ApsimX-Publications
Publication(s) | Year | Type | Cited |
---|---|---|---|
Keating, B.A; Carberry, P.S; Hammer, G.L; Probert, M.E; Robertson, M.J; Holzworth, D; Huth, N.I; Hargreaves, J.N.G; Meinke, H; Hochman, Z; McLean, G; Verburg, K; Snow, V; Dimes, J.P; Silburn, M; Wang, E; Brown, S; Bristow, K.L; Asseng, S; Chapman, S; McCown, R.L; Freebairn, D.M; Smith, C.J; 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267–288. 10.1016/S1161-0301(02)00108-9 (View/edit entry) | 2003 | Model overview | 2314 |
McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; Freebairn, D.M.; 1996. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 50, 255–271. 10.1016/0308-521X(94)00055-V (View/edit entry) | 1996 | Model overview | 865 |
Asseng, S; Keating, B.A; Fillery, I.R.P; Gregory, P.J; Bowden, J.W; Turner, N.C; Palta, J.A; Abrecht, D.G; 1998. Performance of the APSIM-wheat model in Western Australia. Field Crops Research, 57, 163–179. 10.1016/S0378-4290(97)00117-2 (View/edit entry) | 1998 | Model application | 282 |
Wang, E.; Robertson, M.J.; Hammer, G.L.; Carberry, P.S.; Holzworth, D.; Meinke, H.; Chapman, S.C.; Hargreaves, J.N.G.; Huth, N.I.; McLean, G.; 2002. Development of a generic crop model template in the cropping system model APSIM. European Journal of Agronomy, 18, 121–140. 10.1016/S1161-0301(02)00100-4 (View/edit entry) | 2002 | Model overview | 257 |
Robertson, M. J.; Carberry, P. S.; Huth, N. I.; Turpin, J. E.; Probert, M. E.; Poulton, P. L.; Bell, M.; Wright, G. C.; Yeates, S. J.; Brinsmead, R. B.; 2002. Simulation of growth and development of diverse legume species in APSIM. Australian Journal of Agricultural Research, 53, 429. 10.1071/AR01106 (View/edit entry) | 2002 | Model application | 283 |
Holzworth, Dean P.; Huth, Neil I.; deVoil, Peter G.; Zurcher, Eric J.; Herrmann, Neville I.; McLean, Greg; Chenu, Karine; van Oosterom, Erik J.; Snow, Val; Murphy, Chris; Moore, Andrew D.; Brown, Hamish; Whish, Jeremy P.M.; Verrall, Shaun; Fainges, Justin; Bell, Lindsay W.; Peake, Allan S.; Poulton, Perry L.; Hochman, Zvi; Thorburn, Peter J.; Gaydon, Donald S.; Dalgliesh, Neal P.; Rodriguez, Daniel; Cox, Howard; Chapman, Scott; Doherty, Alastair; Teixeira, Edmar; Sharp, Joanna; Cichota, Rogerio; Vogeler, Iris; Li, Frank Y.; Wang, Enli; Hammer, Graeme L.; Robertson, Michael J.; Dimes, John P.; Whitbread, Anthony M.; Hunt, James; van Rees, Harm; McClelland, Tim; Carberry, Peter S.; Hargreaves, John N.G.; MacLeod, Neil; McDonald, Cam; Harsdorf, Justin; Wedgwood, Sara; Keating, Brian A.; 2014. APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327–350. 10.1016/j.envsoft.2014.07.009 (View/edit entry) | 2014 | Model overview | 1013 |
Asseng, S.; Anderson, G. C.; Dunin, F. X.; Fillery, I. R. P.; Dolling, P. J.; Keating, B. A.; 1998. Use of the APSIM wheat model to predict yield, drainage, and NO3- leaching for a deep sand. Australian Journal of Agricultural Research, 49, 363. 10.1071/A97095 (View/edit entry) | 1998 | Model application | 141 |
Asseng, S; van Keulen, H; Stol, W; 2000. Performance and application of the APSIM Nwheat model in the Netherlands. European Journal of Agronomy, 12, 37–54. 10.1016/S1161-0301(99)00044-1 (View/edit entry) | 2000 | Model application | 143 |
Thorburn, Peter J.; Probert, Mervyn E.; Robertson, Fiona A.; 2001. Modelling decomposition of sugar cane surface residues with APSIM–Residue. Field Crops Research, 70, 223–232. 10.1016/S0378-4290(01)00141-1 (View/edit entry) | 2001 | Model application | 165 |
Hammer, Graeme L.; van Oosterom, Erik; McLean, Greg; Chapman, Scott C.; Broad, Ian; Harland, Peter; Muchow, Russell C.; 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61, 2185–2202. 10.1093/jxb/erq095 (View/edit entry) | 2010 | Model application | 259 |
Thorburn, P.J.; Biggs, J.S.; Collins, K.; Probert, M.E.; 2010. Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agriculture, Ecosystems & Environment, 136, 343–350. 10.1016/j.agee.2009.12.014 (View/edit entry) | 2010 | Model application | 123 |
Asseng, S; Bar-Tal, A; Bowden, J.W; Keating, B.A; Van Herwaarden, A; Palta, J.A; Huth, N.I; Probert, M.E; 2002. Simulation of grain protein content with APSIM-Nwheat. European Journal of Agronomy, 16, 25–42. 10.1016/S1161-0301(01)00116-2 (View/edit entry) | 2002 | Model application | 101 |
Farré, I.; Robertson, M. J.; Walton, G. H.; Asseng, S.; 2002. Simulating phenology and yield response of canola to sowing date in Western Australia using the APSIM model. Australian Journal of Agricultural Research, 53, 1155. 10.1071/AR02031 (View/edit entry) | 2002 | Model application | 82 |
Stewart, L.K.; Charlesworth, P.B.; Bristow, K.L.; Thorburn, P.J.; 2006. Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM. Agricultural Water Management, 81, 315–334. 10.1016/j.agwat.2005.05.002 (View/edit entry) | 2006 | Model application | 75 |
McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.; Huth, N.I.; 1995. APSIM: an agricultural production system simulation model for operational research. Mathematics and Computers in Simulation, 39, 225–231. 10.1016/0378-4754(95)00063-2 (View/edit entry) | 1995 | Model overview | 65 |
Carberry, P. S.; Hochman, Z.; Hunt, J. R.; Dalgliesh, N. P.; McCown, R. L.; Whish, J. P. M.; Robertson, M. J.; Foale, M. A.; Poulton, P. L.; van Rees, H.; 2009. Re-inventing model-based decision support with Australian dryland farmers. 3. Relevance of APSIM to commercial crops. Crop and Pasture Science, 60, 1044. 10.1071/CP09052 (View/edit entry) | 2009 | Model application | 102 |
Probert, M. E.; Carberry, P. S.; McCown, R. L.; Turpin, J. E.; 1998. Simulation of legume-cereal systems using APSIM. Australian Journal of Agricultural Research, 49, 317. 10.1071/A97070 (View/edit entry) | 1998 | Model application | 64 |
Huth, N.I.; Carberry, P.S.; Poulton, P.L.; Brennan, L.E.; Keating, B.A.; 2002. A framework for simulating agroforestry options for the low rainfall areas of Australia using APSIM. European Journal of Agronomy, 18, 171–185. 10.1016/S1161-0301(02)00103-X (View/edit entry) | 2002 | Model application | 58 |
Akponikpè, P.B. Irénikatché; Gérard, Bruno; Michels, Karlheinz; Bielders, Charles; 2010. Use of the APSIM model in long term simulation to support decision making regarding nitrogen management for pearl millet in the Sahel. European Journal of Agronomy, 32, 144–154. 10.1016/j.eja.2009.09.005 (View/edit entry) | 2010 | Model application | 64 |
Zhao, Gang; Bryan, Brett A.; Song, Xiaodong; 2014. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecological Modelling, 279, 1–11. 10.1016/j.ecolmodel.2014.02.003 (View/edit entry) | 2014 | Model application | 101 |
Wang, Enli; Smith, Chris J.; Bond, Warren J.; Verburg, Kirsten; 2004. Estimations of vapour pressure deficit and crop water demand in APSIM and their implications for prediction of crop yield, water use, and deep drainage. Australian Journal of Agricultural Research, 55, 1227. 10.1071/AR03216 (View/edit entry) | 2004 | Model application | 53 |
Malone, R.W.; Huth, N.; Carberry, P.S.; Ma, L.; Kaspar, T.C.; Karlen, D.L.; Meade, T.; Kanwar, R.S.; Heilman, P.; 2007. Evaluating and predicting agricultural management effects under tile drainage using modified APSIM. Geoderma, 140, 310–322. 10.1016/j.geoderma.2007.04.014 (View/edit entry) | 2007 | Model application | 64 |
MacCarthy, Dilys S.; Sommer, Rolf; Vlek, Paul L.G.; 2009. Modeling the impacts of contrasting nutrient and residue management practices on grain yield of sorghum (Sorghum bicolor (L.) Moench) in a semi-arid region of Ghana using APSIM. Field Crops Research, 113, 105–115. 10.1016/j.fcr.2009.04.006 (View/edit entry) | 2009 | Model application | 55 |
Chikowo, R.; Corbeels, M.; Tittonell, P.; Vanlauwe, B.; Whitbread, A.; Giller, K.E.; 2008. Aggregating field-scale knowledge into farm-scale models of African smallholder systems: Summary functions to simulate crop production using APSIM. Agricultural Systems, 97, 151–166. 10.1016/j.agsy.2008.02.008 (View/edit entry) | 2008 | Model application | 40 |
Connolly, R. D.; Bell, M.; Huth, N.; Freebairn, D. M.; Thomas, G.; 2002. Simulating infiltration and the water balance in cropping systems with APSIM-SWIM. Soil Research, 40, 221. 10.1071/SR01007 (View/edit entry) | 2002 | Model application | 33 |
Archontoulis, Sotirios V.; Miguez, Fernando E.; Moore, Kenneth J.; 2014. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environmental Modelling & Software, 62, 465–477. 10.1016/j.envsoft.2014.04.009 (View/edit entry) | 2014 | Model application | 95 |
Delve, R. J.; Probert, M. E.; Cobo, J. G.; Ricaurte, J.; Rivera, M.; Barrios, E.; Rao, I. M.; 2009. Simulating phosphorus responses in annual crops using APSIM: model evaluation on contrasting soil types. Nutrient Cycling in Agroecosystems, 84, 293–306. 10.1007/s10705-008-9243-6 (View/edit entry) | 2009 | Model application | 39 |
Chauhan, Y.S.; Solomon, K.F.; Rodriguez, D.; 2013. Characterization of north-eastern Australian environments using APSIM for increasing rainfed maize production. Field Crops Research, 144, 245–255. 10.1016/j.fcr.2013.01.018 (View/edit entry) | 2013 | Model application | 54 |
Yunusa, I. A. M.; Bellotti, W. D.; Moore, A. D.; Probert, M. E.; Baldock, J. A.; Miyan, S. M.; 2004. An exploratory evaluation of APSIM to simulate growth and yield processes for winter cereals in rotation systems in South Australia. Australian Journal of Experimental Agriculture, 44, 787. 10.1071/EA03121 (View/edit entry) | 2004 | Model application | 36 |
Archontoulis, Sotirios V.; Miguez, Fernando E.; Moore, Kenneth J.; 2014. Evaluating APSIM Maize, Soil Water, Soil Nitrogen, Manure, and Soil Temperature Modules in the Midwestern United States. Agronomy Journal, 106, 1025. 10.2134/agronj2013.0421 (View/edit entry) | 2014 | Model application | 108 |
Gaydon, D.S.; Humphreys, E.; Eberbach, P.L.; 2011. The effects of mulch and irrigation management on wheat in Punjab, India—Evaluation of the APSIM model. Field Crops Research, 124, 1–13. 10.1016/j.fcr.2011.04.016 (View/edit entry) | 2011 | Model application | 56 |
Brown, Hamish E.; Huth, Neil I.; Holzworth, Dean P.; Teixeira, Edmar I.; Zyskowski, Rob F.; Hargreaves, John N.G.; Moot, Derrick J.; 2014. Plant Modelling Framework: Software for building and running crop models on the APSIM platform. Environmental Modelling & Software, 62, 385–398. 10.1016/j.envsoft.2014.09.005 (View/edit entry) | 2014 | Model application | 87 |
Grenz, J.H.; Manschadi, A.M.; deVoil, P.; Meinke, H.; Sauerborn, J.; 2006. Simulating crop–parasitic weed interactions using APSIM: Model evaluation and application. European Journal of Agronomy, 24, 257–267. 10.1016/j.eja.2005.10.002 (View/edit entry) | 2006 | Model application | 19 |
Zhang, Xike; Lee, Jae-Hong; Abawi, Yahya; Kim, Young-ho; McClymont, David; Kim, Hee-Dong; 2007. Testing the simulation capability of APSIM-ORYZA under different levels of nitrogen fertiliser and transplanting time regimes in Korea. Australian Journal of Experimental Agriculture, 47, 1446. 10.1071/EA05363 (View/edit entry) | 2007 | Model application | 22 |
Mohanty, M.; Probert, M.E.; Reddy, K. Sammi; Dalal, R.C.; Mishra, A.K.; Subba Rao, A.; Singh, M.; Menzies, N.W.; 2012. Simulating soybean–wheat cropping system: APSIM model parameterization and validation. Agriculture, Ecosystems & Environment, 152, 68–78. 10.1016/j.agee.2012.02.013 (View/edit entry) | 2012 | Model application | 58 |
Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent; 2018. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils. Computers & Geosciences, 113, 33–42. 10.1016/j.cageo.2018.01.014 (View/edit entry) | 2018 | Model application | 11 |
Lobell, David B.; Hammer, Graeme L.; McLean, Greg; Messina, Carlos; Roberts, Michael J.; Schlenker, Wolfram; 2013. The critical role of extreme heat for maize production in the United States. Nature Climate Change, 3, 497–501. 10.1038/nclimate1832 (View/edit entry) | 2013 | Model application | 650 |
Probert, M.E.; Dimes, J.P.; Keating, B.A.; Dalal, R.C.; Strong, W.M.; 1998. APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agricultural Systems, 56, 1–28. 10.1016/S0308-521X(97)00028-0 (View/edit entry) | 1998 | Model application | 547 |
Manschadi, Ahmad M.; Christopher, John; deVoil, Peter; Hammer, Graeme L.; 2006. The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 33, 823. 10.1071/FP06055 (View/edit entry) | 2006 | Model application | 542 |
Wong, M. T. F.; Asseng, S.; 2007. Yield and environmental benefits of ameliorating subsoil constraints under variable rainfall in a Mediterranean environment. Plant and Soil, 297, 29–42. 10.1007/s11104-007-9316-3 (View/edit entry) | 2007 | Model application | 45 |
Chenu, K.; Cooper, M.; Hammer, G. L.; Mathews, K. L.; Dreccer, M. F.; Chapman, S. C.; 2011. Environment characterization as an aid to wheat improvement: interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia. Journal of Experimental Botany, 62, 1743–1755. 10.1093/jxb/erq459 (View/edit entry) | 2011 | Model application | 232 |
Keating, B.A; Robertson, M.J; Muchow, R.C; Huth, N.I; 1999. Modelling sugarcane production systems I. Development and performance of the sugarcane module. Field Crops Research, 61, 253–271. 10.1016/S0378-4290(98)00167-1 (View/edit entry) | 1999 | Model application | 326 |
O'Leary, Garry J.; Christy, Brendan; Nuttall, James; Huth, Neil; Cammarano, Davide; Stöckle, Claudio; Basso, Bruno; Shcherbak, Iurii; Fitzgerald, Glenn; Luo, Qunying; Farre-Codina, Immaculada; Palta, Jairo; Asseng, Senthold; 2015. Response of wheat growth, grain yield and water use to elevated CO 2 under a Free-Air CO 2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Global Change Biology, 21, 2670–2686. 10.1111/gcb.12830 (View/edit entry) | 2015 | Model application | 159 |
Liu, Zhijuan; Yang, Xiaoguang; Hubbard, Kenneth G.; Lin, Xiaomao; 2012. Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biology, 18, 3441–3454. 10.1111/j.1365-2486.2012.02774.x (View/edit entry) | 2012 | Model application | 189 |
Chen, Chao; Wang, Enli; Yu, Qiang; 2010. Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agricultural Water Management, 97, 1175–1184. 10.1016/j.agwat.2008.11.012 (View/edit entry) | 2010 | Model application | 184 |
Lobell, David B.; Hammer, Graeme L.; Chenu, Karine; Zheng, Bangyou; McLean, Greg; Chapman, Scott C.; 2015. The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 21, 4115–4127. 10.1111/gcb.13022 (View/edit entry) | 2015 | Model application | 197 |
Stuermer, Arne; Yin, Jianping; 2009. Low-Speed Aerodynamics and Aeroacoustics of CROR Propulsion Systems. . Volume . (View/edit entry) | 2009 | Model application | 78 |
Asseng, S; Jamieson, P.D; Kimball, B; Pinter, P; Sayre, K; Bowden, J.W; Howden, S.M; 2004. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research, 85, 85–102. 10.1016/S0378-4290(03)00154-0 (View/edit entry) | 2004 | Model application | 288 |
Carberry, P.S.; Hochman, Z.; McCown, R.L.; Dalgliesh, N.P.; Foale, M.A.; Poulton, P.L.; Hargreaves, J.N.G.; Hargreaves, D.M.G.; Cawthray, S.; Hillcoat, N.; Robertson, M.J.; 2002. The FARMSCAPE approach to decision support: farmers', advisers', researchers' monitoring, simulation, communication and performance evaluation. Agricultural Systems, 74, 141–177. 10.1016/S0308-521X(02)00025-2 (View/edit entry) | 2002 | Model application | 277 |
Zheng, Bangyou; Chapman, Scott; Christopher, Jack; Frederiks, Troy; Chenu, Karine; 2015. Frost Trends and their Estimated Impact on Yield in the Australian Wheatbelt. Procedia Environmental Sciences, 29, 171–172. 10.1016/j.proenv.2015.07.244 (View/edit entry) | 2015 | Model application | 130 |
Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian; 2014. The parallel system for integrating impact models and sectors (pSIMS). Environmental Modelling & Software, 62, 509–516. 10.1016/j.envsoft.2014.04.008 (View/edit entry) | 2014 | Model application | 122 |
Gaydon, D.S.; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.; Chen, C.; Choudhury, B.U.; Darai, R.; Das, A.; Hochman, Z.; Horan, H.; Hosang, E.Y.; Kumar, P. Vijaya; Khan, A.S.M.M.R.; Laing, A.M.; Liu, L.; Malaviachichi, M.A.P.W.K.; Mohapatra, K.P.; Muttaleb, M.A.; Power, B.; Radanielson, A.M.; Rai, G.S.; Rashid, M.H.; Rathanayake, W.M.U.K.; Sarker, M.M.R.; Sena, D.R.; Shamim, M.; Subash, N.; Suriadi, A.; Suriyagoda, L.D.B.; Wang, G.; Wang, J.; Yadav, R.K.; Roth, C.H.; 2017. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 204, 52–75. 10.1016/j.fcr.2016.12.015 (View/edit entry) | 2017 | Model application | 137 |
Jin, Zhenong; Ainsworth, Elizabeth A.; Leakey, Andrew D. B.; Lobell, David B.; 2018. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Global Change Biology, 24, e522–e533. 10.1111/gcb.13946 (View/edit entry) | 2018 | Model application | 57 |
Ludwig, Fulco; Asseng, Senthold; 2006. Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural Systems, 90, 159–179. 10.1016/j.agsy.2005.12.002 (View/edit entry) | 2006 | Model application | 206 |
Yang, Xiaoguang; Chen, Fu; Lin, Xiaomao; Liu, Zhijuan; Zhang, Hailin; Zhao, Jin; Li, Kenan; Ye, Qing; Li, Yong; Lv, Shuo; Yang, Peng; Wu, Wenbin; Li, Zhengguo; Lal, Rattan; Tang, Huajun; 2015. Potential benefits of climate change for crop productivity in China. Agricultural and Forest Meteorology, 208, 76–84. 10.1016/j.agrformet.2015.04.024 (View/edit entry) | 2015 | Model application | 131 |
Liu, Zhijuan; Hubbard, Kenneth G.; Lin, Xiaomao; Yang, Xiaoguang; 2013. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology, , n/a–n/a. 10.1111/gcb.12324 (View/edit entry) | 2013 | Model application | 165 |
Inman-Bamber, N.G.; McGlinchey, M.G.; 2003. Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements. Field Crops Research, 83, 125–138. 10.1016/S0378-4290(03)00069-8 (View/edit entry) | 2003 | Model application | 167 |
O'Grady, Michael J.; O'Hare, Gregory M.P.; 2017. Modelling the smart farm. Information Processing in Agriculture, 4, 179–187. 10.1016/j.inpa.2017.05.001 (View/edit entry) | 2017 | Model application | 109 |
Anwar, Muhuddin Rajin; Liu, De Li; Farquharson, Robert; Macadam, Ian; Abadi, Amir; Finlayson, John; Wang, Bin; Ramilan, Thiagarajah; 2015. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agricultural Systems, 132, 133–144. 10.1016/j.agsy.2014.09.010 (View/edit entry) | 2015 | Model application | 148 |
Zheng, Bangyou; Biddulph, Ben; Li, Dora; Kuchel, Haydn; Chapman, Scott; 2013. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. Journal of Experimental Botany, 64, 3747–3761. 10.1093/jxb/ert209 (View/edit entry) | 2013 | Model application | 110 |
Brilli, Lorenzo; Bechini, Luca; Bindi, Marco; Carozzi, Marco; Cavalli, Daniele; Conant, Richard; Dorich, Cristopher D.; Doro, Luca; Ehrhardt, Fiona; Farina, Roberta; Ferrise, Roberto; Fitton, Nuala; Francaviglia, Rosa; Grace, Peter; Iocola, Ileana; Klumpp, Katja; Léonard, Joël; Martin, Raphaël; Massad, Raia Silvia; Recous, Sylvie; Seddaiu, Giovanna; Sharp, Joanna; Smith, Pete; Smith, Ward N.; Soussana, Jean-Francois; Bellocchi, Gianni; 2017. Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Science of The Total Environment, 598, 445–470. 10.1016/j.scitotenv.2017.03.208 (View/edit entry) | 2017 | Model application | 111 |
Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R.; 2017. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Research, 209, 108–119. 10.1016/j.fcr.2017.04.012 (View/edit entry) | 2017 | Model application | 102 |
Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R.; 2017. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. . (View/edit entry) | 2017 | Model application | 102 |
Zhao, Gang; Bryan, Brett A.; King, Darran; Luo, Zhongkui; Wang, Enli; Bende-Michl, Ulrike; Song, Xiaodong; Yu, Qiang; 2013. Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing. Environmental Modelling & Software, 41, 231–238. 10.1016/j.envsoft.2012.08.007 (View/edit entry) | 2013 | Model application | 71 |
Chapman, Scott; Cooper, Mark; Podlich, Dean; Hammer, Graeme; 2003. Evaluating Plant Breeding Strategies by Simulating Gene Action and Dryland Environment Effects. Agronomy Journal, 95, 99–113. 10.2134/agronj2003.9900 (View/edit entry) | 2003 | Model application | 210 |
Sultan, B; Guan, K; Kouressy, M; Biasutti, M; Piani, C; Hammer, G L; McLean, G; Lobell, D B; 2014. Robust features of future climate change impacts on sorghum yields in West Africa. Environmental Research Letters, 9, 104006. 10.1088/1748-9326/9/10/104006 (View/edit entry) | 2014 | Model application | 94 |
