Browse wiki
From CSDMS
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
21:57:10, 1 April 2020 +
This material is based upon work supported by the National Science Foundation under Grant No. 1831623, ''Community Facility Support: The Community Surface Dynamics Modeling System (CSDMS)''. +
Jupyter Notebook +
1.5 hrs +
<p>The Coastline Evolution Model (CE … <p>The Coastline Evolution Model (CEM) addresses predominately sandy, wave-dominated coastlines on time-scales ranging from years to millenia and on spatial scales ranging from kilometers to hundreds of kilometers. Shoreline evolution results from gradients in wave-driven alongshore sediment transport. The model has been used to represent varying geology underlying a sandy coastline and shoreface in a simplified manner and enables the simulation of coastline evolution when sediment supply from an eroding shoreface may be constrained. CEM also supports the simulation of human manipulations to coastline evolution through beach nourishment or hard structures. To learn more about the models in this lab, specifically the Coastal Evolution Model, CEM, you can download the presentation.</p></br></br><p>This lab includes experiments to couple the terrestrial and coastal domains. We will be looking at a river supplying sediment to a coastal zone, along which wave-driven longshore transport occurs. We will learn about the effect of incoming wave fields, the effect of sediment supply to the coast, and whether this supply happens through a single delta channel or multiple delta channels. Many deltas are classified as wave-dominated deltas, the Arno Delta in Italy is one example.</p></br></br><p>This lab can be run on either the <em>lab</em> (for educators) or <em>jupyter</em> (for general use) instance of the OpenEarthscape JupyterHub: just click one of the links under the <strong>Run online using</strong> heading at the top of this page, then run the notebook in the "CSDMS" kernel.</p></br></br><p>If you don't already have a JupyterHub account, follow the instructions to sign up at https://csdms.colorado.edu/wiki/JupyterHub. If you're an educator, you can get JupyterHub accounts for students--please contact us through the CSDMS Help Desk: https://csdms.github.io/help-desk.</p> JupyterHub accounts for students--please contact us through the CSDMS Help Desk: https://csdms.github.io/help-desk.</p> +
1 of 1 +
CoupledAvulsionCEMWMTversion.pptx +
INSTAAR - University of Colorado +
Irina Overeem +
April 14, 2022 +
Explore coastal processes by 1) a spreadsh … Explore coastal processes by 1) a spreadsheet lab or 2) an advanced modeling lab using the CEM model. We look at the effects of waves and river avulson on a coastline. The spreadsheet lab can be downloaded at https://csdms.colorado.edu/csdms_wiki/images/CoastlineEvolutionLab.zipsdms_wiki/images/CoastlineEvolutionLab.zip +
Explore coastal processes by 1) a spreadsheet lab or 2) an advanced modeling lab using the CEM model. We look at the effects of waves and river avulsion on a coastline. +
launch_binder_cem.png +
Launch binder +
Instead of downloading the lab Notebook an … Instead of downloading the lab Notebook and running it locally, or running it through the CSDMS JupyterHub, you can also run it on Binder. Follow these steps:</br></br></br>>> Open a new browser window and go to: https://pymt.readthedocs.io/en/latest/examples.html</br></br>>> You will see that there are several example models. In this lab we will select the Coastline Evolution Model.</br></br>>> Click on the "Launch Binder" button to run this lab.</br></br>Note that Binder is a free and popular service for running Jupyter Notebooks, so it can be slow to load at times.</br></br>CEM is run with the Python Modeling Tool, pymt. Learn more about pymt at: https://pymt.readthedocs.io.pymt. Learn more about pymt at: https://pymt.readthedocs.io. +
If run locally, this lab requires the installtion of pymt; see https://pymt.readthedocs.io/en/latest/quickstart.html for instructions. This lab runs on Linux and macOS. +
Image:NewCEMcolormap.png +
Ashton, A, A.B. Murray, and O. Arnoult. 2001. Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature 414: 296-300., doi: 10.1038/35104541 + and Ashton, A.D. and Murray, A.B., 2006. High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. Journal of Geophysical Research 111. F04012., doi: 10.1029/2005JF000423 +
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
22:30:24, 14 April 2022 +