip motion. These models include a single slip plane that divides a block of crust into fixed and mobile components. Finally, we combine the rock damage and kinematic fields to observe their combined influence. In these combined models, rock damage becomes a function of the amount of motion accommodated by the slip plane. Throughout the clinic we will explain our methods, interpret model results, discuss their limitations, and postulate ways to improve upon them. The simple methods we employ in this clinic lay a foundation of understanding that can be broadened by use of dynamic, fully coupled models.<br><br>START_WIDGET"'-1c32f4efcf72f607END_WIDGET<br>START_WIDGET"'-ae61a5842d54fe30END_WIDGET<br><br>07END_WIDGET<br>START_WIDGET"'-ae61a5842d54fe30END_WIDGET<br><br>  +
New Zealand  +  and United States  +
samuel.g.roy@maine.edu  +
CSDMS 2015 annual Meeting - Models meet data, data meet models  +
Phaedra  +, Peter  +  and Greg  +
Maine University  +
GNS Science  +, Maine University  +  and University of Colorado, Boulder  +
Upton  +, Koons  +  and Tucker  +
Maine  +  and Colorado  +
Exploring the influence of fault damage and fault slip on the patterns and rates of fluvial incision using CHILD and Matlab  +
United States  +
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
19:54:52, 8 August 2018  +
Has query"Has query" is a predefined property that represents meta information (in form of a <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Subobject">subobject</a>) about individual queries and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
22:33:56, 11 June 2025  +
Tectonics  +, Surface processes  +, CHILD  +  and Faults  +
Terrestrial Working Group  +  and Geodynamics Focus Research Group  +