Jin, Zhenong; Prasad, Rishi; Shriver, John; Zhuang, Qianlai; 2017. Crop model- and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US Corn system. Precision Agriculture, 18, 779–800. 10.1007/s11119-016-9488-z (View/edit entry) | 2017 | Model application | 42 |
Hunt, J. R.; Kirkegaard, J. A.; 2011. Re-evaluating the contribution of summer fallow rain to wheat yield in southern Australia. Crop and Pasture Science, 62, 915. 10.1071/CP11268 (View/edit entry) | 2011 | Model application | 90 |
Ncube, Bongani; Dimes, John P.; van Wijk, Mark T.; Twomlow, Steve J.; Giller, Ken E.; 2009. Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in south-western Zimbabwe: Unravelling the effects of water and nitrogen using a simulation model. Field Crops Research, 110, 173–184. 10.1016/j.fcr.2008.08.001 (View/edit entry) | 2009 | Model application | 57 |
Hochman, Z.; Holzworth, D.; Hunt, J. R.; 2009. Potential to improve on-farm wheat yield and WUE in Australia. Crop and Pasture Science, 60, 708. 10.1071/CP09064 (View/edit entry) | 2009 | Model application | 127 |
Araujo, Julio A.; Abiodun, Babatunde J.; Crespo, Olivier; 2016. Impacts of drought on grape yields in Western Cape, South Africa. Theoretical and Applied Climatology, 123, 117–130. 10.1007/s00704-014-1336-3 (View/edit entry) | 2016 | Model application | 50 |
Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.; 2017. Assessing climate adaptation options and uncertainties for cereal systems in West Africa. Agricultural and Forest Meteorology, 232, 291–305. 10.1016/j.agrformet.2016.07.021 (View/edit entry) | 2017 | Model application | 58 |
Keating, B.A; McCown, R.L; 2001. Advances in farming systems analysis and intervention. Agricultural Systems, 70, 555–579. 10.1016/S0308-521X(01)00059-2 (View/edit entry) | 2001 | Model application | 144 |
Fitton, Nuala; Bindi, Marco; Brilli, Lorenzo; Cichota, Rogerio; Dibari, Camila; Fuchs, Kathrin; Huguenin-Elie, Olivier; Klumpp, Katja; Lieffering, Mark; Lüscher, Andreas; Martin, Raphael; McAuliffe, Russel; Merbold, Lutz; Newton, Paul; Rees, Robert M.; Smith, Pete; Topp, Cairistiona F.E.; Snow, Valerie; 2019. Modelling biological N fixation and grass-legume dynamics with process-based biogeochemical models of varying complexity. European Journal of Agronomy, 106, 58–66. 10.1016/j.eja.2019.03.008 (View/edit entry) | 2019 | Model application | 10 |
Hammer, Graeme L.; McLean, Greg; Chapman, Scott; Zheng, Bangyou; Doherty, Al; Harrison, Matthew T.; van Oosterom, Erik; Jordan, David; 2014. Crop design for specific adaptation in variable dryland production environments. Crop and Pasture Science, 65, 614. 10.1071/CP14088 (View/edit entry) | 2014 | Model application | 111 |
van Ittersum, M.K.; Howden, S.M.; Asseng, S.; 2003. Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agriculture, Ecosystems & Environment, 97, 255–273. 10.1016/S0167-8809(03)00114-2 (View/edit entry) | 2003 | Model application | 162 |
Jin, Zhenong; Azzari, George; Lobell, David B.; 2017. Improving the accuracy of satellite-based high-resolution yield estimation: A test of multiple scalable approaches. Agricultural and Forest Meteorology, 247, 207–220. 10.1016/j.agrformet.2017.08.001 (View/edit entry) | 2017 | Model application | 74 |
Battisti, Rafael; Sentelhas, Paulo C.; Boote, Kenneth J.; 2017. Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crops Research, 200, 28–37. 10.1016/j.fcr.2016.10.004 (View/edit entry) | 2017 | Model application | 70 |
Basche, Andrea D.; Archontoulis, Sotirios V.; Kaspar, Thomas C.; Jaynes, Dan B.; Parkin, Timothy B.; Miguez, Fernando E.; 2016. Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States. Agriculture, Ecosystems & Environment, 218, 95–106. 10.1016/j.agee.2015.11.011 (View/edit entry) | 2016 | Model application | 136 |
Corbeels, Marc; Berre, David; Rusinamhodzi, Leonard; Lopez-Ridaura, Santiago; 2018. Can we use crop modelling for identifying climate change adaptation options?. Agricultural and Forest Meteorology, 256, 46–52. 10.1016/j.agrformet.2018.02.026 (View/edit entry) | 2018 | Model application | 46 |
Kahinda, Jean-marc Mwenge; Rockström, Johan; Taigbenu, Akpofure E.; Dimes, John; 2007. Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 32, 1068–1073. 10.1016/j.pce.2007.07.011 (View/edit entry) | 2007 | Model application | 100 |
Ahmed, Mukhtar; Stöckle, Claudio O.; Nelson, Roger; Higgins, Stewart; 2017. Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble. Frontiers in Ecology and Evolution, 5, 51. 10.3389/fevo.2017.00051 (View/edit entry) | 2017 | Model application | 21 |
Chenu, Karine; Chapman, Scott C.; Hammer, Graeme L.; Mclean, Greg; Salah, Halim Ben Haj; Tardieu, François; 2008. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant, Cell & Environment, 31, 378–391. 10.1111/j.1365-3040.2007.01772.x (View/edit entry) | 2008 | Model application | 135 |
Humphreys, E.; Gaydon, D.S.; Eberbach, P.L.; 2016. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. Field Crops Research, 197, 83–96. 10.1016/j.fcr.2016.08.016 (View/edit entry) | 2016 | Model application | 54 |
Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios; 2016. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis. Global Change Biology, 22, 666–681. 10.1111/gcb.13101 (View/edit entry) | 2016 | Model application | 69 |
Li, Kenan; Yang, Xiaoguang; Liu, Zhijuan; Zhang, Tianyi; Lu, Shuo; Liu, Yuan; 2014. Low yield gap of winter wheat in the North China Plain. European Journal of Agronomy, 59, 1–12. 10.1016/j.eja.2014.04.007 (View/edit entry) | 2014 | Model application | 71 |
Sadras, Víctor O.; Monzon, Juan P.; 2006. Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina. Field Crops Research, 99, 136–146. 10.1016/j.fcr.2006.04.003 (View/edit entry) | 2006 | Model application | 145 |
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine; Wu, Rongling; 2016. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis. PLOS ONE, 11, e0146385. 10.1371/journal.pone.0146385 (View/edit entry) | 2016 | Model application | 26 |
Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J.; Moore, Kenneth J.; Thorburn, Peter; Archontoulis, Sotirios V.; 2016. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation. Frontiers in Plant Science, 7, . 10.3389/fpls.2016.01630 (View/edit entry) | 2016 | Model application | 82 |
Thorburn, P.J.; Biggs, J.S.; Attard, S.J.; Kemei, J.; 2011. Environmental impacts of irrigated sugarcane production: Nitrogen lost through runoff and leaching. Agriculture, Ecosystems & Environment, 144, 1–12. 10.1016/j.agee.2011.08.003 (View/edit entry) | 2011 | Model application | 106 |
Everingham, Yvette; Sexton, Justin; Skocaj, Danielle; Inman-Bamber, Geoff; 2016. Accurate prediction of sugarcane yield using a random forest algorithm. Agronomy for Sustainable Development, 36, 27. 10.1007/s13593-016-0364-z (View/edit entry) | 2016 | Model application | 148 |
Luo, Qunying; Bellotti, William; Williams, Martin; Wang, Enli; 2009. Adaptation to climate change of wheat growing in South Australia: Analysis of management and breeding strategies. Agriculture, Ecosystems & Environment, 129, 261–267. 10.1016/j.agee.2008.09.010 (View/edit entry) | 2009 | Model application | 111 |
Surendran Nair, Sujithkumar; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando E.; Izaurralde, R. Cesar; Post, Wilfred M.; Dietze, Michael C.; Lynd, Lee R.; Wullschleger, Stan D.; 2012. Bioenergy crop models: descriptions, data requirements, and future challenges. GCB Bioenergy, 4, 620–633. 10.1111/j.1757-1707.2012.01166.x (View/edit entry) | 2012 | Model application | 86 |
Wong, M. T. F.; Asseng, S.; 2006. Determining the Causes of Spatial and Temporal Variability of Wheat Yields at Sub-field Scale Using a New Method of Upscaling a Crop Model. Plant and Soil, 283, 203–215. 10.1007/s11104-006-0012-5 (View/edit entry) | 2006 | Model application | 114 |
Probert, M.E.; Delve, R.J.; Kimani, S.K.; Dimes, J.P.; 2005. Modelling nitrogen mineralization from manures: representing quality aspects by varying C:N ratio of sub-pools. Soil Biology and Biochemistry, 37, 279–287. 10.1016/j.soilbio.2004.07.040 (View/edit entry) | 2005 | Model application | 73 |
Ludwig, Fulco; Asseng, Senthold; 2010. Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. Agricultural Systems, 103, 127–136. 10.1016/j.agsy.2009.11.001 (View/edit entry) | 2010 | Model application | 105 |
Nuttall, J.G.; O'Leary, G.J.; Panozzo, J.F.; Walker, C.K.; Barlow, K.M.; Fitzgerald, G.J.; 2017. Models of grain quality in wheat—A review. Field Crops Research, 202, 136–145. 10.1016/j.fcr.2015.12.011 (View/edit entry) | 2017 | Model application | 157 |
Luo, Zhongkui; Wang, Enli; Sun, Osbert J.; Smith, Chris J.; Probert, Mervyn E.; 2011. Modeling long-term soil carbon dynamics and sequestration potential in semi-arid agro-ecosystems. Agricultural and Forest Meteorology, 151, 1529–1544. 10.1016/j.agrformet.2011.06.011 (View/edit entry) | 2011 | Model application | 83 |
Asseng, S.; van Herwaarden, A. F.; 2003. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments *. Plant and Soil, 256, 217–229. 10.1023/A:1026231904221 (View/edit entry) | 2003 | Model application | 166 |
Bell, Lindsay W.; Kirkegaard, John A.; Swan, Antony; Hunt, James R.; Huth, Neil I.; Fettell, Neil A.; 2011. Impacts of soil damage by grazing livestock on crop productivity. Soil and Tillage Research, 113, 19–29. 10.1016/j.still.2011.02.003 (View/edit entry) | 2011 | Model application | 113 |
Sun, Hongyong; Zhang, Xiying; Wang, Enli; Chen, Suying; Shao, Liwei; 2015. Quantifying the impact of irrigation on groundwater reserve and crop production – A case study in the North China Plain. European Journal of Agronomy, 70, 48–56. 10.1016/j.eja.2015.07.001 (View/edit entry) | 2015 | Model application | 71 |
Li, Fy; Snow, Vo; Holzworth, Dp; 2011. Modelling the seasonal and geographical pattern of pasture production in New Zealand. New Zealand Journal of Agricultural Research, 54, 331–352. 10.1080/00288233.2011.613403 (View/edit entry) | 2011 | Model application | 98 |
Martinez-Feria, Rafael A.; Dietzel, Ranae; Liebman, Matt; Helmers, Matthew J.; Archontoulis, Sotirios V.; 2016. Rye cover crop effects on maize: A system-level analysis. Field Crops Research, 196, 145–159. 10.1016/j.fcr.2016.06.016 (View/edit entry) | 2016 | Model application | 86 |
Tao, Fulu; Rötter, Reimund P.; Palosuo, Taru; Díaz-Ambrona, C.G.H.; Mínguez, M. Inés; Semenov, Mikhail A.; Kersebaum, Kurt Christian; Nendel, Claas; Cammarano, Davide; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodríguez, Lucía; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G.; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Schulman, Alan H.; 2017. Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 82, 144–162. 10.1016/j.eja.2016.10.012 (View/edit entry) | 2017 | Model application | 79 |
Stuermer, A.; Yin, Jianping; 2012. Installation impact on pusher CROR engine low speed performance and noise emission characteristics. International Journal of Engineering Systems Modelling and Simulation, 4, 59. 10.1504/IJESMS.2012.044844 (View/edit entry) | 2012 | Model application | 20 |
Asseng, S.; Turner, N. C.; Keating, B. A.; 2001. Analysis of water- and nitrogen-use efficiency of wheat in a Mediterranean climate. Plant and Soil, 233, 127–143. 10.1023/A:1010381602223 (View/edit entry) | 2001 | Model application | 180 |
Traore, Bouba; Descheemaeker, Katrien; van Wijk, Mark T.; Corbeels, Marc; Supit, Iwan; Giller, Ken E.; 2017. Modelling cereal crops to assess future climate risk for family food self-sufficiency in southern Mali. Field Crops Research, 201, 133–145. 10.1016/j.fcr.2016.11.002 (View/edit entry) | 2017 | Model application | 46 |
Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan; 2016. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology, 22, 1890–1903. 10.1111/gcb.13212 (View/edit entry) | 2016 | Model application | 91 |
Chen, Chao; Wang, Enli; Yu, Qiang; 2010. Modeling Wheat and Maize Productivity as Affected by Climate Variation and Irrigation Supply in North China Plain. Agronomy Journal, 102, 1037–1049. 10.2134/agronj2009.0505 (View/edit entry) | 2010 | Model application | 87 |
Power, B.; Rodriguez, D.; deVoil, P.; Harris, G.; Payero, J.; 2011. A multi-field bio-economic model of irrigated grain–cotton farming systems. Field Crops Research, 124, 171–179. 10.1016/j.fcr.2011.03.018 (View/edit entry) | 2011 | Model application | 48 |
Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.; 2015. What aspects of future rainfall changes matter for crop yields in West Africa?. Geophysical Research Letters, 42, 8001–8010. 10.1002/2015GL063877 (View/edit entry) | 2015 | Model application | 59 |
Brown, Peter D.; Cochrane, Thomas A.; Krom, Thomas D.; 2010. Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing. Agricultural Water Management, 97, 892–900. 10.1016/j.agwat.2010.01.020 (View/edit entry) | 2010 | Model application | 61 |
Palmer, Jeda; Thorburn, Peter J.; Biggs, Jody S.; Dominati, Estelle J.; Probert, Merv E.; Meier, Elizabeth A.; Huth, Neil I.; Dodd, Mike; Snow, Val; Larsen, Joshua R.; Parton, William J.; 2017. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems. Frontiers in Plant Science, 8, 731. 10.3389/fpls.2017.00731 (View/edit entry) | 2017 | Model application | 34 |
Xiao, Dengpan; Shen, Yanjun; Qi, Yongqing; Moiwo, Juana P.; Min, Leilei; Zhang, Yucui; Guo, Ying; Pei, Hongwei; 2017. Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region. Agricultural Systems, 153, 109–117. 10.1016/j.agsy.2017.01.018 (View/edit entry) | 2017 | Model application | 53 |
Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.; Suriadi, A.; Dobermann, A.; 2012. Rice in cropping systems—Modelling transitions between flooded and non-flooded soil environments. European Journal of Agronomy, 39, 9–24. 10.1016/j.eja.2012.01.003 (View/edit entry) | 2012 | Model application | 87 |
Dreccer, M. Fernanda; Fainges, Justin; Whish, Jeremy; Ogbonnaya, Francis C.; Sadras, Victor O.; 2018. Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agricultural and Forest Meteorology, 248, 275–294. 10.1016/j.agrformet.2017.10.006 (View/edit entry) | 2018 | Model application | 71 |
Robertson, M. J.; Holland, J. F.; 2004. Production risk of canola in the semi-arid subtropics of Australia. Australian Journal of Agricultural Research, 55, 525. 10.1071/AR03219 (View/edit entry) | 2004 | Model application | 106 |
Bassu, Simona; Asseng, Senthold; Motzo, Rosella; Giunta, Francesco; 2009. Optimising sowing date of durum wheat in a variable Mediterranean environment. Field Crops Research, 111, 109–118. 10.1016/j.fcr.2008.11.002 (View/edit entry) | 2009 | Model application | 117 |
Chen, Chao; Baethgen, Walter E.; Robertson, Andrew; 2013. Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003. Climatic Change, 116, 767–788. 10.1007/s10584-012-0509-2 (View/edit entry) | 2013 | Model application | 76 |
Wang, Jing; Wang, Enli; Feng, Liping; Yin, Hong; Yu, Weidong; 2013. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Research, 144, 135–144. 10.1016/j.fcr.2012.12.020 (View/edit entry) | 2013 | Model application | 79 |
Wang, Jing; Wang, Enli; Yin, Hong; Feng, Liping; Zhang, Jianping; 2014. Declining yield potential and shrinking yield gaps of maize in the North China Plain. Agricultural and Forest Meteorology, 195, 89–101. 10.1016/j.agrformet.2014.05.004 (View/edit entry) | 2014 | Model application | 58 |
Shelia, Vakhtang; Hansen, James; Sharda, Vaishali; Porter, Cheryl; Aggarwal, Pramod; Wilkerson, Carol J.; Hoogenboom, Gerrit; 2019. A multi-scale and multi-model gridded framework for forecasting crop production, risk analysis, and climate change impact studies. Environmental Modelling & Software, 115, 144–154. 10.1016/j.envsoft.2019.02.006 (View/edit entry) | 2019 | Model application | 28 |
Xiao, Dengpan; Qi, Yongqing; Shen, Yanjun; Tao, Fulu; Moiwo, Juana P.; Liu, Jianfeng; Wang, Rede; Zhang, He; Liu, Fengshan; 2016. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theoretical and Applied Climatology, 124, 653–661. 10.1007/s00704-015-1450-x (View/edit entry) | 2016 | Model application | 54 |
Ahuja, Lajpat R.; Ma, Liwang; Howell, Terry A; 2016. Agricultural System Models in Field Research and Technology Transfer. In: (eds.).. . (View/edit entry) | 2016 | Model application | 101 |
Parsons, David; Nicholson, Charles F.; Blake, Robert W.; Ketterings, Quirine M.; Ramírez-Aviles, Luis; Fox, Danny G.; Tedeschi, Luis O.; Cherney, Jerome H.; 2011. Development and evaluation of an integrated simulation model for assessing smallholder crop–livestock production in Yucatán, Mexico. Agricultural Systems, 104, 1–12. 10.1016/j.agsy.2010.07.006 (View/edit entry) | 2011 | Model application | 44 |
Asseng, S.; Fillery, I. R. P.; Dunin, F. X.; Keating, B. A.; Meinke, H.; 2001. Potential deep drainage under wheat crops in a Mediterranean climate. I. Temporal and spatial variability. Australian Journal of Agricultural Research, 52, 45. 10.1071/AR99186 (View/edit entry) | 2001 | Model application | 119 |
van Oort, P.A.J.; Wang, G.; Vos, J.; Meinke, H.; Li, B.G.; Huang, J.K.; van der Werf, W.; 2016. Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain. Agricultural Water Management, 165, 131–140. 10.1016/j.agwat.2015.11.005 (View/edit entry) | 2016 | Model application | 47 |
Luo, Qunying; Bellotti, William; Williams, Martin; Bryan, Brett; 2005. Potential impact of climate change on wheat yield in South Australia. Agricultural and Forest Meteorology, 132, 273–285. 10.1016/j.agrformet.2005.08.003 (View/edit entry) | 2005 | Model application | 135 |
Huth, N.I.; Thorburn, P.J.; Radford, B.J.; Thornton, C.M.; 2010. Impacts of fertilisers and legumes on N2O and CO2 emissions from soils in subtropical agricultural systems: A simulation study. Agriculture, Ecosystems & Environment, 136, 351–357. 10.1016/j.agee.2009.12.016 (View/edit entry) | 2010 | Model application | 85 |
Luo, Zhongkui; Wang, Enli; Bryan, Brett A.; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike; 2013. Meta-modeling soil organic carbon sequestration potential and its application at regional scale. Ecological Applications, 23, 408–420. 10.1890/12-0672.1 (View/edit entry) | 2013 | Model application | 40 |
Vogeler, Iris; Cichota, Rogerio; Beautrais, Josef; 2016. Linking Land Use Capability classes and APSIM to estimate pasture growth for regional land use planning. Soil Research, 54, 94. 10.1071/SR15018 (View/edit entry) | 2016 | Model application | 9 |
Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V.; Zobel, Zachary; Kotamarthi, Veerabhadra R.; 2017. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO 2. Global Change Biology, 23, 2687–2704. 10.1111/gcb.13617 (View/edit entry) | 2017 | Model application | 88 |
Whitbread, A.M.; Robertson, M.J.; Carberry, P.S.; Dimes, J.P.; 2010. How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. European Journal of Agronomy, 32, 51–58. 10.1016/j.eja.2009.05.004 (View/edit entry) | 2010 | Model application | 109 |
Yu, Qiang; Li, Longhui; Luo, Qunying; Eamus, Derek; Xu, Shouhua; Chen, Chao; Wang, Enli; Liu, Jiandong; Nielsen, David C.; 2014. Year patterns of climate impact on wheat yields: YEAR PATTERNS OF CLIMATE IMPACT ON WHEAT YIELDS. International Journal of Climatology, 34, 518–528. 10.1002/joc.3704 (View/edit entry) | 2014 | Model application | 83 |
Jin, Zhenong; Zhuang, Qianlai; Tan, Zeli; Dukes, Jeffrey S.; Zheng, Bangyou; Melillo, Jerry M.; 2016. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biology, 22, 3112–3126. 10.1111/gcb.13376 (View/edit entry) | 2016 | Model application | 46 |
Marin, Fábio R.; Thorburn, Peter J.; Nassif, Daniel S.P.; Costa, Leandro G.; 2015. Sugarcane model intercomparison: Structural differences and uncertainties under current and potential future climates. Environmental Modelling & Software, 72, 372–386. 10.1016/j.envsoft.2015.02.019 (View/edit entry) | 2015 | Model application | 57 |
Dias, Henrique Boriolo; Sentelhas, Paulo Cesar; 2017. Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields. Field Crops Research, 213, 174–185. 10.1016/j.fcr.2017.07.022 (View/edit entry) | 2017 | Model application | 47 |
Meier, Elizabeth A.; Thorburn, Peter J.; 2016. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments. Frontiers in Plant Science, 7, . 10.3389/fpls.2016.01017 (View/edit entry) | 2016 | Model application | 34 |
Kim, Soo-Hyung; Yang, Yang; Timlin, Dennis J.; Fleisher, David H.; Dathe, Annette; Reddy, Vangimalla R.; Staver, Kenneth; 2012. Modeling Temperature Responses of Leaf Growth, Development, and Biomass in Maize with MAIZSIM. Agronomy Journal, 104, 1523–1537. 10.2134/agronj2011.0321 (View/edit entry) | 2012 | Model application | 52 |
Moore, A.D.; Robertson, M.J.; Routley, R.; 2011. Evaluation of the water use efficiency of alternative farm practices at a range of spatial and temporal scales: A conceptual framework and a modelling approach. Agricultural Systems, 104, 162–174. 10.1016/j.agsy.2010.05.007 (View/edit entry) | 2011 | Model application | 49 |
Holzworth, Dean P.; Huth, Neil I.; de Voil, Peter G.; 2010. Simplifying environmental model reuse. Environmental Modelling & Software, 25, 269–275. 10.1016/j.envsoft.2008.10.018 (View/edit entry) | 2010 | Model application | 63 |
Robertson, Michael; Bathgate, Andrew; Moore, Andrew; Lawes, Roger; Lilley, Julianne; 2009. Seeking simultaneous improvements in farm profit and natural resource indicators: a modelling analysis. Animal Production Science, 49, 826. 10.1071/AN09008 (View/edit entry) | 2009 | Model application | 44 |
Brown, Peter R.; Huth, Neil I.; Banks, Peter B.; Singleton, Grant R.; 2007. Relationship between abundance of rodents and damage to agricultural crops. Agriculture, Ecosystems & Environment, 120, 405–415. 10.1016/j.agee.2006.10.016 (View/edit entry) | 2007 | Model application | 88 |
Vogeler, I.; Beukes, P.; Burggraaf, V.; 2013. Evaluation of mitigation strategies for nitrate leaching on pasture-based dairy systems. Agricultural Systems, 115, 21–28. 10.1016/j.agsy.2012.09.012 (View/edit entry) | 2013 | Model application | 51 |
Oliver, Y. M.; Robertson, M. J.; Stone, P. J.; Whitbread, A.; 2009. Improving estimates of water-limited yield of wheat by accounting for soil type and within-season rainfall. Crop and Pasture Science, 60, 1137. 10.1071/CP09122 (View/edit entry) | 2009 | Model application | 53 |
Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.; 2017. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments. Frontiers in Plant Science, 8, . 10.3389/fpls.2017.00335 (View/edit entry) | 2017 | Model application | 12 |
Smith, Alex; Snapp, Sieglinde; Dimes, John; Gwenambira, Chiwimbo; Chikowo, Regis; 2016. Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi. Agricultural Systems, 145, 139–149. 10.1016/j.agsy.2016.03.008 (View/edit entry) | 2016 | Model application | 77 |
Sida, Tesfaye Shiferaw; Baudron, Frédéric; Kim, Haekoo; Giller, Ken E.; 2018. Climate-smart agroforestry: Faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agricultural and Forest Meteorology, 248, 339–347. 10.1016/j.agrformet.2017.10.013 (View/edit entry) | 2018 | Model application | 74 |
Xin, Yue; Tao, Fulu; 2019. Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain. Science of The Total Environment, 654, 480–492. 10.1016/j.scitotenv.2018.11.126 (View/edit entry) | 2019 | Model application | 31 |
Schnell, R.; Yin, J.; Voss, C.; Nicke, E.; 2010. Assessment and Optimization of the Aerodynamic and Acoustic Characteristics of a Counter Rotating Open Rotor. . Volume . (View/edit entry) | 2010 | Model application | 37 |
Mielenz, Henrike; Thorburn, Peter J.; Harris, Robert H.; Grace, Peter R.; Officer, Sally J.; 2017. Mitigating N2O emissions from cropping systems after conversion from pasture − a modelling approach. European Journal of Agronomy, 82, 254–267. 10.1016/j.eja.2016.06.007 (View/edit entry) | 2017 | Model application | 11 |
Biggs, J.S.; Thorburn, P.J.; Crimp, S.; Masters, B.; Attard, S.J.; 2013. Interactions between climate change and sugarcane management systems for improving water quality leaving farms in the Mackay Whitsunday region, Australia. Agriculture, Ecosystems & Environment, 180, 79–89. 10.1016/j.agee.2011.11.005 (View/edit entry) | 2013 | Model application | 75 |
Araya, A.; Hoogenboom, G.; Luedeling, E.; Hadgu, Kiros M.; Kisekka, Isaya; Martorano, Lucieta G.; 2015. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agricultural and Forest Meteorology, 214, 252–265. 10.1016/j.agrformet.2015.08.259 (View/edit entry) | 2015 | Model application | 108 |
Rurinda, Jairos; van Wijk, Mark T.; Mapfumo, Paul; Descheemaeker, Katrien; Supit, Iwan; Giller, Ken E.; 2015. Climate change and maize yield in southern Africa: what can farm management do?. Global Change Biology, 21, 4588–4601. 10.1111/gcb.13061 (View/edit entry) | 2015 | Model application | 68 |
Robertson, Michael J.; Kirkegaard, John A.; 2005. Water-use efficiency of dryland canola in an equi-seasonal rainfall environment. Australian Journal of Agricultural Research, 56, 1373. 10.1071/AR05030 (View/edit entry) | 2005 | Model application | 73 |
Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.; Timsina, J.; 2012. Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance. European Journal of Agronomy, 39, 35–43. 10.1016/j.eja.2012.01.004 (View/edit entry) | 2012 | Model application | 58 |
Peng, Bin; Guan, Kaiyu; Chen, Min; Lawrence, David M.; Pokhrel, Yadu; Suyker, Andrew; Arkebauer, Timothy; Lu, Yaqiong; 2018. Improving maize growth processes in the community land model: Implementation and evaluation. Agricultural and Forest Meteorology, 250, 64–89. 10.1016/j.agrformet.2017.11.012 (View/edit entry) | 2018 | Model application | 55 |
Kamanga, B. C. G.; Waddington, S. R.; Whitbread, A. M.; Almekinders, C. J. M.; Giller, K. E.; 2014. IMPROVING THE EFFICIENCY OF USE OF SMALL AMOUNTS OF NITROGEN AND PHOSPHORUS FERTILISER ON SMALLHOLDER MAIZE IN CENTRAL MALAWI. Experimental Agriculture, 50, 229–249. 10.1017/S0014479713000513 (View/edit entry) | 2014 | Model application | 50 |
Moeller, Carina; Sauerborn, Joachim; de Voil, Peter; Manschadi, Ahmad M.; Pala, Mustafa; Meinke, Holger; 2014. Assessing the sustainability of wheat-based cropping systems using simulation modelling: sustainability = 42?. Sustainability Science, 9, 1–16. 10.1007/s11625-013-0228-2 (View/edit entry) | 2014 | Model application | 37 |
Dias, Henrique Boriolo; Sentelhas, Paulo Cesar; 2018. Sugarcane yield gap analysis in Brazil – A multi-model approach for determining magnitudes and causes. Science of The Total Environment, 637, 1127–1136. 10.1016/j.scitotenv.2018.05.017 (View/edit entry) | 2018 | Model application | 50 |
Dalgliesh, N. P.; Foale, M. A.; McCown, R. L.; 2009. Re-inventing model-based decision support with Australian dryland farmers. 2. Pragmatic provision of soil information for paddock-specific simulation and farmer decision making. Crop and Pasture Science, 60, 1031. 10.1071/CP08459 (View/edit entry) | 2009 | Model application | 49 |
Heng, L.K.; Asseng, S.; Mejahed, K.; Rusan, M.; 2007. Optimizing wheat productivity in two rain-fed environments of the West Asia–North Africa region using a simulation model. European Journal of Agronomy, 26, 121–129. 10.1016/j.eja.2006.09.001 (View/edit entry) | 2007 | Model application | 82 |
Zhang, Yue; Zhang, Lizhen; Yang, Ning; Huth, Neil; Wang, Enli; van der Werf, Wopke; Evers, Jochem B.; Wang, Qi; Zhang, Dongsheng; Wang, Ruonan; Gao, Hui; Anten, Niels P.R.; 2019. Optimized sowing time windows mitigate climate risks for oats production under cool semi-arid growing conditions. Agricultural and Forest Meteorology, 266, 184–197. 10.1016/j.agrformet.2018.12.019 (View/edit entry) | 2019 | Model application | 8 |
Soufizadeh, S.; Munaro, E.; McLean, G.; Massignam, A.; van Oosterom, E.J.; Chapman, S.C.; Messina, C.; Cooper, M.; Hammer, G.L.; 2018. Modelling the nitrogen dynamics of maize crops – Enhancing the APSIM maize model. European Journal of Agronomy, 100, 118–131. 10.1016/j.eja.2017.12.007 (View/edit entry) | 2018 | Model application | 48 |
Bai, Huizi; Tao, Fulu; Xiao, Dengpan; Liu, Fengshan; Zhang, He; 2016. Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Climatic Change, 135, 539–553. 10.1007/s10584-015-1579-8 (View/edit entry) | 2016 | Model application | 50 |
Kloss, Sebastian; Pushpalatha, Raji; Kamoyo, Kefasi J.; Schütze, Niels; 2012. Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability. Water Resources Management, 26, 997–1014. 10.1007/s11269-011-9906-y (View/edit entry) | 2012 | Model application | 61 |
Sennhenn, Anne; Njarui, Donald M. G.; Maass, Brigitte L.; Whitbread, Anthony M.; 2017. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya — Coping with the Impacts of Climate Variability. Frontiers in Plant Science, 8, 699. 10.3389/fpls.2017.00699 (View/edit entry) | 2017 | Model application | 19 |
Cheeroo-Nayamuth, F.C; Robertson, M.J; Wegener, M.K; Nayamuth, A.R.H; 2000. Using a simulation model to assess potential and attainable sugar cane yield in Mauritius. Field Crops Research, 66, 225–243. 10.1016/S0378-4290(00)00069-1 (View/edit entry) | 2000 | Model application | 80 |
van Rees, Harm; McClelland, Tim; Hochman, Zvi; Carberry, Peter; Hunt, James; Huth, Neil; Holzworth, Dean; 2014. Leading farmers in South East Australia have closed the exploitable wheat yield gap: Prospects for further improvement. Field Crops Research, 164, 1–11. 10.1016/j.fcr.2014.04.018 (View/edit entry) | 2014 | Model application | 66 |
Sun, Hongyong; Zhang, Xiying; Liu, Xiujing; Liu, Xiuwei; Shao, Liwei; Chen, Suying; Wang, Jintao; Dong, Xinliang; 2019. Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain. Agricultural Water Management, 211, 202–209. 10.1016/j.agwat.2018.09.046 (View/edit entry) | 2019 | Model application | 39 |
Luo, Jianmei; Shen, Yanjun; Qi, Yongqing; Zhang, Yucui; Xiao, Dengpan; 2018. Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China. Agricultural Systems, 159, 32–41. 10.1016/j.agsy.2017.10.002 (View/edit entry) | 2018 | Model application | 32 |
Whish, Jeremy; Butler, Giles; Castor, Michael; Cawthray, Shayne; Broad, Ian; Carberry, Peter; Hammer, Graeme; McLean, Greg; Routley, Richard; Yeates, Steven; 2005. Modelling the effects of row configuration on sorghum yield reliability in north-eastern Australia. Australian Journal of Agricultural Research, 56, 11. 10.1071/AR04128 (View/edit entry) | 2005 | Model application | 77 |
Lyon, Drew J.; Hammer, Graeme L.; McLean, Greg B.; Blumenthal, Jürg M.; 2003. Simulation Supplements Field Studies to Determine No-Till Dryland Corn Population Recommendations for Semiarid Western Nebraska. Agronomy Journal, 95, 884–891. 10.2134/agronj2003.8840 (View/edit entry) | 2003 | Model application | 48 |
Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; Zuo, Heping; Yang, Yonghui; 2014. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment. Theoretical and Applied Climatology, 115, 391–410. 10.1007/s00704-013-0895-z (View/edit entry) | 2014 | Model application | 67 |
Rodriguez, D.; de Voil, P.; Hudson, D.; Brown, J. N.; Hayman, P.; Marrou, H.; Meinke, H.; 2018. Predicting optimum crop designs using crop models and seasonal climate forecasts. Scientific Reports, 8, 2231. 10.1038/s41598-018-20628-2 (View/edit entry) | 2018 | Model application | 52 |
He, Liang; Cleverly, James; Chen, Chao; Yang, Xiaoya; Li, Jun; Liu, Wenzhao; Yu, Qiang; 2014. Diverse Responses of Winter Wheat Yield and Water Use to Climate Change and Variability on the Semiarid Loess Plateau in China. Agronomy Journal, 106, 1169–1178. 10.2134/agronj13.0321 (View/edit entry) | 2014 | Model application | 35 |
Inman-Bamber, N.G; Muchow, R.C; Robertson, M.J; 2002. Dry matter partitioning of sugarcane in Australia and South Africa. Field Crops Research, 76, 71–84. 10.1016/S0378-4290(02)00044-8 (View/edit entry) | 2002 | Model application | 86 |
George, Nicholas; Thompson, Sally E.; Hollingsworth, Joy; Orloff, Steven; Kaffka, Stephen; 2018. Measurement and simulation of water-use by canola and camelina under cool-season conditions in California. Agricultural Water Management, 196, 15–23. 10.1016/j.agwat.2017.09.015 (View/edit entry) | 2018 | Model application | 17 |
Kholová, Jana; McLean, Greg; Vadez, Vincent; Craufurd, Peter; Hammer, Graeme L.; 2013. Drought stress characterization of post-rainy season (rabi) sorghum in India. Field Crops Research, 141, 38–46. 10.1016/j.fcr.2012.10.020 (View/edit entry) | 2013 | Model application | 60 |
Sadras, Victor; Baldock, Jeff; Roget, David; Rodriguez, Daniel; 2003. Measuring and modelling yield and water budget components of wheat crops in coarse-textured soils with chemical constraints. Field Crops Research, 84, 241–260. 10.1016/S0378-4290(03)00093-5 (View/edit entry) | 2003 | Model application | 59 |
Rigolot, C.; de Voil, P.; Douxchamps, S.; Prestwidge, D.; Van Wijk, M.; Thornton, P.K.; Rodriguez, D.; Henderson, B.; Medina, D.; Herrero, M.; 2017. Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso. Agricultural Systems, 151, 217–224. 10.1016/j.agsy.2015.12.017 (View/edit entry) | 2017 | Model application | 42 |
Innes, P.J.; Tan, D.K.Y.; Van Ogtrop, F.; Amthor, J.S.; 2015. Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agricultural and Forest Meteorology, 208, 95–107. 10.1016/j.agrformet.2015.03.018 (View/edit entry) | 2015 | Model application | 51 |
Sun, Hongyong; Zhang, Xiying; Wang, Enli; Chen, Suying; Shao, Liwei; Qin, Wenli; 2016. Assessing the contribution of weather and management to the annual yield variation of summer maize using APSIM in the North China Plain. Field Crops Research, 194, 94–102. 10.1016/j.fcr.2016.05.007 (View/edit entry) | 2016 | Model application | 41 |
Bassu, Simona; Asseng, Senthold; Richards, Richard; 2011. Yield benefits of triticale traits for wheat under current and future climates. Field Crops Research, 124, 14–24. 10.1016/j.fcr.2011.05.020 (View/edit entry) | 2011 | Model application | 38 |
Ahmed, Mukhtar; Akram, Mustazhar Nasib; Asim, Muhammad; Aslam, Muhammad; Hassan, Fayyaz-ul; Higgins, Stewart; Stöckle, Claudio O.; Hoogenboom, Gerrit; 2016. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture, 123, 384–401. 10.1016/j.compag.2016.03.015 (View/edit entry) | 2016 | Model application | 75 |
Godde, Cécile M.; Thorburn, Peter J.; Biggs, Jody S.; Meier, Elizabeth A.; 2016. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia. Frontiers in Plant Science, 7, . 10.3389/fpls.2016.00661 (View/edit entry) | 2016 | Model application | 29 |
Reyenga, P.J.; Howden, S.M.; Meinke, H.; McKeon, G.M.; 1999. Modelling global change impacts on wheat cropping in south-east Queensland, Australia. Environmental Modelling & Software, 14, 297–306. 10.1016/S1364-8152(98)00081-4 (View/edit entry) | 1999 | Model application | 134 |
Lilley, J. M.; Kirkegaard, J. A.; 2007. Seasonal variation in the value of subsoil water to wheat: simulation studies in southern New South Wales. Australian Journal of Agricultural Research, 58, 1115. 10.1071/AR07046 (View/edit entry) | 2007 | Model application | 71 |
Sadras, V.O.; Rodriguez, D.; 2010. Modelling the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency of wheat in eastern Australia. Field Crops Research, 118, 297–305. 10.1016/j.fcr.2010.06.010 (View/edit entry) | 2010 | Model application | 74 |
Bai, Huizi; Tao, Fulu; 2017. Sustainable intensification options to improve yield potential and eco-efficiency for rice-wheat rotation system in China. Field Crops Research, 211, 89–105. 10.1016/j.fcr.2017.06.010 (View/edit entry) | 2017 | Model application | 35 |
Liu, De Li; Zeleke, Ketema Tilahun; Wang, Bin; Macadam, Ian; Scott, Fiona; Martin, Robert John; 2017. Crop residue incorporation can mitigate negative climate change impacts on crop yield and improve water use efficiency in a semiarid environment. European Journal of Agronomy, 85, 51–68. 10.1016/j.eja.2017.02.004 (View/edit entry) | 2017 | Model application | 50 |
Wang, Bin; Feng, Puyu; Liu, De Li; Waters, Cathy; 2020. Modelling biophysical vulnerability of wheat to future climate change: A case study in the eastern Australian wheat belt. Ecological Indicators, 114, 106290. 10.1016/j.ecolind.2020.106290 (View/edit entry) | 2020 | Model application | 6 |
Luo, Q; Jones, Rn; Williams, M; Bryan, B; Bellotti, W; 2005. Probabilistic distributions of regional climate change and their application in risk analysis of wheat production. Climate Research, 29, 41–52. 10.3354/cr029041 (View/edit entry) | 2005 | Model application | 52 |
Montgomery, Stephanie C.; Martin, Robert J.; Guppy, Chris; Wright, Graeme C.; Flavel, Richard J.; Phan, Sophanara; Im, Sophoeun; Touch, Van; Andersson, Karl; Tighe, Matthew K.; 2016. Crop choice and planting time for upland crops in Northwest Cambodia. Field Crops Research, 198, 290–302. 10.1016/j.fcr.2016.07.002 (View/edit entry) | 2016 | Model application | 7 |
Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying; Hui, Dafeng; 2016. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain. PLOS ONE, 11, e0162655. 10.1371/journal.pone.0162655 (View/edit entry) | 2016 | Model application | 14 |
Bryan, B A; King, D; Zhao, G; 2014. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps. Environmental Research Letters, 9, 044005. 10.1088/1748-9326/9/4/044005 (View/edit entry) | 2014 | Model application | 38 |
Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel; 2016. Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling. Science of The Total Environment, 565, 564–575. 10.1016/j.scitotenv.2016.05.006 (View/edit entry) | 2016 | Model application | 9 |
Stuermer, Arne; Yin, Jianping; 2010. Aerodynamic and Aeroacoustic Installation Effects for Pusher-Configuration CROR Propulsion Systems. . Volume . (View/edit entry) | 2010 | Model application | 28 |
Probert, Me; Keating, Ba; Thompson, Jp; Parton, Wj; 1995. Modelling water, nitrogen, and crop yield for a long-term fallow management experiment. Australian Journal of Experimental Agriculture, 35, 941. 10.1071/EA9950941 (View/edit entry) | 1995 | Model application | 123 |
Akkermans, Rinie; Delfs, Jan; Lummer, Markus; Siefert, Malte; Caruelle, Bastien; Tiedemann, Christian; 2012. Handling of Non-Periodic Contra Rotating Open Rotor Data. . Volume . (View/edit entry) | 2012 | Model application | 12 |
Huth, N.I.; Bristow, K.L.; Verburg, K.; 2012. SWIM3: Model Use, Calibration, and Validation. Transactions of the ASABE, 55, 1303–1313. 10.13031/2013.42243 (View/edit entry) | 2012 | Model application | 82 |
Salo, T. J.; Palosuo, T.; Kersebaum, K. C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; Ferrise, R.; Olesen, J. E.; Patil, R. H.; Ruget, F.; Takáč, J.; Hlavinka, P.; Trnka, M.; Rötter, R. P.; 2016. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. The Journal of Agricultural Science, 154, 1218–1240. 10.1017/S0021859615001124 (View/edit entry) | 2016 | Model application | 57 |
Huth, Neil I.; Banabas, Murom; Nelson, Paul N.; Webb, Michael; 2014. Development of an oil palm cropping systems model: Lessons learned and future directions. Environmental Modelling & Software, 62, 411–419. 10.1016/j.envsoft.2014.06.021 (View/edit entry) | 2014 | Model application | 54 |
Yin, Jianping; Stuermer, Arne; Aversano, Marco; 2009. Coupled uRANS and FW-H Analysis of Installed Pusher Propeller Aircraft Configurations. . Volume . (View/edit entry) | 2009 | Model application | 24 |
Moore, Andrew D.; 2009. Opportunities and trade-offs in dual-purpose cereals across the southern Australian mixed-farming zone: a modelling study. Animal Production Science, 49, 759. 10.1071/AN09006 (View/edit entry) | 2009 | Model application | 54 |
Lisson, S.N; Robertson, M.J; Keating, B.A; Muchow, R.C; 2000. Modelling sugarcane production systems. Field Crops Research, 68, 31–48. 10.1016/S0378-4290(00)00108-8 (View/edit entry) | 2000 | Model application | 64 |
Feng, Puyu; Wang, Bin; Liu, De Li; Waters, Cathy; Yu, Qiang; 2019. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agricultural and Forest Meteorology, 275, 100–113. 10.1016/j.agrformet.2019.05.018 (View/edit entry) | 2019 | Model application | 78 |
Peake, A. S.; Robertson, M. J.; Bidstrup, R. J.; 2008. Optimising maize plant population and irrigation strategies on the Darling Downs using the APSIM crop simulation model. Australian Journal of Experimental Agriculture, 48, 313. 10.1071/EA06108 (View/edit entry) | 2008 | Model application | 23 |
Akkermans, R. A. D.; Stuermer, A.; Delfs, J. W.; 2016. Active Flow Control for Interaction Noise Reduction of Contra-Rotating Open Rotors. AIAA Journal, 54, 1413–1423. 10.2514/1.J053756 (View/edit entry) | 2016 | Model application | 25 |
Gobbett, D. L.; Hochman, Z.; Horan, H.; Navarro Garcia, J.; Grassini, P.; Cassman, K. G.; 2017. Yield gap analysis of rainfed wheat demonstrates local to global relevance. The Journal of Agricultural Science, 155, 282–299. 10.1017/S0021859616000381 (View/edit entry) | 2017 | Model application | 31 |
Robertson, M. J.; Lilley, J. M.; 2016. Simulation of growth, development and yield of canola (Brassica napus) in APSIM. Crop and Pasture Science, 67, 332. 10.1071/CP15267 (View/edit entry) | 2016 | Model application | 37 |
Tang, Jianzhao; Wang, Jing; Fang, Quanxiao; Dayananda, Buddhi; Yu, Qiang; Zhao, Peiyi; Yin, Hong; Pan, Xuebiao; 2019. Identifying agronomic options for better potato production and conserving water resources in the agro-pastoral ecotone in North China. Agricultural and Forest Meteorology, 272, 91–101. 10.1016/j.agrformet.2019.04.001 (View/edit entry) | 2019 | Model application | 14 |
Akinseye, F.M; Adam, M.; Agele, S.O; Hoffmann, M.P.; Traore, P.C.S; Whitbread, A.M.; 2017. Assessing crop model improvements through comparison of sorghum ( sorghum bicolor L. moench) simulation models: A case study of West African varieties. Field Crops Research, 201, 19–31. 10.1016/j.fcr.2016.10.015 (View/edit entry) | 2017 | Model application | 35 |
Fosu-Mensah, B. Y.; MacCarthy, D. S.; Vlek, P. L. G.; Safo, E. Y.; 2012. Simulating impact of seasonal climatic variation on the response of maize (Zea mays L.) to inorganic fertilizer in sub-humid Ghana. Nutrient Cycling in Agroecosystems, 94, 255–271. 10.1007/s10705-012-9539-4 (View/edit entry) | 2012 | Model application | 31 |
Teixeira, Edmar I.; Zhao, Gang; Ruiter, John de; Brown, Hamish; Ausseil, Anne-Gaelle; Meenken, Esther; Ewert, Frank; 2017. The interactions between genotype, management and environment in regional crop modelling. European Journal of Agronomy, 88, 106–115. 10.1016/j.eja.2016.05.005 (View/edit entry) | 2017 | Model application | 31 |
Chauhan, Yashvir S.; Wright, Graeme C.; Holzworth, Dean; Rachaputi, Rao C. N.; Payero, José O.; 2013. AQUAMAN: a web-based decision support system for irrigation scheduling in peanuts. Irrigation Science, 31, 271–283. 10.1007/s00271-011-0296-y (View/edit entry) | 2013 | Model application | 34 |
Lawes, R.A.; Oliver, Y.M.; Robertson, M.J.; 2009. Integrating the effects of climate and plant available soil water holding capacity on wheat yield. Field Crops Research, 113, 297–305. 10.1016/j.fcr.2009.06.008 (View/edit entry) | 2009 | Model application | 56 |
Wang, Sha; Wang, Enli; Wang, Fei; Tang, Liang; 2012. Phenological development and grain yield of canola as affected by sowing date and climate variation in the Yangtze River Basin of China. Crop and Pasture Science, 63, 478. 10.1071/CP11332 (View/edit entry) | 2012 | Model application | 34 |
O’Leary, Garry J; 2000. A review of three sugarcane simulation models with respect to their prediction of sucrose yield. Field Crops Research, 68, 97–111. 10.1016/S0378-4290(00)00112-X (View/edit entry) | 2000 | Model application | 95 |
Islam, M. R.; Garcia, S. C.; Clark, C. E. F.; Kerrisk, K. L.; 2015. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options. Asian-Australasian Journal of Animal Sciences, 28, 703–715. 10.5713/ajas.14.0384 (View/edit entry) | 2015 | Model application | 3 |
Keating, B.A; Gaydon, D; Huth, N.I; Probert, M.E; Verburg, K; Smith, C.J; Bond, W; 2002. Use of modelling to explore the water balance of dryland farming systems in the Murray-Darling Basin, Australia. European Journal of Agronomy, 18, 159–169. 10.1016/S1161-0301(02)00102-8 (View/edit entry) | 2002 | Model application | 80 |
Inman-Bamber, N.G.; Lakshmanan, P.; Park, S.; 2012. Sugarcane for water-limited environments: Theoretical assessment of suitable traits. Field Crops Research, 134, 95–104. 10.1016/j.fcr.2012.05.004 (View/edit entry) | 2012 | Model application | 81 |
Zhu, XinGuang; Zhang, GuiLian; Tholen, Danny; Wang, Yu; Xin, ChangPeng; Song, QingFeng; 2011. The next generation models for crops and agro-ecosystems. Science China Information Sciences, 54, 589–597. 10.1007/s11432-011-4197-8 (View/edit entry) | 2011 | Model application | 22 |
Wang, Jing; Wang, Enli; Luo, Qunying; Kirby, Mac; 2009. Modelling the sensitivity of wheat growth and water balance to climate change in Southeast Australia. Climatic Change, 96, 79–96. 10.1007/s10584-009-9599-x (View/edit entry) | 2009 | Model application | 62 |
Marin, Fábio R.; Thorburn, Peter J.; da Costa, Leandro G.; Otto, Rafael; 2014. Simulating Long-Term Effects of Trash Management on Sugarcane Yield for Brazilian Cropping Systems. Sugar Tech, 16, 164–173. 10.1007/s12355-013-0265-2 (View/edit entry) | 2014 | Model application | 26 |
Radanielson, A.M.; Gaydon, D.S.; Li, T.; Angeles, O.; Roth, C.H.; 2018. Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. European Journal of Agronomy, 100, 44–55. 10.1016/j.eja.2018.01.015 (View/edit entry) | 2018 | Model application | 52 |
Zingore, S.; González-Estrada, E.; Delve, R.J.; Herrero, M.; Dimes, J.P.; Giller, K.E.; 2009. An integrated evaluation of strategies for enhancing productivity and profitability of resource-constrained smallholder farms in Zimbabwe. Agricultural Systems, 101, 57–68. 10.1016/j.agsy.2009.03.003 (View/edit entry) | 2009 | Model application | 48 |
Hochman, Zvi; Horan, Heidi; Reddy, D. Raji; Sreenivas, G.; Tallapragada, Chiranjeevi; Adusumilli, Ravindra; Gaydon, Donald S.; Laing, Alison; Kokic, Philip; Singh, Kamalesh K.; Roth, Christian H.; 2017. Smallholder farmers managing climate risk in India: 2. Is it climate-smart?. Agricultural Systems, 151, 61–72. 10.1016/j.agsy.2016.11.007 (View/edit entry) | 2017 | Model application | 23 |
Moeller, Carina; Smith, Ian; Asseng, Senthold; Ludwig, Fulco; Telcik, Nicola; 2008. The potential value of seasonal forecasts of rainfall categories—Case studies from the wheatbelt in Western Australia's Mediterranean region. Agricultural and Forest Meteorology, 148, 606–618. 10.1016/j.agrformet.2007.11.004 (View/edit entry) | 2008 | Model application | 52 |
Wong, M. T. F.; Asseng, S.; Zhang, H.; 2006. A flexible approach to managing variability in grain yield and nitrate leaching at within-field to farm scales. Precision Agriculture, 7, 405–417. 10.1007/s11119-006-9023-8 (View/edit entry) | 2006 | Model application | 34 |
Kirkegaard, J. A.; Lilley, J. M.; Brill, R. D.; Sprague, S. J.; Fettell, N. A.; Pengilley, G. C.; 2016. Re-evaluating sowing time of spring canola (Brassica napus L.) in south-eastern Australia—how early is too early?. Crop and Pasture Science, 67, 381. 10.1071/CP15282 (View/edit entry) | 2016 | Model application | 40 |
Birch, C. J.; Stephen, K.; McLean, G.; Doherty, A.; Hammer, G. L.; Robertson, M. J.; 2008. Reliability of production of quick to medium maturity maize in areas of variable rainfall in north-east Australia. Australian Journal of Experimental Agriculture, 48, 326. 10.1071/EA06104 (View/edit entry) | 2008 | Model application | 25 |
Ojeda, Jonathan J.; Volenec, Jeffrey J.; Brouder, Sylvie M.; Caviglia, Octavio P.; Agnusdei, Mónica G.; 2017. Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments. GCB Bioenergy, 9, 796–816. 10.1111/gcbb.12384 (View/edit entry) | 2017 | Model application | 38 |
Bai, Huizi; Xiao, Dengpan; Zhang, He; Tao, Fulu; Hu, Yuhun; 2019. Impact of warming climate, sowing date, and cultivar shift on rice phenology across China during 1981–2010. International Journal of Biometeorology, 63, 1077–1089. 10.1007/s00484-019-01723-z (View/edit entry) | 2019 | Model application | 9 |
Holzworth, Dean; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.; Zheng, B.; Snow, V.; 2018. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environmental Modelling & Software, 103, 43–51. 10.1016/j.envsoft.2018.02.002 (View/edit entry) | 2018 | Model application | 117 |
Kandulu, John M.; Bryan, Brett A.; King, Darran; Connor, Jeffery D.; 2012. Mitigating economic risk from climate variability in rain-fed agriculture through enterprise mix diversification. Ecological Economics, 79, 105–112. 10.1016/j.ecolecon.2012.04.025 (View/edit entry) | 2012 | Model application | 70 |
Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; O’Leary, Garry; Macadam, Ian; Yang, Yonghui; 2016. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type. Theoretical and Applied Climatology, 123, 565–579. 10.1007/s00704-015-1376-3 (View/edit entry) | 2016 | Model application | 39 |
Vanuytrecht, Eline; Thorburn, Peter J.; 2017. Responses to atmospheric CO 2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development. Global Change Biology, 23, 1806–1820. 10.1111/gcb.13600 (View/edit entry) | 2017 | Model application | 31 |
Rodriguez, D.; Nuttall, J.; Sadras, V. O.; van Rees, H.; Armstrong, R.; 2006. Impact of subsoil constraints on wheat yield and gross margin on fine-textured soils of the southern Victorian Mallee. Australian Journal of Agricultural Research, 57, 355. 10.1071/AR04133 (View/edit entry) | 2006 | Model application | 39 |
Xin, Yue; Tao, Fulu; 2020. Developing climate-smart agricultural systems in the North China Plain. Agriculture, Ecosystems & Environment, 291, 106791. 10.1016/j.agee.2019.106791 (View/edit entry) | 2020 | Model application | 17 |
Feng, Puyu; Wang, Bin; Liu, De Li; Waters, Cathy; Xiao, Dengpan; Shi, Lijie; Yu, Qiang; 2020. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agricultural and Forest Meteorology, 285, 107922. 10.1016/j.agrformet.2020.107922 (View/edit entry) | 2020 | Model application | 42 |
Yan, Zongzheng; Zhang, Xiying; Rashid, Muhammad Adil; Li, Hongjun; Jing, Haichun; Hochman, Zvi; 2020. Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change. Agricultural Systems, 178, 102745. 10.1016/j.agsy.2019.102745 (View/edit entry) | 2020 | Model application | 18 |
Lv, Shuo; Yang, Xiaoguang; Lin, Xiaomao; Liu, Zhijuan; Zhao, Jin; Li, Kenan; Mu, Chenying; Chen, Xiaochao; Chen, Fanjun; Mi, Guohua; 2015. Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades. Agricultural and Forest Meteorology, 205, 1–10. 10.1016/j.agrformet.2015.02.008 (View/edit entry) | 2015 | Model application | 43 |
Meinke, H.; Hammer, G.L.; van Keulen, H.; Rabbinge, R.; 1998. Improving wheat simulation capabilities in Australia from a cropping systems perspective III. The integrated wheat model (I_WHEAT). European Journal of Agronomy, 8, 101–116. 10.1016/S1161-0301(97)00015-4 (View/edit entry) | 1998 | Model application | 81 |
Everingham, Y.L.; Smyth, C.W.; Inman-Bamber, N.G.; 2009. Ensemble data mining approaches to forecast regional sugarcane crop production. Agricultural and Forest Meteorology, 149, 689–696. 10.1016/j.agrformet.2008.10.018 (View/edit entry) | 2009 | Model application | 39 |
Li, Ting-Ting; Zhang, Wei; Wang, Jun; Zhang, Wen; Wang, Guo-Cheng; Xu, Jing-Jing; Zhang, Qing; 2016. Parameterizing an agricultural production model for simulating nitrous oxide emissions in a wheat–maize system in the North China Plain. Atmospheric and Oceanic Science Letters, 9, 403–410. 10.1080/16742834.2016.1230002 (View/edit entry) | 2016 | Model application | 3 |
Houshmandfar, Alireza; Fitzgerald, Glenn J.; O'Leary, Garry; Tausz-Posch, Sabine; Fletcher, Andrew; Tausz, Michael; 2018. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO 2. Physiologia Plantarum, 163, 516–529. 10.1111/ppl.12676 (View/edit entry) | 2018 | Model application | 40 |
Yang, X.; Chen, Ch.; Luo, Q.; Li, L.; Yu, Q.; 2011. Climate change effects on wheat yield and water use in oasis cropland. International Journal of Plant Production, 5, . 10.22069/ijpp.2012.722 (View/edit entry) | 2011 | Model application | 24 |
Masjedi, Ali; Zhao, Jieqiong; Thompson, Addie M.; Yang, Kai-Wei; Flatt, John E.; Crawford, Melba M.; Ebert, David S.; Tuinstra, Mitchell R.; Hammer, Graeme; Chapman, Scott; 2018. Sorghum Biomass Prediction Using Uav-Based Remote Sensing Data and Crop Model Simulation. . Volume . (View/edit entry) | 2018 | Model application | 25 |
Xiao, Dengpan; Tao, Fulu; Shen, Yanjun; Qi, Yongqing; 2016. Combined impact of climate change, cultivar shift, and sowing date on spring wheat phenology in Northern China. Journal of Meteorological Research, 30, 820–831. 10.1007/s13351-016-5108-0 (View/edit entry) | 2016 | Model application | 13 |
Manschadi, A. M.; Christopher, J. T.; Hammer, G. L.; Devoil, P.; 2010. Experimental and modelling studies of drought‐adaptive root architectural traits in wheat ( Triticum aestivum L.). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 144, 458–462. 10.1080/11263501003731805 (View/edit entry) | 2010 | Model application | 72 |
Moore, Andrew D.; Eckard, Richard J.; Thorburn, Peter J.; Grace, Peter R.; Wang, Enli; Chen, Deli; 2014. Mathematical modeling for improved greenhouse gas balances, agro-ecosystems, and policy development: lessons from the Australian experience: Mathematical modeling for improved GHG balances, agro-ecosystems, and policy development. Wiley Interdisciplinary Reviews: Climate Change, 5, 735–752. 10.1002/wcc.304 (View/edit entry) | 2014 | Model application | 19 |
Zhao, Jin; Yang, Xiaoguang; Liu, Zhijuan; Pullens, Johannes W.M.; Chen, Ji; Marek, Gary W.; Chen, Yong; Lv, Shuo; Sun, Shuang; 2020. Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China. Agricultural Water Management, 232, 106018. 10.1016/j.agwat.2020.106018 (View/edit entry) | 2020 | Model application | 8 |
Robertson, M.J.; Sakala, W.; Benson, T.; Shamudzarira, Z.; 2005. Simulating response of maize to previous velvet bean (Mucuna pruriens) crop and nitrogen fertiliser in Malawi. Field Crops Research, 91, 91–105. 10.1016/j.fcr.2004.06.009 (View/edit entry) | 2005 | Model application | 63 |
Kassie, Belay T.; Asseng, Senthold; Porter, Cheryl H.; Royce, Frederick S.; 2016. Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. European Journal of Agronomy, 81, 27–36. 10.1016/j.eja.2016.08.012 (View/edit entry) | 2016 | Model application | 49 |
Peake, A.S.; Huth, N.I.; Carberry, P.S.; Raine, S.R.; Smith, R.J.; 2014. Quantifying potential yield and lodging-related yield gaps for irrigated spring wheat in sub-tropical Australia. Field Crops Research, 158, 1–14. 10.1016/j.fcr.2013.12.001 (View/edit entry) | 2014 | Model application | 30 |
Dixit, P. N.; Cooper, P. J. M.; Dimes, J.; Rao, K. P.; 2011. ADDING VALUE TO FIELD-BASED AGRONOMIC RESEARCH THROUGH CLIMATE RISK ASSESSMENT: A CASE STUDY OF MAIZE PRODUCTION IN KITALE, KENYA. Experimental Agriculture, 47, 317–338. 10.1017/S0014479710000773 (View/edit entry) | 2011 | Model application | 41 |
Dillmann, Andreas; Heller, Gerd; Kreplin, Hans-Peter; Nitsche, Wolfgang; Peltzer, Inken; Stuermer, Arne; Yin, Jianping; 2013. Pylon Trailing Edge Blowing for the Control of CROR Unsteady Blade Loads. In: (eds.)New Results in Numerical and Experimental Fluid Mechanics VIII.. 715–722. (View/edit entry) | 2013 | Model application | 12 |
Liu, Leilei; Zhu, Yan; Tang, Liang; Cao, Weixing; Wang, Enli; 2013. Impacts of climate changes, soil nutrients, variety types and management practices on rice yield in East China: A case study in the Taihu region. Field Crops Research, 149, 40–48. 10.1016/j.fcr.2013.04.022 (View/edit entry) | 2013 | Model application | 47 |
Teixeira, Edmar I.; Brown, Hamish E.; Sharp, Joanna; Meenken, Esther D.; Ewert, Frank; 2015. Evaluating methods to simulate crop rotations for climate impact assessments – A case study on the Canterbury plains of New Zealand. Environmental Modelling & Software, 72, 304–313. 10.1016/j.envsoft.2015.05.012 (View/edit entry) | 2015 | Model application | 32 |
Asseng, Senthold; Milroy, Stephen P.; 2006. Simulation of environmental and genetic effects on grain protein concentration in wheat. European Journal of Agronomy, 25, 119–128. 10.1016/j.eja.2006.04.005 (View/edit entry) | 2006 | Model application | 59 |
Bell, Lindsay W.; Hargreaves, John N. G.; Lawes, Roger A.; Robertson, Michael J.; 2009. Sacrificial grazing of wheat crops: identifying tactics and opportunities in Western Australia's grainbelt using simulation approaches. Animal Production Science, 49, 797. 10.1071/AN09014 (View/edit entry) | 2009 | Model application | 27 |
Sun, Shuang; Yang, Xiaoguang; Lin, Xiaomao; Zhao, Jin; Liu, Zhijuan; Zhang, Tianyi; Xie, Wenjuan; 2019. Seasonal variability in potential and actual yields of winter wheat in China. Field Crops Research, 240, 1–11. 10.1016/j.fcr.2019.05.016 (View/edit entry) | 2019 | Model application | 12 |
Snapp, Sieglinde S.; Grabowski, Philip; Chikowo, Regis; Smith, Alex; Anders, Erin; Sirrine, Dorothy; Chimonyo, Vimbayi; Bekunda, Mateete; 2018. Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible?. Agricultural Systems, 162, 77–88. 10.1016/j.agsy.2018.01.012 (View/edit entry) | 2018 | Model application | 60 |
Soltani, Afshin; Sinclair, Thomas R.; 2015. A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crops Research, 175, 37–46. 10.1016/j.fcr.2014.10.019 (View/edit entry) | 2015 | Model application | 38 |
Tang, Jianzhao; Wang, Jing; Fang, Quanxiao; Wang, Enli; Yin, Hong; Pan, Xuebiao; 2018. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 98, 82–94. 10.1016/j.eja.2018.05.008 (View/edit entry) | 2018 | Model application | 21 |
Perry, Eileen M.; Fitzgerald, Glenn J.; Nuttall, James G.; O’Leary, Garry J.; Schulthess, Urs; Whitlock, Andrew; 2012. Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a Canopy Chlorophyll Content Index. Field Crops Research, 134, 158–164. 10.1016/j.fcr.2012.06.003 (View/edit entry) | 2012 | Model application | 35 |
Cichota, Rogerio; Vogeler, Iris; Snow, Val O.; Webb, Trevor H.; 2013. Ensemble pedotransfer functions to derive hydraulic properties for New Zealand soils. Soil Research, 51, 94. 10.1071/SR12338 (View/edit entry) | 2013 | Model application | 54 |
O'Leary, Garry J.; Liu, De Li; Ma, Yuchun; Li, Frank Yonghong; McCaskill, Malcolm; Conyers, Mark; Dalal, Ram; Reeves, Steven; Page, Kathryn; Dang, Yash P.; Robertson, Fiona; 2016. Modelling soil organic carbon 1. Performance of APSIM crop and pasture modules against long-term experimental data. Geoderma, 264, 227–237. 10.1016/j.geoderma.2015.11.004 (View/edit entry) | 2016 | Model application | 34 |
Luo, Q; Bellotti, W; Hayman, P; Williams, M; Devoil, P; 2010. Effects of changes in climatic variability on agricultural production. Climate Research, 42, 111–117. 10.3354/cr00868 (View/edit entry) | 2010 | Model application | 30 |
Bai, Huiqing; Wang, Jing; Fang, Quanxiao; Yin, Hong; 2019. Modeling the sensitivity of wheat yield and yield gap to temperature change with two contrasting methods in the North China Plain. Climatic Change, 156, 589–607. 10.1007/s10584-019-02526-2 (View/edit entry) | 2019 | Model application | 5 |
Zhao, Zhigan; Wang, Enli; Wang, Zhimin; Zang, Hecang; Liu, Yunpeng; Angus, John F.; 2014. A reappraisal of the critical nitrogen concentration of wheat and its implications on crop modeling. Field Crops Research, 164, 65–73. 10.1016/j.fcr.2014.05.004 (View/edit entry) | 2014 | Model application | 40 |
He, Di; Wang, Enli; Wang, Jing; Robertson, Michael J.; 2017. Data requirement for effective calibration of process-based crop models. Agricultural and Forest Meteorology, 234, 136–148. 10.1016/j.agrformet.2016.12.015 (View/edit entry) | 2017 | Model application | 54 |
Akponikpè, P.B.I.; Minet, J.; Gérard, B.; Defourny, P.; Bielders, C.L.; 2011. Spatial fields’ dispersion as a farmer strategy to reduce agro-climatic risk at the household level in pearl millet-based systems in the Sahel: A modeling perspective. Agricultural and Forest Meteorology, 151, 215–227. 10.1016/j.agrformet.2010.10.007 (View/edit entry) | 2011 | Model application | 31 |
Zeleke, K.T.; Luckett, D.J.; Cowley, R.B.; 2014. The influence of soil water conditions on canola yields and production in Southern Australia. Agricultural Water Management, 144, 20–32. 10.1016/j.agwat.2014.05.016 (View/edit entry) | 2014 | Model application | 21 |
Yang, Xiaoya; Li, Jun; Yu, Qiang; Ma, Yuchun; Tong, Xiaojuan; Feng, Yan; Tong, Yingxiang; 2019. Impacts of diffuse radiation fraction on light use efficiency and gross primary production of winter wheat in the North China Plain. Agricultural and Forest Meteorology, 275, 233–242. 10.1016/j.agrformet.2019.05.028 (View/edit entry) | 2019 | Model application | 14 |
Cichota, R.; Snow, V.O.; Vogeler, I.; 2013. Modelling nitrogen leaching from overlapping urine patches. Environmental Modelling & Software, 41, 15–26. 10.1016/j.envsoft.2012.10.011 (View/edit entry) | 2013 | Model application | 37 |
Humphreys, E.; Gaydon, D.S.; 2015. Options for increasing the productivity of the rice–wheat system of north-west India while reducing groundwater depletion. Part 1. Rice variety duration, sowing date and inclusion of mungbean. Field Crops Research, 173, 68–80. 10.1016/j.fcr.2014.11.018 (View/edit entry) | 2015 | Model application | 41 |
Robertson, M. J.; Carberry, P. S.; Lucy, M.; 2000. Evaluation of a new cropping option using a participatory approach with on-farm monitoring and simulation: a case study of spring-sown mungbeans. Australian Journal of Agricultural Research, 51, 1. 10.1071/AR99082 (View/edit entry) | 2000 | Model application | 48 |
Chauhan, Y. S.; Wright, G. C.; Rachaputi, R. C. N.; Holzworth, D.; Broome, A.; Krosch, S.; Robertson, M. J.; 2010. Application of a model to assess aflatoxin risk in peanuts. The Journal of Agricultural Science, 148, 341–351. 10.1017/S002185961000002X (View/edit entry) | 2010 | Model application | 42 |
deVoil, P.; 2006. Exploring profit – Sustainability trade-offs in cropping systems using evolutionary algorithms. Environmental Modelling & Software, 21, 1368–1374. 10.1016/j.envsoft.2005.04.016 (View/edit entry) | 2006 | Model application | 50 |
Nuttall, J. G.; O'Leary, G. J.; Khimashia, N.; Asseng, S.; Fitzgerald, G.; Norton, R.; 2012. ‘Haying-off' in wheat is predicted to increase under a future climate in south-eastern Australia. Crop and Pasture Science, 63, 593. 10.1071/CP12062 (View/edit entry) | 2012 | Model application | 23 |
Iocola, Ileana; Bassu, Simona; Farina, Roberta; Antichi, Daniele; Basso, Bruno; Bindi, Marco; Dalla Marta, Anna; Danuso, Francesco; Doro, Luca; Ferrise, Roberto; Giglio, Luisa; Ginaldi, Fabrizio; Mazzoncini, Marco; Mula, Laura; Orsini, Roberto; Corti, Giuseppe; Pasqui, Massimiliano; Seddaiu, Giovanna; Tomozeiu, Rodica; Ventrella, Domenico; Villani, Giulia; Roggero, Pier Paolo; 2017. Can conservation tillage mitigate climate change impacts in Mediterranean cereal systems? A soil organic carbon assessment using long term experiments. European Journal of Agronomy, 90, 96–107. 10.1016/j.eja.2017.07.011 (View/edit entry) | 2017 | Model application | 27 |
Masikati, P.; Manschadi, A.; van Rooyen, A.; Hargreaves, J.; 2014. Maize–mucuna rotation: An alternative technology to improve water productivity in smallholder farming systems. Agricultural Systems, 123, 62–70. 10.1016/j.agsy.2013.09.003 (View/edit entry) | 2014 | Model application | 37 |
Xing, Hongtao; Liu, De Li; Li, Guangdi; Wang, Bin; Anwar, Muhuddin Rajin; Crean, Jason; Lines-Kelly, Rebecca; Yu, Qiang; 2017. Incorporating grain legumes in cereal-based cropping systems to improve profitability in southern New South Wales, Australia. Agricultural Systems, 154, 112–123. 10.1016/j.agsy.2017.03.010 (View/edit entry) | 2017 | Model application | 8 |
Battisti, R.; Sentelhas, P. C.; Boote, K. J.; 2018. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil. International Journal of Biometeorology, 62, 823–832. 10.1007/s00484-017-1483-1 (View/edit entry) | 2018 | Model application | 15 |
Chapman, D.F.; Dassanayake, K.; Hill, J.O.; Cullen, B.R.; Lane, N.; 2012. Forage-based dairying in a water-limited future: Use of models to investigate farming system adaptation in southern Australia. Journal of Dairy Science, 95, 4153–4175. 10.3168/jds.2011-5110 (View/edit entry) | 2012 | Model application | 12 |
Hochman, Zvi; Horan, Heidi; Reddy, D. Raji; Sreenivas, Gade; Tallapragada, Chiranjeevi; Adusumilli, Ravindra; Gaydon, Don; Singh, Kamalesh K.; Roth, Christian H.; 2017. Smallholder farmers managing climate risk in India: 1. Adapting to a variable climate. Agricultural Systems, 150, 54–66. 10.1016/j.agsy.2016.10.001 (View/edit entry) | 2017 | Model application | 21 |
Ren, Xinmao; Sun, Dongbao; Wang, Qingsuo; 2016. Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agricultural Water Management, 171, 40–48. 10.1016/j.agwat.2016.03.014 (View/edit entry) | 2016 | Model application | 37 |
Brown, Jaclyn N.; Hochman, Zvi; Holzworth, Dean; Horan, Heidi; 2018. Seasonal climate forecasts provide more definitive and accurate crop yield predictions. Agricultural and Forest Meteorology, 260, 247–254. 10.1016/j.agrformet.2018.06.001 (View/edit entry) | 2018 | Model application | 47 |
Wessolek, Gerd; Asseng, Senthold; 2006. Trade-off between wheat yield and drainage under current and climate change conditions in northeast Germany. European Journal of Agronomy, 24, 333–342. 10.1016/j.eja.2005.11.001 (View/edit entry) | 2006 | Model application | 53 |
Mushtaq, Shahbaz; An-Vo, Duc-Anh; Christopher, Mandy; Zheng, Bangyou; Chenu, Karine; Chapman, Scott C.; Christopher, Jack T.; Stone, Roger C.; Frederiks, Troy M.; Alam, G.M. Monirul; 2017. Economic assessment of wheat breeding options for potential improved levels of post head-emergence frost tolerance. Field Crops Research, 213, 75–88. 10.1016/j.fcr.2017.07.021 (View/edit entry) | 2017 | Model application | 12 |
Xing, Hongtao; Wang, Enli; Smith, Chris J.; Rolston, Denis; Yu, Qiang; 2011. Modelling nitrous oxide and carbon dioxide emission from soil in an incubation experiment. Geoderma, 167, 328–339. 10.1016/j.geoderma.2011.07.003 (View/edit entry) | 2011 | Model application | 25 |
Ruan, Hongyan; Feng, Puyu; Wang, Bin; Xing, Hongtao; O’Leary, Garry J.; Huang, Zhigang; Guo, Hao; Liu, De Li; 2018. Future climate change projects positive impacts on sugarcane productivity in southern China. European Journal of Agronomy, 96, 108–119. 10.1016/j.eja.2018.03.007 (View/edit entry) | 2018 | Model application | 31 |
McDonald, A.J.; Kumar, Virender; Poonia, S.P.; Srivastava, Amit K.; Malik, R.K.; 2019. Taking the climate risk out of transplanted and direct seeded rice: Insights from dynamic simulation in Eastern India. Field Crops Research, 239, 92–103. 10.1016/j.fcr.2019.05.014 (View/edit entry) | 2019 | Model application | 19 |
Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli; 2015. How model and input uncertainty impact maize yield simulations in West Africa. Environmental Research Letters, 10, 024017. 10.1088/1748-9326/10/2/024017 (View/edit entry) | 2015 | Model application | 36 |
Elli, Elvis Felipe; Sentelhas, Paulo Cesar; de Freitas, Cleverson Henrique; Carneiro, Rafaela Lorenzato; Alvares, Clayton Alcarde; 2019. Intercomparison of structural features and performance of Eucalyptus simulation models and their ensemble for yield estimations. Forest Ecology and Management, 450, 117493. 10.1016/j.foreco.2019.117493 (View/edit entry) | 2019 | Model application | 21 |
Liu, De Li; Anwar, Muhuddin R.; O'Leary, Garry; Conyers, Mark K.; 2014. Managing wheat stubble as an effective approach to sequester soil carbon in a semi-arid environment: Spatial modelling. Geoderma, 214, 50–61. 10.1016/j.geoderma.2013.10.003 (View/edit entry) | 2014 | Model application | 34 |
Akkermans, Rinie A.; Stuermer, Arne W.; Delfs, Jan; 2013. Assessment of Front-Rotor Trailing-Edge-Blowing for the Reduction of Open Rotor Noise Emissions. . Volume . (View/edit entry) | 2013 | Model application | 5 |
Chen, W.; Shen, Y.Y.; Robertson, M.J.; Probert, M.E.; Bellotti, W.D.; 2008. Simulation analysis of lucerne–wheat crop rotation on the Loess Plateau of Northern China. Field Crops Research, 108, 179–187. 10.1016/j.fcr.2008.04.010 (View/edit entry) | 2008 | Model application | 30 |
Holzworth, Dean P.; Huth, Neil I.; deVoil, Peter G.; 2011. Simple software processes and tests improve the reliability and usefulness of a model. Environmental Modelling & Software, 26, 510–516. 10.1016/j.envsoft.2010.10.014 (View/edit entry) | 2011 | Model application | 40 |
Kabir, Jahangir; Cramb, Rob; Gaydon, Donald S.; Roth, Christian H.; 2017. Bio-economic evaluation of cropping systems for saline coastal Bangladesh: II. Economic viability in historical and future environments. Agricultural Systems, 155, 103–115. 10.1016/j.agsy.2017.05.002 (View/edit entry) | 2017 | Model application | 20 |
Shamudzarira, Z.; Robertson, M. J.; 2002. SIMULATING RESPONSE OF MAIZE TO NITROGEN FERTILIZER IN SEMI-ARID ZIMBABWE. Experimental Agriculture, 38, 79–96. 10.1017/S0014479702000170 (View/edit entry) | 2002 | Model application | 58 |
Liu, De Li; O’Leary, Garry J.; Christy, Brendan; Macadam, Ian; Wang, Bin; Anwar, Muhuddin R.; Weeks, Anna; 2017. Effects of different climate downscaling methods on the assessment of climate change impacts on wheat cropping systems. Climatic Change, 144, 687–701. 10.1007/s10584-017-2054-5 (View/edit entry) | 2017 | Model application | 29 |
Bryant, J. R.; Snow, V. O.; 2008. Modelling pastoral farm agro‐ecosystems: A review. New Zealand Journal of Agricultural Research, 51, 349–363. 10.1080/00288230809510466 (View/edit entry) | 2008 | Model application | 59 |
Wang, Na; Wang, Jing; Wang, Enli; Yu, Qiang; Shi, Ying; He, Di; 2015. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming. European Journal of Agronomy, 71, 19–33. 10.1016/j.eja.2015.08.005 (View/edit entry) | 2015 | Model application | 29 |
Costa, Leandro G.; Marin, Fabio R.; Nassif, Daniel S. P.; Pinto, Helena M. S.; Lopes-Assad, Maria L. R. C.; 2014. Simulação do efeito do manejo da palha e do nitrogênio na produtividade da cana-de-açúcar. Revista Brasileira de Engenharia Agrícola e Ambiental, 18, 469–474. 10.1590/S1415-43662014000500001 (View/edit entry) | 2014 | Model application | 25 |
Sheng, Meiling; Liu, Junzhi; Zhu, A-Xing; Rossiter, David G.; Liu, Haoran; Liu, Zhangcong; Zhu, Liming; 2019. Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-maize model. Agricultural and Forest Meteorology, 278, 107659. 10.1016/j.agrformet.2019.107659 (View/edit entry) | 2019 | Model application | 12 |
Yang, Yanmin; Yang, Yonghui; Han, Shumin; Macadam, Ian; Liu, De Li; 2014. Prediction of cotton yield and water demand under climate change and future adaptation measures. Agricultural Water Management, 144, 42–53. 10.1016/j.agwat.2014.06.001 (View/edit entry) | 2014 | Model application | 44 |
Asseng, Senthold; Turner, Neil C.; Botwright, Tina; Condon, Anthony G.; 2003. Evaluating the Impact of a Trait for Increased Specific Leaf Area on Wheat Yields Using a Crop Simulation Model. Agronomy Journal, 95, 10. 10.2134/agronj2003.0010 (View/edit entry) | 2003 | Model application | 78 |
Smethurst, Philip J.; Huth, Neil I.; Masikati, Patricia; Sileshi, Gudeta W.; 2017. Accurate crop yield predictions from modelling tree-crop interactions in gliricidia-maize agroforestry. Agricultural Systems, 155, 70–77. 10.1016/j.agsy.2017.04.008 (View/edit entry) | 2017 | Model application | 47 |
Chauhan, Y. S.; Wright, G. C.; Rachaputi, N. C.; 2008. Modelling climatic risks of aflatoxin contamination in maize. Australian Journal of Experimental Agriculture, 48, 358. 10.1071/EA06101 (View/edit entry) | 2008 | Model application | 61 |
Zhao, Gang; Bryan, Brett A.; King, Darran; Luo, Zhongkui; Wang, Enli; Yu, Qiang; 2015. Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia's agricultural lands. GCB Bioenergy, 7, 479–487. 10.1111/gcbb.12145 (View/edit entry) | 2015 | Model application | 39 |
Hochman, Zvi; Prestwidge, Di; Carberry, Peter S.; 2014. Crop sequences in Australia’s northern grain zone are less agronomically efficient than implied by the sum of their parts. Agricultural Systems, 129, 124–132. 10.1016/j.agsy.2014.06.001 (View/edit entry) | 2014 | Model application | 31 |
Wang, Jing; Wang, Enli; Yin, Hong; Feng, Liping; Zhao, Yanxia; 2015. Differences between observed and calculated solar radiations and their impact on simulated crop yields. Field Crops Research, 176, 1–10. 10.1016/j.fcr.2015.02.014 (View/edit entry) | 2015 | Model application | 33 |
Cleugh, H. A.; Prinsley, R.; Bird, P. R.; Brooks, S. J.; Carberry, P. S.; Crawford, M. C.; Jackson, T. T.; Meinke, H.; Mylius, S. J.; Nuberg, I. K.; Sudmeyer, R. A.; Wright, A. J.; 2002. The Australian National Windbreaks Program: overview and summary of results. Australian Journal of Experimental Agriculture, 42, 649. 10.1071/EA02003 (View/edit entry) | 2002 | Model application | 64 |
Jiang, Rui; Wang, Tong-tong; Shao, Jin; Guo, Sheng; Zhu, Wei; Yu, Ya-jun; Chen, Shao-lin; Hatano, Ryusuke; 2017. Modeling the biomass of energy crops: Descriptions, strengths and prospective. Journal of Integrative Agriculture, 16, 1197–1210. 10.1016/S2095-3119(16)61592-7 (View/edit entry) | 2017 | Model application | 17 |
Turner, Neil C.; Rao, K.P.C.; 2013. Simulation analysis of factors affecting sorghum yield at selected sites in eastern and southern Africa, with emphasis on increasing temperatures. Agricultural Systems, 121, 53–62. 10.1016/j.agsy.2013.06.002 (View/edit entry) | 2013 | Model application | 32 |
Dolling, P. J.; Fillery, I. R. P.; Ward, P. R.; Asseng, S.; Robertson, M. J.; 2006. Consequences of rainfall during summer - autumn fallow on available soil water and subsequent drainage in annual-based cropping systems. Australian Journal of Agricultural Research, 57, 281. 10.1071/AR04103 (View/edit entry) | 2006 | Model application | 33 |
Bell, Lindsay W.; Robertson, Michael J.; Revell, Dean K.; Lilley, Julianne M.; Moore, Andrew D.; 2008. Approaches for assessing some attributes of feed-base systems in mixed farming enterprises. Australian Journal of Experimental Agriculture, 48, 789. 10.1071/EA07421 (View/edit entry) | 2008 | Model application | 32 |
Whish, Jeremy P.M.; Herrmann, Neville I.; White, Neil A.; Moore, Andrew D.; Kriticos, Darren J.; 2015. Integrating pest population models with biophysical crop models to better represent the farming system. Environmental Modelling & Software, 72, 418–425. 10.1016/j.envsoft.2014.10.010 (View/edit entry) | 2015 | Model application | 37 |
Deen, W; Cousens, R; Warringa, J; Bastiaans, L; Carberry, P; Rebel, K; Riha, S; Murphy, C; Benjamin, L R; Cloughley, C; Cussans, J; Forcella, F; Hunt, T.; Jamieson, P; Lindquist, J; Wang, E; 2003. An evaluation of four crop : weed competition models using a common data set. Weed Research, 43, 116–129. 10.1046/j.1365-3180.2003.00323.x (View/edit entry) | 2003 | Model application | 71 |
Macadam, Ian; Argüeso, Daniel; Evans, Jason P.; Liu, De Li; Pitman, Andy J.; 2016. The effect of bias correction and climate model resolution on wheat simulations forced with a regional climate model ensemble: FORCING WHEAT SIMULATIONS WITH REGIONAL CLIMATE MODEL DATA. International Journal of Climatology, 36, 4577–4591. 10.1002/joc.4653 (View/edit entry) | 2016 | Model application | 24 |
Cichota, R.; Snow, V. O.; Vogeler, I.; Wheeler, D. M.; Shepherd, M. A.; 2012. Describing N leaching from urine patches deposited at different times of the year with a transfer function. Soil Research, 50, 694. 10.1071/SR12208 (View/edit entry) | 2012 | Model application | 39 |
Mupangwa, Walter; Dimes, John; Walker, Sue; Twomlow, Stephen; 2011. Measuring and simulating maize (Zea mays L.) yield responses to reduced tillage and mulching under semi-arid conditions. Agricultural Sciences, 2, 167–174. 10.4236/as.2011.23023 (View/edit entry) | 2011 | Model application | 21 |
Vogeler, I.; Giltrap, D.; Cichota, R.; 2013. Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions. Science of The Total Environment, 465, 147–155. 10.1016/j.scitotenv.2012.09.021 (View/edit entry) | 2013 | Model application | 33 |
Liu, Leilei; Wang, Enli; Zhu, Yan; Tang, Liang; Cao, Weixing; 2013. Quantifying three-decade changes of single rice cultivars in China using crop modeling. Field Crops Research, 149, 84–94. 10.1016/j.fcr.2013.04.025 (View/edit entry) | 2013 | Model application | 18 |
Laing, A.M.; Roth, C.H.; Chialue, L.; Gaydon, D.S.; Grünbühel, C.M.; Inthavong, T.; Phengvichith, V.; Schiller, J.; Thiravong, K.; Williams, L.J.; 2018. Mechanised dry seeding is an adaptation strategy for managing climate risks and reducing labour costs in rainfed rice production in lowland Lao PDR. Field Crops Research, 225, 32–46. 10.1016/j.fcr.2018.05.020 (View/edit entry) | 2018 | Model application | 13 |
Camargo, G.G.T.; Kemanian, A.R.; 2016. Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. 10.1016/j.agrformet.2016.01.013 (View/edit entry) | 2016 | Model application | 33 |
Wang, Enli; Xu, Johnny H.; Smith, Chris J.; 2008. Value of historical climate knowledge, SOI-based seasonal climate forecasting and stored soil moisture at sowing in crop nitrogen management in south eastern Australia. Agricultural and Forest Meteorology, 148, 1743–1753. 10.1016/j.agrformet.2008.06.004 (View/edit entry) | 2008 | Model application | 31 |
Sun, Shuang; Yang, Xiaoguang; Lin, Xiaomao; Sassenrath, Gretchen F.; Li, Kenan; 2018. Climate-smart management can further improve winter wheat yield in China. Agricultural Systems, 162, 10–18. 10.1016/j.agsy.2018.01.010 (View/edit entry) | 2018 | Model application | 26 |
Maharjan, Ganga Ram; Prescher, Anne-Katrin; Nendel, Claas; Ewert, Frank; Mboh, Cho Miltin; Gaiser, Thomas; Seidel, Sabine J.; 2018. Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models. Soil and Tillage Research, 180, 210–221. 10.1016/j.still.2018.03.009 (View/edit entry) | 2018 | Model application | 27 |
Asseng, S.; Milroy, S.P.; Poole, M.L.; 2008. Systems analysis of wheat production on low water-holding soils in a Mediterranean-type environment. Field Crops Research, 105, 97–106. 10.1016/j.fcr.2007.08.003 (View/edit entry) | 2008 | Model application | 42 |
Andrade, A. S.; Santos, P. M.; Pezzopane, J. R. M.; de Araujo, L. C.; Pedreira, B. C.; Pedreira, C. G. S.; Marin, F. R.; Lara, M. A. S.; 2016. Simulating tropical forage growth and biomass accumulation: an overview of model development and application. Grass and Forage Science, 71, 54–65. 10.1111/gfs.12177 (View/edit entry) | 2016 | Model application | 32 |
Martinez-Feria, Rafael A.; Castellano, Michael J.; Dietzel, Ranae N.; Helmers, Matt J.; Liebman, Matt; Huber, Isaiah; Archontoulis, Sotirios V.; 2018. Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agriculture, Ecosystems & Environment, 256, 131–143. 10.1016/j.agee.2018.01.002 (View/edit entry) | 2018 | Model application | 49 |
Reyenga, P.J.; Howden, S.M.; Meinke, H.; Hall, W.B.; 2001. Global change impacts on wheat production along an environmental gradient in south Australia. Environment International, 27, 195–200. 10.1016/S0160-4120(01)00082-4 (View/edit entry) | 2001 | Model application | 55 |
Lawes, R. A.; Robertson, M. J.; 2012. Effect of subtropical perennial grass pastures on nutrients and carbon in coarse-textured soils in a Mediterranean climate. Soil Research, 50, 551. 10.1071/SR11320 (View/edit entry) | 2012 | Model application | 14 |
Asseng, S; Turner, Neil C; Ray, J.D; Keating, B.A; 2002. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. European Journal of Agronomy, 17, 123–141. 10.1016/S1161-0301(01)00149-6 (View/edit entry) | 2002 | Model application | 65 |
Singh, Vijaya; Nguyen, Chuc T.; McLean, Greg; Chapman, Scott C.; Zheng, Bangyou; van Oosterom, Erik J.; Hammer, Graeme L.; 2017. Quantifying high temperature risks and their potential effects on sorghum production in Australia. Field Crops Research, 211, 77–88. 10.1016/j.fcr.2017.06.012 (View/edit entry) | 2017 | Model application | 16 |
Teixeira, Edmar I.; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank; 2018. Adapting crop rotations to climate change in regional impact modelling assessments. Science of The Total Environment, 616, 785–795. 10.1016/j.scitotenv.2017.10.247 (View/edit entry) | 2018 | Model application | 38 |
Kim, Seung Hee; Kim, Jinwon; Walko, Rovert; Myoung, Boksoon; Stack, David; Kafatos, Menas; 2015. Climate Change Impacts on Maize-yield Potential in the Southwestern United States. Procedia Environmental Sciences, 29, 279–280. 10.1016/j.proenv.2015.07.210 (View/edit entry) | 2015 | Model application | 5 |
Ghahramani, Afshin; Moore, Andrew D.; 2016. Impact of climate changes on existing crop-livestock farming systems. Agricultural Systems, 146, 142–155. 10.1016/j.agsy.2016.05.011 (View/edit entry) | 2016 | Model application | 31 |
Western, Andrew W.; Dassanayake, Kithsiri B.; Perera, Kushan C.; Argent, Robert M.; Alves, Oscar; Young, Griffith; Ryu, Dongryeol; 2018. An evaluation of a methodology for seasonal soil water forecasting for Australian dry land cropping systems. Agricultural and Forest Meteorology, 253, 161–175. 10.1016/j.agrformet.2018.02.012 (View/edit entry) | 2018 | Model application | 10 |
Luo, Zhongkui; Wang, Enli; Fillery, Ian R.P.; Macdonald, Lynne M.; Huth, Neil; Baldock, Jeff; 2014. Modelling soil carbon and nitrogen dynamics using measurable and conceptual soil organic matter pools in APSIM. Agriculture, Ecosystems & Environment, 186, 94–104. 10.1016/j.agee.2014.01.019 (View/edit entry) | 2014 | Model application | 37 |
Myoung, Boksoon; Kim, Seung Hee; Stack, David H.; Kim, Jinwon; Kafatos, Menas C.; 2015. Temperature, Sowing and Harvest Dates, and Yield Potential of Maize in the Southwestern US. Procedia Environmental Sciences, 29, 276. 10.1016/j.proenv.2015.07.207 (View/edit entry) | 2015 | Model application | 4 |
Wang, Guo-Cheng; Wang, En-Li; Huang, Yao; Xu, Jing-Jing; 2014. Soil Carbon Sequestration Potential as Affected by Management Practices in Northern China: A Simulation Study. Pedosphere, 24, 529–543. 10.1016/S1002-0160(14)60039-4 (View/edit entry) | 2014 | Model application | 14 |
Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao; 2016. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions. Frontiers of Earth Science, 10, 444–454. 10.1007/s11707-015-0534-3 (View/edit entry) | 2016 | Model application | 5 |
Meier, E. A.; Thorburn, P. J.; Probert, M. E.; 2006. Occurrence and simulation of nitrification in two contrasting sugarcane soils from the Australian wet tropics. Soil Research, 44, 1. 10.1071/SR05004 (View/edit entry) | 2006 | Model application | 26 |
Shaw, Ruth E.; Meyer, Wayne S.; McNeill, Ann; Tyerman, Stephen D.; 2013. Waterlogging in Australian agricultural landscapes: a review of plant responses and crop models. Crop and Pasture Science, 64, 549. 10.1071/CP13080 (View/edit entry) | 2013 | Model application | 41 |
Nóia Júnior, Rogério de Souza; Sentelhas, Paulo Cesar; 2019. Soybean-maize succession in Brazil: Impacts of sowing dates on climate variability, yields and economic profitability. European Journal of Agronomy, 103, 140–151. 10.1016/j.eja.2018.12.008 (View/edit entry) | 2019 | Model application | 34 |
Song, Youhong; Birch, Colin; Qu, Shanshan; Dohert, Al; Hanan, Jim; 2010. Analysis and Modelling of the Effects of Water Stress on Maize Growth and Yield in Dryland Conditions. Plant Production Science, 13, 199–208. 10.1626/pps.13.199 (View/edit entry) | 2010 | Model application | 40 |
Hammer, Graeme; McLean, Greg; Doherty, Al; van Oosterom, Erik; Chapman, Scott; Ciampitti, Ignacio; Prasad, Vara; 2016. Sorghum Crop Modeling and Its Utility in Agronomy and Breeding. In: (eds.)Agronomy Monographs.. . (View/edit entry) | 2016 | Model application | 13 |
Pembleton, K. G.; Rawnsley, R. P.; Jacobs, J. L.; Mickan, F. J.; O'Brien, G. N.; Cullen, B. R.; Ramilan, T.; 2013. Evaluating the accuracy of the Agricultural Production Systems Simulator (APSIM) simulating growth, development, and herbage nutritive characteristics of forage crops grown in the south-eastern dairy regions of Australia. Crop and Pasture Science, 64, 147. 10.1071/CP12372 (View/edit entry) | 2013 | Model application | 30 |
Shahhosseini, Mohsen; Martinez-Feria, Rafael A; Hu, Guiping; Archontoulis, Sotirios V; 2019. Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters, 14, 124026. 10.1088/1748-9326/ab5268 (View/edit entry) | 2019 | Model application | 65 |
Smith, C. J.; Macdonald, B. C. T.; Xing, H.; Denmead, O. T.; Wang, E.; McLachlan, G.; Tuomi, S.; Turner, D.; Chen, D.; 2020. Measurements and APSIM modelling of soil C and N dynamics. Soil Research, 58, 41. 10.1071/SR19021 (View/edit entry) | 2020 | Model application | 5 |
Oliver, Yvette M.; Robertson, Michael J.; Weeks, Cameron; 2010. A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions. Agricultural Water Management, 98, 291–300. 10.1016/j.agwat.2010.08.024 (View/edit entry) | 2010 | Model application | 41 |
Amarasingha, R.P.R.K.; Suriyagoda, L.D.B.; Marambe, B.; Gaydon, D.S.; Galagedara, L.W.; Punyawardena, R.; Silva, G.L.L.P.; Nidumolu, U.; Howden, M.; 2015. Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka. Agricultural Water Management, 160, 132–143. 10.1016/j.agwat.2015.07.001 (View/edit entry) | 2015 | Model application | 40 |
Anderson, Edward; Monjardino, Marta; 2019. Contract design in agriculture supply chains with random yield. European Journal of Operational Research, 277, 1072–1082. 10.1016/j.ejor.2019.03.041 (View/edit entry) | 2019 | Model application | 34 |
Xiao, Dengpan; Qi, Yongqing; Li, Zhiqiang; Wang, Rende; Moiwo, Juana P.; Liu, Fengshan; 2017. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China. Frontiers of Earth Science, 11, 148–155. 10.1007/s11707-016-0584-1 (View/edit entry) | 2017 | Model application | 8 |
Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P; 2018. Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes—A review. Field Crops Research, 221, 142–156. 10.1016/j.fcr.2018.02.023 (View/edit entry) | 2018 | Model application | 58 |
Mkoga, Z.J.; Tumbo, S.D.; Kihupi, N.; Semoka, J.; 2010. Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling. Physics and Chemistry of the Earth, Parts A/B/C, 35, 686–698. 10.1016/j.pce.2010.07.036 (View/edit entry) | 2010 | Model application | 38 |
Williams, Allyson; White, Neil; Mushtaq, Shahbaz; Cockfield, Geoff; Power, Brendan; Kouadio, Louis; 2015. Quantifying the response of cotton production in eastern Australia to climate change. Climatic Change, 129, 183–196. 10.1007/s10584-014-1305-y (View/edit entry) | 2015 | Model application | 35 |
Li, Jianzheng; Wang, Enli; Wang, Yingchun; Xing, Hongtao; Wang, Daolong; Wang, Ligang; Gao, Chunyu; 2016. Reducing greenhouse gas emissions from a wheat–maize rotation system while still maintaining productivity. Agricultural Systems, 145, 90–98. 10.1016/j.agsy.2016.03.007 (View/edit entry) | 2016 | Model application | 22 |
Battisti, Rafael; Sentelhas, Paulo C.; Parker, Phillip S.; Nendel, Claas; Câmara, Gil M. De S.; Farias, José R. B.; Basso, Claudir J.; 2018. Assessment of crop-management strategies to improve soybean resilience to climate change in Southern Brazil. Crop and Pasture Science, 69, 154. 10.1071/CP17293 (View/edit entry) | 2018 | Model application | 25 |
Kabir, Md. Jahangir; Cramb, Rob; Gaydon, Donald S.; Roth, Christian H.; 2018. Bio-economic evaluation of cropping systems for saline coastal Bangladesh: III Benefits of adaptation in current and future environments. Agricultural Systems, 161, 28–41. 10.1016/j.agsy.2017.12.006 (View/edit entry) | 2018 | Model application | 16 |
Ojeda, J.J.; Pembleton, K.G.; Caviglia, O.P.; Islam, M.R.; Agnusdei, M.G.; Garcia, S.C.; 2018. Modelling forage yield and water productivity of continuous crop sequences in the Argentinian Pampas. European Journal of Agronomy, 92, 84–96. 10.1016/j.eja.2017.10.004 (View/edit entry) | 2018 | Model application | 15 |
Roxburgh, Caspar W.; Rodriguez, Daniel; 2016. Ex-ante analysis of opportunities for the sustainable intensification of maize production in Mozambique. Agricultural Systems, 142, 9–22. 10.1016/j.agsy.2015.10.010 (View/edit entry) | 2016 | Model application | 24 |
Amarasingha, R.P.R.K.; Suriyagoda, L.D.B.; Marambe, B.; Galagedara, L.W.; Silva, G.L.L.P; Punyawardena, R.; Wijekoon, R.; Nidumolu, U.; Howden, M.; 2015. Modelling the impact of changes in rainfall distribution on the irrigation water requirement and yield of short and medium duration rice varieties using APSIM during Maha season in the dry zone of Sri Lanka. Tropical Agricultural Research, 26, 274. 10.4038/tar.v26i2.8091 (View/edit entry) | 2015 | Model application | 6 |
Wang, Enli; Brown, Hamish E; Rebetzke, Greg J; Zhao, Zhigan; Zheng, Bangyou; Chapman, Scott C; 2019. Improving process-based crop models to better capture genotype×environment×management interactions. Journal of Experimental Botany, 70, 2389–2401. 10.1093/jxb/erz092 (View/edit entry) | 2019 | Model application | 26 |
Snapp, Sieglinde; Kerr, Rachel Bezner; Smith, Alex; Ollenburger, Mary; Mhango, Wezi; Shumba, Lizzie; Gondwe, Tinkani; Kanyama-Phiri, George; 2013. Modeling and participatory farmer-led approaches to food security in a changing world: A case study from Malawi. Sécheresse, 24, 350–358. 10.1684/sec.2014.0409 (View/edit entry) | 2013 | Model application | 20 |
Ebrahimi-Mollabashi, Elnaz; Huth, Neil I.; Holzwoth, Dean P.; Ordóñez, Raziel A.; Hatfield, Jerry L.; Huber, Isaiah; Castellano, Michael J.; Archontoulis, Sotirios V.; 2019. Enhancing APSIM to simulate excessive moisture effects on root growth. Field Crops Research, 236, 58–67. 10.1016/j.fcr.2019.03.014 (View/edit entry) | 2019 | Model application | 40 |
Florin, M.J.; McBratney, A.B.; Whelan, B.M.; 2009. Quantification and comparison of wheat yield variation across space and time. European Journal of Agronomy, 30, 212–219. 10.1016/j.eja.2008.10.003 (View/edit entry) | 2009 | Model application | 27 |
Zhao, Zhigan; Wang, Enli; Xue, Lihua; Wu, Yongcheng; Zang, Hecang; Qin, Xin; Zhang, Jingting; Wang, Zhimin; 2014. Accuracy of root modelling and its impact on simulated wheat yield and carbon cycling in soil. Field Crops Research, 165, 99–110. 10.1016/j.fcr.2014.03.018 (View/edit entry) | 2014 | Model application | 14 |
Mielenz, Henrike; Thorburn, Peter J.; Scheer, Clemens; De Antoni Migliorati, Massimiliano; Grace, Peter R.; Bell, Mike J.; 2016. Opportunities for mitigating nitrous oxide emissions in subtropical cereal and fiber cropping systems: A simulation study. Agriculture, Ecosystems & Environment, 218, 11–27. 10.1016/j.agee.2015.11.008 (View/edit entry) | 2016 | Model application | 12 |
Dolling, P. J.; Robertson, M. J.; Asseng, S.; Ward, P. R.; Latta, R. A.; 2005. Simulating lucerne growth and water use on diverse soil types in a Mediterranean-type environment. Australian Journal of Agricultural Research, 56, 503. 10.1071/AR04216 (View/edit entry) | 2005 | Model application | 38 |
Vogeler, I.; Lucci, G.; Shepherd, M.; 2016. An assessment of the effects of fertilizer nitrogen management on nitrate leaching risk from grazed dairy pasture. The Journal of Agricultural Science, 154, 407–424. 10.1017/S0021859615000295 (View/edit entry) | 2016 | Model application | 18 |
Zhang, Y.; Feng, L. P.; Wang, J.; Wang, E. L.; Xu, Y. L.; 2013. Using APSIM to explore wheat yield response to climate change in the North China Plain: the predicted adaptation of wheat cultivar types to vernalization. The Journal of Agricultural Science, 151, 836–848. 10.1017/S0021859612000883 (View/edit entry) | 2013 | Model application | 23 |
Asseng, Senthold; Travasso, Maria I.; Ludwig, Fulco; Magrin, Graciela O.; 2013. Has climate change opened new opportunities for wheat cropping in Argentina?. Climatic Change, 117, 181–196. 10.1007/s10584-012-0553-y (View/edit entry) | 2013 | Model application | 16 |
Heinemann, Alexandre Bryan; van Oort, Pepijn A.J.; Fernandes, Diogo Simões; Maia, Aline de Holanda Nunes; 2012. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation. Bragantia, 71, 572–582. 10.1590/S0006-87052012000400016 (View/edit entry) | 2012 | Model application | 35 |
Nóia Júnior, Rogério de Souza; Sentelhas, Paulo Cesar; 2019. Soybean-maize off-season double crop system in Brazil as affected by El Niño Southern Oscillation phases. Agricultural Systems, 173, 254–267. 10.1016/j.agsy.2019.03.012 (View/edit entry) | 2019 | Model application | 26 |
Duarte, Yury C. N.; Sentelhas, Paulo C.; 2020. Intercomparison and Performance of Maize Crop Models and Their Ensemble for Yield Simulations in Brazil. International Journal of Plant Production, 14, 127–139. 10.1007/s42106-019-00073-5 (View/edit entry) | 2020 | Model application | 5 |
Moot, Dj; Hargreaves, J; Brown, He; Teixeira, Ei; 2015. Calibration of the APSIM-Lucerne model for ‘Grasslands Kaituna’ lucerne crops grown in New Zealand. New Zealand Journal of Agricultural Research, 58, 190–202. 10.1080/00288233.2015.1018392 (View/edit entry) | 2015 | Model application | 17 |
Araujo, Leandro C.; Santos, Patricia M.; Rodriguez, Daniel; Pezzopane, José Ricardo M.; Oliveira, Patricia P.A.; Cruz, Pedro G.; 2013. Simulating Guinea Grass Production: Empirical and Mechanistic Approaches. Agronomy Journal, 105, 61–69. 10.2134/agronj2012.0245 (View/edit entry) | 2013 | Model application | 31 |
Pembleton, K. G.; Cullen, B. R.; Rawnsley, R. P.; Harrison, M. T.; Ramilan, T.; 2016. Modelling the resilience of forage crop production to future climate change in the dairy regions of Southeastern Australia using APSIM. The Journal of Agricultural Science, 154, 1131–1152. 10.1017/S0021859615001185 (View/edit entry) | 2016 | Model application | 29 |
Jones, M.R.; Singels, A.; Chinorumba, S.; Patton, A.; Poser, C.; Singh, M.; Martiné, J.F.; Christina, M.; Shine, J.; Annandale, J.; Hammer, G.; 2019. Exploring process-level genotypic and environmental effects on sugarcane yield using an international experimental dataset. Field Crops Research, 244, 107622. 10.1016/j.fcr.2019.107622 (View/edit entry) | 2019 | Model application | 7 |
Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Thorburn, Peter J.; Castellano, Michael J.; Moore, Kenneth J.; VanLoocke, Andrew; Heaton, Emily A.; Archontoulis, Sotirios V.; 2018. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate. Frontiers in Plant Science, 9, 436. 10.3389/fpls.2018.00436 (View/edit entry) | 2018 | Model application | 31 |
Seyoum, Solomon; Rachaputi, Rao; Chauhan, Yash; Prasanna, Boddupalli; Fekybelu, Solomon; 2018. Application of the APSIM model to exploit G × E × M interactions for maize improvement in Ethiopia. Field Crops Research, 217, 113–124. 10.1016/j.fcr.2017.12.012 (View/edit entry) | 2018 | Model application | 19 |
Humphreys, E.; Gaydon, D.S.; 2015. Options for increasing the productivity of the rice–wheat system of north west India while reducing groundwater depletion. Part 2. Is conservation agriculture the answer?. Field Crops Research, 173, 81–94. 10.1016/j.fcr.2014.11.019 (View/edit entry) | 2015 | Model application | 36 |
He, Di; Wang, Enli; Wang, Jing; Lilley, Julianne M.; 2017. Genotype × environment × management interactions of canola across China: A simulation study. Agricultural and Forest Meteorology, 247, 424–433. 10.1016/j.agrformet.2017.08.027 (View/edit entry) | 2017 | Model application | 22 |
He, Di; Wang, Enli; Wang, Jing; Lilley, Julianne; Luo, Zhongkui; Pan, Xuebiao; Pan, Zhihua; Yang, Ning; 2017. Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agricultural and Forest Meteorology, 232, 163–175. 10.1016/j.agrformet.2016.08.013 (View/edit entry) | 2017 | Model application | 29 |
Sexton, J.; Everingham, Y.L.; Inman-Bamber, G.; 2017. A global sensitivity analysis of cultivar trait parameters in a sugarcane growth model for contrasting production environments in Queensland, Australia. European Journal of Agronomy, 88, 96–105. 10.1016/j.eja.2015.11.009 (View/edit entry) | 2017 | Model application | 27 |
McCormick, Jeffrey I.; Virgona, Jim M.; Lilley, Julianne M.; Kirkegaard, John A.; 2015. Evaluating the feasibility of dual-purpose canola in a medium-rainfall zone of south-eastern Australia: a simulation approach. Crop and Pasture Science, 66, 318. 10.1071/CP13421 (View/edit entry) | 2015 | Model application | 19 |
Wang, Na; Wang, Enli; Wang, Jing; Zhang, Jianping; Zheng, Bangyou; Huang, Yi; Tan, Meixiu; 2018. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agricultural and Forest Meteorology, 250, 319–329. 10.1016/j.agrformet.2018.01.005 (View/edit entry) | 2018 | Model application | 40 |
Lorençoni, Rogério; Dourado Neto, Durval; Heinemann, Alexandre Bryan; 2010. Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil. Revista Ciência Agronômica, 41, 605–613. 10.1590/S1806-66902010000400013 (View/edit entry) | 2010 | Model application | 14 |
Ibrahim, Ahmed; Harrison, Matthew Tom; Meinke, Holger; Zhou, Meixue; 2019. Examining the yield potential of barley near-isogenic lines using a genotype by environment by management analysis. European Journal of Agronomy, 105, 41–51. 10.1016/j.eja.2019.02.003 (View/edit entry) | 2019 | Model application | 15 |
Luo, Zhongkui; Eady, Sandra; Sharma, Bharat; Grant, Timothy; Liu, De Li; Cowie, Annette; Farquharson, Ryan; Simmons, Aaron; Crawford, Debbie; Searle, Ross; Moore, Andrew; 2019. Mapping future soil carbon change and its uncertainty in croplands using simple surrogates of a complex farming system model. Geoderma, 337, 311–321. 10.1016/j.geoderma.2018.09.041 (View/edit entry) | 2019 | Model application | 15 |
Anwar, M. R.; Rodriguez, D.; Liu, D. L.; Power, S.; O'Leary, G. J.; 2008. Quality and potential utility of ENSO-based forecasts of spring rainfall and wheat yield in south-eastern Australia. Australian Journal of Agricultural Research, 59, 112. 10.1071/AR07061 (View/edit entry) | 2008 | Model application | 28 |
Poulton, P.L.; Dalgliesh, N.P.; Vang, S.; Roth, C.H.; 2016. Resilience of Cambodian lowland rice farming systems to future climate uncertainty. Field Crops Research, 198, 160–170. 10.1016/j.fcr.2016.09.008 (View/edit entry) | 2016 | Model application | 18 |
Brown, Hamish; Huth, Neil; Holzworth, Dean; 2018. Crop model improvement in APSIM: Using wheat as a case study. European Journal of Agronomy, 100, 141–150. 10.1016/j.eja.2018.02.002 (View/edit entry) | 2018 | Model application | 38 |
Nelson, R.A.; Dimes, J.P.; Paningbatan, E.P.; Silburn, D.M.; 1998. Erosion/productivity modelling of maize farming in the Philippine uplands. Agricultural Systems, 58, 129–146. 10.1016/S0308-521X(98)00043-2 (View/edit entry) | 1998 | Model application | 37 |
Snow, V. O.; White, T. A.; 2013. Process-based modelling to understand which ryegrass characteristics can increase production and decrease leaching in grazed grass–legume pastures. Crop and Pasture Science, 64, 265. 10.1071/CP13074 (View/edit entry) | 2013 | Model application | 21 |
Zhao, Jin; Yang, Xiaoguang; 2018. Distribution of high-yield and high-yield-stability zones for maize yield potential in the main growing regions in China. Agricultural and Forest Meteorology, 248, 511–517. 10.1016/j.agrformet.2017.10.016 (View/edit entry) | 2018 | Model application | 27 |
Hoffmann, M.P.; Jacobs, A.; Whitbread, A.M.; 2015. Crop modelling based analysis of site-specific production limitations of winter oilseed rape in northern Germany. Field Crops Research, 178, 49–62. 10.1016/j.fcr.2015.03.018 (View/edit entry) | 2015 | Model application | 19 |
Hirschel, Ernst Heinrich; Schröder, Wolfgang; Fujii, Kozo; Haase, Werner; Leer, Bram; Leschziner, Michael A.; Pandolfi, Maurizio; Periaux, Jacques; Rizzi, Arthur; Roux, Bernard; Shokin, Yurii I.; Dillmann, Andreas; Heller, Gerd; Klaas, Michael; Kreplin, Hans-Peter; Nitsche, Wolfgang; Stuermer, Arne; Yin, Jianping; 2010. Aerodynamic and Aeroacoustic Analysis of Contra-Rotating Open Rotor Propulsion Systems at Low-Speed Flight Conditions. In: (eds.)New Results in Numerical and Experimental Fluid Mechanics VII.. 481–488. (View/edit entry) | 2010 | Model application | 10 |
Hussain, Jamshad; Khaliq, Tasneem; Ahmad, Ashfaq; Akhtar, Javed; Lightfoot, David A.; 2018. Performance of four crop model for simulations of wheat phenology, leaf growth, biomass and yield across planting dates. PLOS ONE, 13, e0197546. 10.1371/journal.pone.0197546 (View/edit entry) | 2018 | Model application | 36 |
Tang, C.; Asseng, S.; Diatloff, E.; Rengel, Z.; 2003. Modelling yield losses of aluminium-resistant and aluminium-sensitive wheat due to subsurface soil acidity: effects of rainfall, liming and nitrogen application. Plant and Soil, 254, 349–360. 10.1023/A:1025597905001 (View/edit entry) | 2003 | Model application | 37 |
Stuermer, Arne; Yin, Jianping; 2012. The Case for Counter-Rotation of Installed Contra-Rotating Open Rotor Propulsion Systems. . Volume . (View/edit entry) | 2012 | Model application | 6 |
Smith, C. J.; Snow, V. O.; Polglase, P. J.; Probert, M. E.; 1999. Nitrogen dynamics in a eucalypt plantation irrigated with sewage effluent or bore water. Soil Research, 37, 527. 10.1071/S98093 (View/edit entry) | 1999 | Model application | 55 |
Dias, Henrique Boriolo; Inman-Bamber, Geoff; Bermejo, Rodrigo; Sentelhas, Paulo Cesar; Christodoulou, Diomedes; 2019. New APSIM-Sugar features and parameters required to account for high sugarcane yields in tropical environments. Field Crops Research, 235, 38–53. 10.1016/j.fcr.2019.02.002 (View/edit entry) | 2019 | Model application | 22 |
Bourguignon, Marie; Archontoulis, Sotirios; Moore, Kenneth; Lenssen, Andrew; 2017. A model for evaluating production and environmental performance of kenaf in rotation with conventional row crops. Industrial Crops and Products, 100, 218–227. 10.1016/j.indcrop.2017.02.026 (View/edit entry) | 2017 | Model application | 3 |
Tumbo, S. D.; Kahimba, F. C.; Mbilinyi, B. P.; Rwehumbiza, F. B.; Mahoo, H. F.; Mbungu, W. B.; Enfors, E.; 2012. Impact of projected climate change on agricultural production in semi-arid areas of Tanzania: A case of same district. African Crop Science Journal, 20, 453–463. (View/edit entry) | 2012 | Model application | 25 |
Nissanka, Sarath P.; Karunaratne, Asha S.; Perera, Ruchika; Weerakoon, W.M.W.; Thorburn, Peter J.; Wallach, Daniel; 2015. Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling & Software, 70, 128–137. 10.1016/j.envsoft.2015.04.007 (View/edit entry) | 2015 | Model application | 26 |
Chauhan, Yashvir; Allard, Samantha; Williams, Rex; Williams, Brett; Mundree, Sagadevan; Chenu, Karine; Rachaputi, N.C.; 2017. Characterisation of chickpea cropping systems in Australia for major abiotic production constraints. Field Crops Research, 204, 120–134. 10.1016/j.fcr.2017.01.008 (View/edit entry) | 2017 | Model application | 24 |
Descheemaeker, Katrien; Zijlstra, Mink; Masikati, Patricia; Crespo, Olivier; Homann-Kee Tui, Sabine; 2018. Effects of climate change and adaptation on the livestock component of mixed farming systems: A modelling study from semi-arid Zimbabwe. Agricultural Systems, 159, 282–295. 10.1016/j.agsy.2017.05.004 (View/edit entry) | 2018 | Model application | 33 |
Robertson, M. J.; Gaydon, D.; Hall, D. J. M.; Hills, A.; Penny, S.; 2005. Production risks and water use benefits of summer crop production on the south coast of Western Australia. Australian Journal of Agricultural Research, 56, 597. 10.1071/AR04249 (View/edit entry) | 2005 | Model application | 21 |
Amarasingha, R.P.R.K.; Galagedara, L.W.; Marambe, B.; Silva, G.L.L.P.; Punyawardena, R.; Nidumolu, U.; Howden, M.; Suriyagoda, L.D.B.; 2015. Aligning Sowing Dates with the Onset of Rains to Improve Rice Yields and Water Productivity: Modelling Rice (Oryza sativa L.) Yield of the Maha Season in the Dry Zone of Sri Lanka. Tropical Agricultural Research, 25, 277. 10.4038/tar.v25i3.8038 (View/edit entry) | 2015 | Model application | 8 |
Hoffmann, M. P.; Llewellyn, R. S.; Davoren, C. W.; Whitbread, A. M.; 2017. Assessing the Potential for Zone-Specific Management of Cereals in Low-Rainfall South-Eastern Australia: Combining On-Farm Results and Simulation Analysis. Journal of Agronomy and Crop Science, 203, 14–28. 10.1111/jac.12159 (View/edit entry) | 2017 | Model application | 13 |
De Oliveira, Ana Paula Pessim; Thorburn, Peter J.; Biggs, Jody S.; Lima, Eduardo; Dos Anjos, Lúcia Helena Cunha; Pereira, Marcos Gervasio; Zanotti, Nelson Élio; 2016. THE RESPONSE OF SUGARCANE TO TRASH RETENTION AND NITROGEN IN THE BRAZILIAN COASTAL TABLELANDS: A SIMULATION STUDY. Experimental Agriculture, 52, 69–86. 10.1017/S0014479714000568 (View/edit entry) | 2016 | Model application | 17 |
Elli, Elvis Felipe; Sentelhas, Paulo Cesar; de Freitas, Cleverson Henrique; Carneiro, Rafaela Lorenzato; Alvares, Clayton Alcarde; 2019. Assessing the growth gaps of Eucalyptus plantations in Brazil – Magnitudes, causes and possible mitigation strategies. Forest Ecology and Management, 451, 117464. 10.1016/j.foreco.2019.117464 (View/edit entry) | 2019 | Model application | 27 |
Culman, María; de Farias, Claudio M.; Bayona, Cristihian; Cabrera Cruz, José Daniel; 2019. Using agrometeorological data to assist irrigation management in oil palm crops: A decision support method and results from crop model simulation. Agricultural Water Management, 213, 1047–1062. 10.1016/j.agwat.2018.09.052 (View/edit entry) | 2019 | Model application | 13 |
Khaliq, Tasneem; Gaydon, Donald S.; Ahmad, Mobin-ud-Din; Cheema, M.J.M.; Gull, Umair; 2019. Analyzing crop yield gaps and their causes using cropping systems modelling–A case study of the Punjab rice-wheat system, Pakistan. Field Crops Research, 232, 119–130. 10.1016/j.fcr.2018.12.010 (View/edit entry) | 2019 | Model application | 25 |
Aller, Deborah M.; Archontoulis, Sotirios V.; Zhang, Wendong; Sawadgo, Wendiam; Laird, David A.; Moore, Kenneth; 2018. Long term biochar effects on corn yield, soil quality and profitability in the US Midwest. Field Crops Research, 227, 30–40. 10.1016/j.fcr.2018.07.012 (View/edit entry) | 2018 | Model application | 32 |
Vogeler, Iris; Cichota, Rogerio; Thomsen, Ingrid K.; Bruun, Sander; Jensen, Lars Stoumann; Pullens, Johannes W.M.; 2019. Estimating nitrogen release from Brassicacatch crop residues—Comparison of different approaches within the APSIM model. Soil and Tillage Research, 195, 104358. 10.1016/j.still.2019.104358 (View/edit entry) | 2019 | Model application | 11 |
Ndoli, Alain; Baudron, Frédéric; Schut, Antonius G.T.; Mukuralinda, Athanase; Giller, Ken E; 2017. Disentangling the positive and negative effects of trees on maize performance in smallholdings of Northern Rwanda. Field Crops Research, 213, 1–11. 10.1016/j.fcr.2017.07.020 (View/edit entry) | 2017 | Model application | 23 |
Timms, W. A.; Young, R. R.; Huth, N.; 2012. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia. Hydrology and Earth System Sciences, 16, 1203–1219. 10.5194/hess-16-1203-2012 (View/edit entry) | 2012 | Model application | 17 |
Paydar, Zahra; Huth, Neil; Ringrose-Voase, Anthony; Young, Rick; Bernardi, Tony; Keating, Brian; Cresswell, Hamish; 2005. Deep drainage and land use systems. Model verification and systems comparison. Australian Journal of Agricultural Research, 56, 995. 10.1071/AR04303 (View/edit entry) | 2005 | Model application | 28 |
Inman-Bamber, N.G.; 2016. Sugarcane for water-limited environments: Enhanced capability of the APSIM sugarcane model for assessing traits for transpiration efficiency and root water supply. Field Crops Research, 196, 112–123. 10.1016/j.fcr.2016.06.013 (View/edit entry) | 2016 | Model application | 29 |
Cann, David J.; Hunt, James R.; Malcolm, Bill; 2020. Long fallows can maintain whole-farm profit and reduce risk in semi-arid south-eastern Australia. Agricultural Systems, 178, 102721. 10.1016/j.agsy.2019.102721 (View/edit entry) | 2020 | Model application | 17 |
Keating, B.A.; Meinke, H.; 1998. Assessing exceptional drought with a cropping systems simulator: a case study for grain production in northeast Australia. Agricultural Systems, 57, 315–332. 10.1016/S0308-521X(98)00021-3 (View/edit entry) | 1998 | Model application | 47 |
Patrick Smith, F.; Holzworth, Dean P.; Robertson, Michael J.; 2005. Linking icon-based models to code-based models: a case study with the agricultural production systems simulator. Agricultural Systems, 83, 135–151. 10.1016/j.agsy.2004.03.004 (View/edit entry) | 2005 | Model application | 27 |
Kaloki, Peter; Luo, Qunying; Trethowan, Richard; Tan, Daniel K. Y.; 2019. Can the development of drought tolerant ideotype sustain Australian chickpea yield?. International Journal of Biometeorology, 63, 393–403. 10.1007/s00484-019-01672-7 (View/edit entry) | 2019 | Model application | 8 |
Al-Azri, M.; Leibovici, D.; Karunaratne, A.; Ray, R.V.; 2015. Simulating Eyespot Disease Development and Yield Loss Using APSIM for UK Wheat. Procedia Environmental Sciences, 29, 256–257. 10.1016/j.proenv.2015.07.192 (View/edit entry) | 2015 | Model application | 3 |
Seyoum, Solomon; Chauhan, Yash; Rachaputi, Rao; Fekybelu, Solomon; Prasanna, Boddupalli; 2017. Characterising production environments for maize in eastern and southern Africa using the APSIM Model. Agricultural and Forest Meteorology, 247, 445–453. 10.1016/j.agrformet.2017.08.023 (View/edit entry) | 2017 | Model application | 14 |
Li, Frank Yonghong; Newton, Paul C. D.; Lieffering, Mark; 2014. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO 2 against measurements from an 11-year FACE experiment on grazed pasture. Global Change Biology, 20, 228–239. 10.1111/gcb.12358 (View/edit entry) | 2014 | Model application | 33 |
An-Vo, Duc-Anh; Mushtaq, Shahbaz; Zheng, Bangyou; Christopher, Jack T.; Chapman, Scott C.; Chenu, Karine; 2018. Direct and Indirect Costs of Frost in the Australian Wheatbelt. Ecological Economics, 150, 122–136. 10.1016/j.ecolecon.2018.04.008 (View/edit entry) | 2018 | Model application | 13 |
Snow, V.O.; Bond, W.J.; Myers, B.J.; Theiveyanathan, S.; Smith, C.J.; Benyon, R.G.; 1999. Modelling the water balance of effluent-irrigated trees. Agricultural Water Management, 39, 47–67. 10.1016/S0378-3774(98)00086-9 (View/edit entry) | 1999 | Model application | 29 |
Luo, Qunying; Bryan, Brett; Bellotti, William; Williams, Martin; 2005. Spatial Analysis of Environmental Change Impacts on Wheat Production in Mid-Lower North, South Australia. Climatic Change, 72, 213–228. 10.1007/s10584-005-5361-1 (View/edit entry) | 2005 | Model application | 31 |
Liu, Junzhi; Liu, Zhangcong; Zhu, A-Xing; Shen, Fang; Lei, Qiuliang; Duan, Zheng; 2019. Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of The Total Environment, 651, 953–968. 10.1016/j.scitotenv.2018.09.254 (View/edit entry) | 2019 | Model application | 13 |
Elli, Elvis Felipe; Huth, Neil; Sentelhas, Paulo Cesar; Carneiro, Rafaela Lorenzato; Alvares, Clayton Alcarde; 2020. Ability of the APSIM Next Generation Eucalyptus model to simulate complex traits across contrasting environments. Ecological Modelling, 419, 108959. 10.1016/j.ecolmodel.2020.108959 (View/edit entry) | 2020 | Model application | 6 |
Zeng, Wenzhi; Wu, Jingwei; Hoffmann, Munir P.; Xu, Chi; Ma, Tao; Huang, Jiesheng; 2016. Testing the APSIM sunflower model on saline soils of Inner Mongolia, China. Field Crops Research, 192, 42–54. 10.1016/j.fcr.2016.04.013 (View/edit entry) | 2016 | Model application | 21 |
Wang, Enli; Xu, J.; Jiang, Q.; Austin, J.; 2009. Assessing the spatial impact of climate on wheat productivity and the potential value of climate forecasts at a regional level. Theoretical and Applied Climatology, 95, 311–330. 10.1007/s00704-008-0009-5 (View/edit entry) | 2009 | Model application | 22 |
de Souza Nóia Júnior, Rogério; Sentelhas, Paulo Cesar; 2020. Yield gap of the double-crop system of main-season soybean with off-season maize in Brazil. Crop and Pasture Science, 71, 445. 10.1071/CP19372 (View/edit entry) | 2020 | Model application | 2 |
Stanfill, Bryan; Mielenz, Henrike; Clifford, David; Thorburn, Peter; 2015. Simple approach to emulating complex computer models for global sensitivity analysis. Environmental Modelling & Software, 74, 140–155. 10.1016/j.envsoft.2015.09.011 (View/edit entry) | 2015 | Model application | 20 |
Dias, Henrique Boriolo; Inman-Bamber, Geoff; Everingham, Yvette; Sentelhas, Paulo Cesar; Bermejo, Rodrigo; Christodoulou, Diomedes; 2020. Traits for canopy development and light interception by twenty-seven Brazilian sugarcane varieties. Field Crops Research, 249, 107716. 10.1016/j.fcr.2020.107716 (View/edit entry) | 2020 | Model application | 10 |
Ojeda, J.J.; Pembleton, K.G.; Islam, M.R.; Agnusdei, M.G.; Garcia, S.C.; 2016. Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia. Agricultural Systems, 143, 61–75. 10.1016/j.agsy.2015.12.005 (View/edit entry) | 2016 | Model application | 19 |
Chen, Chao; Lawes, Roger; Fletcher, Andrew; Oliver, Yvette; Robertson, Michael; Bell, Mike; Wang, Enli; 2016. How well can APSIM simulate nitrogen uptake and nitrogen fixation of legume crops?. Field Crops Research, 187, 35–48. 10.1016/j.fcr.2015.12.007 (View/edit entry) | 2016 | Model application | 25 |
Togliatti, Kaitlin; Archontoulis, Sotirios V.; Dietzel, Ranae; Puntel, Laila; VanLoocke, Andy; 2017. How does inclusion of weather forecasting impact in-season crop model predictions?. Field Crops Research, 214, 261–272. 10.1016/j.fcr.2017.09.008 (View/edit entry) | 2017 | Model application | 31 |
Smethurst, Philip J.; Valadares, Rafael V.; Huth, Neil I.; Almeida, Auro C.; Elli, Elvis F.; Neves, Júlio C.L.; 2020. Generalized model for plantation production of Eucalyptus grandis and hybrids for genotype-site-management applications. Forest Ecology and Management, 469, 118164. 10.1016/j.foreco.2020.118164 (View/edit entry) | 2020 | Model application | 10 |
Ojeda, Jonathan J.; Volenec, Jeffrey J.; Brouder, Sylvie M.; Caviglia, Octavio P.; Agnusdei, Mónica G.; 2018. Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM. Agricultural Water Management, 195, 154–171. 10.1016/j.agwat.2017.10.010 (View/edit entry) | 2018 | Model application | 12 |
Asseng, S.; Dunin, F. X.; Fillery, I. R. P.; Tennant, D.; Keating, B. A.; 2001. Potential deep drainage under wheat crops in a Mediterranean climate. II. Management opportunities to control drainage. Australian Journal of Agricultural Research, 52, 57. 10.1071/AR99187 (View/edit entry) | 2001 | Model application | 48 |
Anwar, Muhuddin Rajin; Wang, Bin; Liu, De Li; Waters, Cathy; 2020. Late planting has great potential to mitigate the effects of future climate change on Australian rain-fed cotton. Science of The Total Environment, 714, 136806. 10.1016/j.scitotenv.2020.136806 (View/edit entry) | 2020 | Model application | 9 |
Deihimfard, Reza; Eyni-Nargeseh, Hamed; Mokhtassi-Bidgoli, Ali; 2018. Effect of Future Climate Change on Wheat Yield and Water Use Efficiency Under Semi-arid Conditions as Predicted by APSIM-Wheat Model. International Journal of Plant Production, 12, 115–125. 10.1007/s42106-018-0012-4 (View/edit entry) | 2018 | Model application | 25 |
Poulton, P. L.; Vesna, T.; Dalgliesh, N. P.; Seng, V.; 2015. APPLYING SIMULATION TO IMPROVE RICE VARIETIES IN REDUCING THE ON-FARM YIELD GAP IN CAMBODIAN LOWLAND RICE ECOSYSTEMS. Experimental Agriculture, 51, 264–284. 10.1017/S0014479714000271 (View/edit entry) | 2015 | Model application | 13 |
Ridoutt, Bradley G.; Wang, Enli; Sanguansri, Peerasak; Luo, Zhongkui; 2013. Life cycle assessment of phosphorus use efficient wheat grown in Australia. Agricultural Systems, 120, 2–9. 10.1016/j.agsy.2013.04.007 (View/edit entry) | 2013 | Model application | 23 |
Robertson, M. J.; Rebetzke, G. J.; Norton, R. M.; 2015. Assessing the place and role of crop simulation modelling in Australia. Crop and Pasture Science, 66, 877. 10.1071/CP14361 (View/edit entry) | 2015 | Model application | 22 |
Wang, Enli; Bell, Mike; Luo, Zhongkui; Moody, Phil; Probert, Merv E.; 2014. Modelling crop response to phosphorus inputs and phosphorus use efficiency in a crop rotation. Field Crops Research, 155, 120–132. 10.1016/j.fcr.2013.09.015 (View/edit entry) | 2014 | Model application | 24 |
Elli, Elvis Felipe; Sentelhas, Paulo Cesar; Huth, Neil; Carneiro, Rafaela Lorenzato; Alvares, Clayton Alcarde; 2020. Gauging the effects of climate variability on Eucalyptus plantations productivity across Brazil: A process-based modelling approach. Ecological Indicators, 114, 106325. 10.1016/j.ecolind.2020.106325 (View/edit entry) | 2020 | Model application | 13 |
Zhang, Yi; Feng, Liping; Wang, Enli; Wang, Jing; Li, Baoguo; 2012. Evaluation of the APSIM-Wheat model in terms of different cultivars, management regimes and environmental conditions. Canadian Journal of Plant Science, 92, 937–949. 10.4141/cjps2011-266 (View/edit entry) | 2012 | Model application | 43 |
Dokoohaki, Hamze; Miguez, Fernando E.; Archontoulis, Sotirios; Laird, David; 2018. Use of inverse modelling and Bayesian optimization for investigating the effect of biochar on soil hydrological properties. Agricultural Water Management, 208, 268–274. 10.1016/j.agwat.2018.06.034 (View/edit entry) | 2018 | Model application | 11 |
Bustos-Korts, Daniela; Boer, Martin P.; Malosetti, Marcos; Chapman, Scott; Chenu, Karine; Zheng, Bangyou; van Eeuwijk, Fred A.; 2019. Combining Crop Growth Modeling and Statistical Genetic Modeling to Evaluate Phenotyping Strategies. Frontiers in Plant Science, 10, 1491. 10.3389/fpls.2019.01491 (View/edit entry) | 2019 | Model application | 32 |
Ahmed, Mukhtar; Stöckle, Claudio O.; Nelson, Roger; Higgins, Stewart; Ahmad, Shakeel; Raza, Muhammad Ali; 2019. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports, 9, 7813. 10.1038/s41598-019-44251-x (View/edit entry) | 2019 | Model application | 25 |
Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua; Ma, Wujun; 2017. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China. PLOS ONE, 12, e0185690. 10.1371/journal.pone.0185690 (View/edit entry) | 2017 | Model application | 15 |
Rahimi-Moghaddam, Sajjad; Kambouzia, Jafar; Deihimfard, Reza; 2018. Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology, 253, 1–14. 10.1016/j.agrformet.2018.01.032 (View/edit entry) | 2018 | Model application | 34 |
Okoro, Stanley U.; Schickhoff, U.; Boehner, J.; Schneider, U.A.; Huth, N.I.; 2017. Climate impacts on palm oil yields in the Nigerian Niger Delta. European Journal of Agronomy, 85, 38–50. 10.1016/j.eja.2017.02.002 (View/edit entry) | 2017 | Model application | 14 |
Chauhan, Y.S.; Rachaputi, Rao C.N.; 2014. Defining agro-ecological regions for field crops in variable target production environments: A case study on mungbean in the northern grains region of Australia. Agricultural and Forest Meteorology, 194, 207–217. 10.1016/j.agrformet.2014.04.007 (View/edit entry) | 2014 | Model application | 30 |
Brennan, L. E.; Robertson, M. J.; Dalgliesh, N. P.; Brown, S.; 2007. Pay-offs to zone management in a variable climate: an example of nitrogen fertiliser on wheat. Australian Journal of Agricultural Research, 58, 1046. 10.1071/AR06257 (View/edit entry) | 2007 | Model application | 11 |
Anwar, M. R.; O'Leary, G. J.; Rab, M. A.; Fisher, P. D.; Armstrong, R. D.; 2009. Advances in precision agriculture in south-eastern Australia. V. Effect of seasonal conditions on wheat and barley yield response to applied nitrogen across management zones. Crop and Pasture Science, 60, 901. 10.1071/CP08351 (View/edit entry) | 2009 | Model application | 23 |
SALAPADORU HEWAWASAM, NUWAN PIYASHANTHA DE SILVA; OKADA, KENSUKE; TAKAHASHI, TARO; 2015. Validation of APSIM crop growth model for Japanese wheat varieties across N application rates: Step towards a decision support system for Japanese wheat farmers. , , . (View/edit entry) | 2015 | Model application | 0 |
Wang, Bin; Liu, De Li; Evans, Jason P.; Ji, Fei; Waters, Cathy; Macadam, Ian; Feng, Puyu; Beyer, Kathleen; 2019. Modelling and evaluating the impacts of climate change on three major crops in south-eastern Australia using regional climate model simulations. Theoretical and Applied Climatology, 138, 509–526. 10.1007/s00704-019-02843-7 (View/edit entry) | 2019 | Model application | 9 |
Hussein, E.; Thomas, D. T.; Bell, L. W.; Blache, D.; 2017. Grazing winter and spring wheat crops improves the profitability of prime lamb production in mixed farming systems of Western Australia. Animal Production Science, 57, 2082. 10.1071/AN15850 (View/edit entry) | 2017 | Model application | 8 |
Whitbread, A. M.; Clem, R. L.; 2006. Graze to grain—measuring and modelling the effects of grazed pasture leys on soil nitrogen and sorghum yield on a Vertosol soil in the Australian subtropics. Australian Journal of Agricultural Research, 57, 489. 10.1071/AR05189 (View/edit entry) | 2006 | Model application | 14 |
Shaw, Ruth E.; Meyer, Wayne S.; 2015. Improved Empirical Representation of Plant Responses to Waterlogging for Simulating Crop Yield. Agronomy Journal, 107, 1711–1723. 10.2134/agronj14.0625 (View/edit entry) | 2015 | Model application | 21 |
Fillery, Ian R. P.; Khimashia, Nirav; 2016. Procedure to estimate ammonia loss after N fertiliser application to moist soil. Soil Research, 54, 1. 10.1071/SR14073 (View/edit entry) | 2016 | Model application | 15 |
Power, Brendan; Cacho, Oscar J; 2014. Identifying risk-efficient strategies using stochastic frontier analysis and simulation: An application to irrigated cropping in Australia. Agricultural Systems, 125, 23–32. 10.1016/j.agsy.2013.11.002 (View/edit entry) | 2014 | Model application | 14 |
García, Guillermo A.; Miralles, Daniel J.; Serrago, Román A.; Alzueta, Ignacio; Huth, Neil; Dreccer, M. Fernanda; 2018. Warm nights in the Argentine Pampas: Modelling its impact on wheat and barley shows yield reductions. Agricultural Systems, 162, 259–268. 10.1016/j.agsy.2017.12.009 (View/edit entry) | 2018 | Model application | 18 |
Chen, Chao; Berger, Jens; Fletcher, Andrew; Lawes, Roger; Robertson, Michael; 2016. Genotype × environment interactions for phenological adaptation in narrow-leafed lupin: A simulation study with a parameter optimized model. Field Crops Research, 197, 28–38. 10.1016/j.fcr.2016.08.002 (View/edit entry) | 2016 | Model application | 8 |
Ahuja, Lajpat R.; Ma, Liwang; Lascano, Robert J.; Ahuja, L.R.; Saseendran, S.A.; Fang, Q.X.; Nielsen, David C.; Wang, Enli; Colaizzi, Paul D.; 2015. Syntheses of the Current Model Applications for Managing Water and Needs for Experimental Data and Model Improvements to Enhance these Applications. In: (eds.)Advances in Agricultural Systems Modeling.. 399–437. (View/edit entry) | 2015 |
Model application | 13 |
Zeleke, K.T.; Nendel, C.; 2016. Analysis of options for increasing wheat (Triticum aestivum L.) yield in south-eastern Australia: The role of irrigation, cultivar choice and time of sowing. Agricultural Water Management, 166, 139–148. 10.1016/j.agwat.2015.12.016 (View/edit entry) | 2016 | Model application | 25 |
Luo, Qunying; Trethowan, Richard; Tan, Daniel K. Y.; 2018. Managing the risk of extreme climate events in Australian major wheat production systems. International Journal of Biometeorology, 62, 1685–1694. 10.1007/s00484-018-1568-5 (View/edit entry) | 2018 | Model application | 5 |
Whish, J. P. M.; Castor, P.; Carberry, P. S.; 2007. Managing production constraints to the reliability of chickpea (Cicer arietinum L.) within marginal areas of the northern grains region of Australia. Australian Journal of Agricultural Research, 58, 396. 10.1071/AR06179 (View/edit entry) | 2007 | Model application | 28 |
Liu, De Li; O'Leary, Garry J.; Ma, Yuchun; Cowie, Annette; Li, Frank Yonghong; McCaskill, Malcolm; Conyers, Mark; Dalal, Ram; Robertson, Fiona; Dougherty, Warwick; 2016. Modelling soil organic carbon 2. Changes under a range of cropping and grazing farming systems in eastern Australia. Geoderma, 265, 164–175. 10.1016/j.geoderma.2015.11.005 (View/edit entry) | 2016 | Model application | 21 |
Farré, Imma; Robertson, Michael; Asseng, Senthold; 2007. Reliability of canola production in different rainfall zones of Western Australia. Australian Journal of Agricultural Research, 58, 326. 10.1071/AR06176 (View/edit entry) | 2007 | Model application | 16 |
Hayman, P. T.; Whitbread, A. M.; Gobbett, D. L.; 2010. Erratum to: The impact of El Niño Southern Oscillation on seasonal drought in the southern Australian grainbelt. Crop and Pasture Science, 61, 677. 10.1071/CP09221_ER (View/edit entry) | 2010 | Model application | 25 |
Bustos-Korts, Daniela; Malosetti, Marcos; Chenu, Karine; Chapman, Scott; Boer, Martin P.; Zheng, Bangyou; van Eeuwijk, Fred A.; 2019. From QTLs to Adaptation Landscapes: Using Genotype-To-Phenotype Models to Characterize G×E Over Time. Frontiers in Plant Science, 10, 1540. 10.3389/fpls.2019.01540 (View/edit entry) | 2019 | Model application | 21 |
Kabir, Md. Jahangir; Gaydon, Donald S.; Cramb, Rob; Roth, Christian H.; 2018. Bio-economic evaluation of cropping systems for saline coastal Bangladesh: I. Biophysical simulation in historical and future environments. Agricultural Systems, 162, 107–122. 10.1016/j.agsy.2018.01.027 (View/edit entry) | 2018 | Model application | 6 |
Martinez-Feria, Rafael; Nichols, Virginia; Basso, Bruno; Archontoulis, Sotirios; 2019. Can multi-strategy management stabilize nitrate leaching under increasing rainfall?. Environmental Research Letters, 14, 124079. 10.1088/1748-9326/ab5ca8 (View/edit entry) | 2019 | Model application | 10 |
Moore, Andrew D.; 2014. The case for and against perennial forages in the Australian sheep–wheat zone: modelling livestock production, business risk and environmental interactions. Animal Production Science, 54, 2029. 10.1071/AN14613 (View/edit entry) | 2014 | Model application | 9 |
Zhang, Yi; Zhao, Yanxia; Lin, Wen-Xiong; 2017. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming. PLOS ONE, 12, e0176766. 10.1371/journal.pone.0176766 (View/edit entry) | 2017 | Model application | 7 |
Peake, Allan S.; Huth, Neil I.; Kelly, Alison M.; Bell, Kerry L.; 2013. Variation in water extraction with maize plant density and its impact on model application. Field Crops Research, 146, 31–37. 10.1016/j.fcr.2013.02.012 (View/edit entry) | 2013 | Model application | 13 |
Scanlan, Craig A.; Bell, Richard W.; Brennan, Ross F.; 2015. Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertiliser. Field Crops Research, 178, 125–134. 10.1016/j.fcr.2015.03.019 (View/edit entry) | 2015 | Model application | 11 |
Sexton, J.; Everingham, Y.; Inman-Bamber, G.; 2016. A theoretical and real world evaluation of two Bayesian techniques for the calibration of variety parameters in a sugarcane crop model. Environmental Modelling & Software, 83, 126–142. 10.1016/j.envsoft.2016.05.014 (View/edit entry) | 2016 | Model application | 26 |
Palmer, Jeda; Thorburn, Peter J.; Meier, Elizabeth A.; Biggs, Jody S.; Whelan, Brett; Singh, Kanika; Eyre, David N.; 2017. Can management practices provide greenhouse gas abatement in grain farms in New South Wales, Australia?. Crop and Pasture Science, 68, 390. 10.1071/CP17026 (View/edit entry) | 2017 | Model application | 2 |
Ababaei, Behnam; Chenu, Karine; 2020. Heat shocks increasingly impede grain filling but have little effect on grain setting across the Australian wheatbelt. Agricultural and Forest Meteorology, 284, 107889. 10.1016/j.agrformet.2019.107889 (View/edit entry) | 2020 | Model application | 26 |
Giltrap, Dl; Vogeler, I; Cichota, R; Luo, J; van der Weerden, Tj; de Klein, Cam; 2015. Comparison between APSIM and NZ-DNDC models when describing N-dynamics under urine patches. New Zealand Journal of Agricultural Research, 58, 131–155. 10.1080/00288233.2014.987876 (View/edit entry) | 2015 | Model application | 20 |
Mielenz, Henrike; Thorburn, Peter J.; Harris, Robert H.; Officer, Sally J.; Li, Guangdi; Schwenke, Graeme D.; Grace, Peter R.; 2016. Nitrous oxide emissions from grain production systems across a wide range of environmental conditions in eastern Australia. Soil Research, 54, 659. 10.1071/SR15376 (View/edit entry) | 2016 | Model application | 13 |
Bassu, Simona; Asseng, Senthold; Giunta, Francesco; Motzo, Rosella; 2013. Optimizing triticale sowing densities across the Mediterranean Basin. Field Crops Research, 144, 167–178. 10.1016/j.fcr.2013.01.014 (View/edit entry) | 2013 | Model application | 9 |
Hochman, Z.; Carberry, P.S.; McCown, R.L.; Dalgliesh, N.P.; Foale, M.A.; Brennan, L.E.; 2001. APSIM IN THE MARKETPLACE: A TALE OF KITCHEN TABLES, BOARDROOMS AND COURTROOMS. Acta Horticulturae, , 21–33. 10.17660/ActaHortic.2001.566.1 (View/edit entry) | 2001 | Model application | 8 |
Masvaya, Esther N.; Nyamangara, Justice; Giller, Ken E.; Descheemaeker, Katrien; 2018. Risk management options in maize cropping systems in semi-arid areas of Southern Africa. Field Crops Research, 228, 110–121. 10.1016/j.fcr.2018.09.002 (View/edit entry) | 2018 | Model application | 6 |
Pardon, Lénaïc; Huth, Neil Ian; Nelson, Paul Netelenbos; Banabas, Murom; Gabrielle, Benoît; Bessou, Cécile; 2017. Yield and nitrogen losses in oil palm plantations: Main drivers and management trade-offs determined using simulation. Field Crops Research, 210, 20–32. 10.1016/j.fcr.2017.05.016 (View/edit entry) | 2017 | Model application | 18 |
Uribe, Raul Andres Martinez; Gava, Glauber José de Castro; Kölln, Oriel Tiago; Saad, Joao Carlos Cury; 2018. ESTIMATIVA DO ACÚMULO DE FITOMASSA DA SOQUEIRA DE CANA-DE-AÇÚCAR FERTIRRIGADA COM DOSES DE N-FERTILIZANTE UTILIZANDO MODELO DE SIMULAÇÃO. IRRIGA, 1, 126. 10.15809/irriga.2016v1n1p126-139 (View/edit entry) | 2018 | Model application | 3 |
Birch, C. J.; McLean, G.; Sawers, A.; 2008. Analysis of high yielding maize production - a study based on a commercial crop. Australian Journal of Experimental Agriculture, 48, 296. 10.1071/EA06103 (View/edit entry) | 2008 | Model application | 10 |
Farré, Imma; Robertson, Michael J.; Asseng, Senthold; French, Robert J.; Dracup, Miles; 2004. Simulating lupin development, growth, and yield in a Mediterranean environment. Australian Journal of Agricultural Research, 55, 863. 10.1071/AR04027 (View/edit entry) | 2004 | Model application | 30 |
Lisson, S.N.; Cotching, W.E.; 2011. Modelling the fate of water and nitrogen in the mixed vegetable farming systems of northern Tasmania, Australia. Agricultural Systems, 104, 600–608. 10.1016/j.agsy.2011.06.002 (View/edit entry) | 2011 | Model application | 30 |
Wang, Enli; Ridoutt, Brad G.; Luo, Zhongkui; Probert, Mervyn E.; 2013. Using systems modelling to explore the potential for root exudates to increase phosphorus use efficiency in cereal crops. Environmental Modelling & Software, 46, 50–60. 10.1016/j.envsoft.2013.02.009 (View/edit entry) | 2013 | Model application | 15 |
Probert, M.E; Keating, B.A; 2000. What soil constraints should be included in crop and forest models?. Agriculture, Ecosystems & Environment, 82, 273–281. 10.1016/S0167-8809(00)00231-0 (View/edit entry) | 2000 | Model application | 33 |
Florin, M. J.; McBratney, A. B.; Whelan, B. M.; Minasny, B.; 2011. Inverse meta-modelling to estimate soil available water capacity at high spatial resolution across a farm. Precision Agriculture, 12, 421–438. 10.1007/s11119-010-9184-3 (View/edit entry) | 2011 | Model application | 13 |
Milroy, S.P.; Asseng, S.; Poole, M.L.; 2008. Systems analysis of wheat production on low water-holding soils in a Mediterranean-type environment. Field Crops Research, 107, 211–220. 10.1016/j.fcr.2008.02.008 (View/edit entry) | 2008 | Model application | 30 |
Farquharson, R. J.; Schwenke, G. D.; Mullen, J. D.; 2003. Should we manage soil organic carbon in Vertosols in the northern grains region of Australia?. Australian Journal of Experimental Agriculture, 43, 261. 10.1071/EA00163 (View/edit entry) | 2003 | Model application | 45 |
Watson, James; Zheng, Bangyou; Chapman, Scott C.; Chenu, Karine; 2015. Projected Impact of Future Climate on Drought Patterns in Complex Rainfed Environments. Procedia Environmental Sciences, 29, 190–191. 10.1016/j.proenv.2015.07.255 (View/edit entry) | 2015 | Model application | 2 |
Zhu, Ruirui; Zheng, Hongxing; Wang, Enli; Jakeman, Anthony J.; 2018. A hybrid process based-empirical approach to identify the association between wheat productivity and climate in the North China Plain during the past 50 years. Environmental Modelling & Software, 108, 72–80. 10.1016/j.envsoft.2018.07.017 (View/edit entry) | 2018 | Model application | 2 |
Pasley, Heather R.; Huber, Isaiah; Castellano, Michael J.; Archontoulis, Sotirios V.; 2020. Modeling Flood-Induced Stress in Soybeans. Frontiers in Plant Science, 11, 62. 10.3389/fpls.2020.00062 (View/edit entry) | 2020 | Model application | 23 |
Liu, Zhijuan; Yang, Xiaoguang; Lin, Xiaomao; Hubbard, Kenneth G.; Lv, Shuo; Wang, Jing; 2016. Narrowing the Agronomic Yield Gaps of Maize by Improved Soil, Cultivar, and Agricultural Management Practices in Different Climate Zones of Northeast China. Earth Interactions, 20, 1–18. 10.1175/EI-D-15-0032.1 (View/edit entry) | 2016 | Model application | 17 |
Teixeira, Edmar I.; Brown, Hamish E.; Michel, Alexandre; Meenken, Esther; Hu, Wei; Thomas, Steve; Huth, Neil I.; Holzworth, Dean P.; 2018. Field estimation of water extraction coefficients with APSIM-Slurp for water uptake assessments in perennial forages. Field Crops Research, 222, 26–38. 10.1016/j.fcr.2018.03.011 (View/edit entry) | 2018 | Model application | 10 |
Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T.; 2016. Simulating yield and water use of a sorghum–cowpea intercrop using APSIM. Agricultural Water Management, 177, 317–328. 10.1016/j.agwat.2016.08.021 (View/edit entry) | 2016 | Model application | 37 |
Adam, M.; Corbeels, M.; Leffelaar, P.A.; Van Keulen, H.; Wery, J.; Ewert, F.; 2012. Building crop models within different crop modelling frameworks. Agricultural Systems, 113, 57–63. 10.1016/j.agsy.2012.07.010 (View/edit entry) | 2012 | Model application | 36 |
Hill, J. O.; Robertson, M. J.; Pengelly, B. C.; Whitbread, A. M.; Hall, C. A.; 2006. Simulation modelling of lablab (Lablab purpureus) pastures in northern Australia. Australian Journal of Agricultural Research, 57, 389. 10.1071/AR05263 (View/edit entry) | 2006 | Model application | 15 |
Turpin, J. E.; Robertson, M. J.; Haire, C.; Bellotti, W. D.; Moore, A. D.; Rose, I.; 2003. Simulating fababean development, growth, and yield in Australia. Australian Journal of Agricultural Research, 54, 39. 10.1071/AR02064 (View/edit entry) | 2003 | Model application | 34 |
Mohanty, M.; Sammi Reddy, K.; Probert, M. E.; Dalal, R. C.; Sinha, Nishant K.; Subba Rao, A.; Menzies, N. W.; 2016. Efficient Nitrogen and Water Management for the Soybean–Wheat System of Madhya Pradesh, Central India, Assessed Using APSIM Model. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86, 217–228. 10.1007/s40011-014-0443-3 (View/edit entry) | 2016 | Model application | 5 |
Cichota, Rogerio; Vogeler, Iris; Snow, Val; Shepherd, Mark; McAuliffe, Russell; Welten, Brendon; 2018. Lateral spread affects nitrogen leaching from urine patches. Science of The Total Environment, 635, 1392–1404. 10.1016/j.scitotenv.2018.04.005 (View/edit entry) | 2018 | Model application | 10 |
Zhao, Jin; Yang, Xiaoguang; Liu, Zhijuan; Lv, Shuo; Wang, Jing; Dai, Shuwei; 2016. Variations in the potential climatic suitability distribution patterns and grain yields for spring maize in Northeast China under climate change. Climatic Change, 137, 29–42. 10.1007/s10584-016-1652-y (View/edit entry) | 2016 | Model application | 22 |
Chauhan, Yash; Wright, Graeme; Rachaputi, Nageswararao; McCosker, Kevin; 2008. Identifying chickpea homoclimes using the APSIM chickpea model. Australian Journal of Agricultural Research, 59, 260. 10.1071/AR07380 (View/edit entry) | 2008 | Model application | 25 |
Aslam, Muhammad A.; Ahmed, Mukhtar; Stöckle, Claudio O.; Higgins, Stewart S.; Hassan, Fayyaz ul; Hayat, Rifat; 2017. Can Growing Degree Days and Photoperiod Predict Spring Wheat Phenology?. Frontiers in Environmental Science, 5, 57. 10.3389/fenvs.2017.00057 (View/edit entry) | 2017 | Model application | 34 |
Chen, Chao; Smith, Andrew; Ward, Phil; Fletcher, Andrew; Lawes, Roger; Norman, Hayley; 2017. Modelling the comparative growth, water use and productivity of the perennial legumes, tedera (Bituminaria bituminosa var. albomarginata) and lucerne (Medicago sativa) in dryland mixed farming systems. Crop and Pasture Science, 68, 643. 10.1071/CP17131 (View/edit entry) | 2017 | Model application | 2 |
Hoffmann, Munir P.; Odhiambo, Jude J.O.; Koch, Marian; Ayisi, Kingsley K.; Zhao, Gang; Soler, Alejandra S.; Rötter, Reimund P.; 2018. Exploring adaptations of groundnut cropping to prevailing climate variability and extremes in Limpopo Province, South Africa. Field Crops Research, 219, 1–13. 10.1016/j.fcr.2018.01.019 (View/edit entry) | 2018 | Model application | 10 |
Lawes, Roger; Renton, Michael; 2015. Gaining insight into the risks, returns and value of perfect knowledge for crop sequences by comparing optimal sequences with those proposed by agronomists. Crop and Pasture Science, 66, 622. 10.1071/CP14185 (View/edit entry) | 2015 | Model application | 15 |
Xiao, Dengpan; Liu, De Li; Wang, Bin; Feng, Puyu; Waters, Cathy; 2020. Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agricultural Systems, 181, 102805. 10.1016/j.agsy.2020.102805 (View/edit entry) | 2020 | Model application | 22 |
Amarasingha, R.P.R.K.; Suriyagoda, L.D.B.; Marambe, B.; Rathnayake, W.M.U.K.; Gaydon, D.S.; Galagedara, L.W.; Punyawardena, R.; Silva, G.L.L.P.; Nidumolu, U.; Howden, M.; 2017. Improving water productivity in moisture-limited rice-based cropping systems through incorporation of maize and mungbean: A modelling approach. Agricultural Water Management, 189, 111–122. 10.1016/j.agwat.2017.05.002 (View/edit entry) | 2017 | Model application | 20 |
Zhao, Jin; Yang, Xiaoguang; Sun, Shuang; 2018. Constraints on maize yield and yield stability in the main cropping regions in China. European Journal of Agronomy, 99, 106–115. 10.1016/j.eja.2018.07.003 (View/edit entry) | 2018 | Model application | 22 |
Macadam, I; Pitman, Aj; Whetton, Ph; Liu, Dl; Evans, Jp; 2014. The use of uncorrected regional climate model output to force impact models: a case study for wheat simulations. Climate Research, 61, 215–229. 10.3354/cr01258 (View/edit entry) | 2014 | Model application | 5 |
Adu-Gyamfi, J. J.; Carberry, P. S.; Probert, M. E.; Dimes, J. P.; Keating, B. A.; McCown, R. L.; 2002. Role of modelling in improving nutrient efficiency in cropping systems. In: (eds.)Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities.. 319–329. (View/edit entry) | 2002 | Model application | 37 |
Bacon, Samuel A.; Mau, Raimundo; Neto, Florindo M.; Williams, Robert L.; Turner, Neil C.; 2016. Effect of climate warming on maize production in Timor-Leste: interaction with nitrogen supply. Crop and Pasture Science, 67, 156. 10.1071/CP15078 (View/edit entry) | 2016 | Model application | 3 |
Balboa, G.R.; Archontoulis, S.V.; Salvagiotti, F.; Garcia, F.O.; Stewart, W.M.; Francisco, E.; Prasad, P.V. Vara; Ciampitti, I.A.; 2019. A systems-level yield gap assessment of maize-soybean rotation under high- and low-management inputs in the Western US Corn Belt using APSIM. Agricultural Systems, 174, 145–154. 10.1016/j.agsy.2019.04.008 (View/edit entry) | 2019 | Model application | 13 |
Sprigg, Hayden; Belford, Robert; Milroy, Steve; Bennett, Sarita Jane; Bowran, David; 2014. Adaptations for growing wheat in the drying climate of Western Australia. Crop and Pasture Science, 65, 627. 10.1071/CP13352 (View/edit entry) | 2014 | Model application | 15 |
Whitbread, Anthony M.; Hoffmann, Munir P.; Davoren, C. William; Mowat, Damian; Baldock, Jeffrey A.; 2017. Measuring and Modeling the Water Balance in Low-Rainfall Cropping Systems. Transactions of the ASABE, 60, 2097–2110. 10.13031/trans.12581 (View/edit entry) | 2017 | Model application | 11 |
Zeleke, Ketema Tilahun; Anwar, Muhuddin; Liu, De Li; 2014. Managing crop stubble during fallow period for soil water conservation: field experiment and modelling. Environmental Earth Sciences, 72, 3317–3327. 10.1007/s12665-014-3235-4 (View/edit entry) | 2014 | Model application | 11 |
Bahri, Haithem; Annabi, Mohamed; Cheikh M'Hamed, Hatem; Frija, Aymen; 2019. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Science of The Total Environment, 692, 1223–1233. 10.1016/j.scitotenv.2019.07.307 (View/edit entry) | 2019 | Model application | 35 |
He, Di; Wang, Enli; 2019. On the relation between soil water holding capacity and dryland crop productivity. Geoderma, 353, 11–24. 10.1016/j.geoderma.2019.06.022 (View/edit entry) | 2019 | Model application | 14 |
Chen, Chao; Fletcher, Andrew; Lawes, Roger; Berger, Jens; Robertson, Michael; 2017. Modelling phenological and agronomic adaptation options for narrow-leafed lupins in the southern grainbelt of Western Australia. European Journal of Agronomy, 89, 140–147. 10.1016/j.eja.2017.05.005 (View/edit entry) | 2017 | Model application | 9 |
Thomas, Dean T.; Moore, Andrew D.; Bell, Lindsay W.; Webb, Nicholas P.; 2018. Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program. Agricultural Systems, 162, 123–135. 10.1016/j.agsy.2018.02.001 (View/edit entry) | 2018 | Model application | 18 |
Wu, Yushan; Wang, Enli; He, Di; Liu, Xin; Archontoulis, Sotirios V.; Huth, Neil I.; Zhao, Zhigan; Gong, Wanzhuo; Yang, Wenyu; 2019. Combine observational data and modelling to quantify cultivar differences of soybean. European Journal of Agronomy, 111, 125940. 10.1016/j.eja.2019.125940 (View/edit entry) | 2019 | Model application | 5 |
Sun, Shuang; Yang, Xiaoguang; Lin, Xiaomao; Sassenrath, Gretchen F.; Li, Kenan; 2018. Winter Wheat Yield Gaps and Patterns in China. Agronomy Journal, 110, 319–330. 10.2134/agronj2017.07.0417 (View/edit entry) | 2018 | Model application | 19 |
Vogeler, I.; Cichota, R.; 2016. Deriving seasonally optimal nitrogen fertilization rates for a ryegrass pasture based on agricultural production systems simulator modelling with a refined AgPasture model. Grass and Forage Science, 71, 353–365. 10.1111/gfs.12181 (View/edit entry) | 2016 | Model application | 18 |
Dilla, Aynalem; Smethurst, Philip J.; Barry, Karen; Parsons, David; Denboba, Mekuria; 2018. Potential of the APSIM model to simulate impacts of shading on maize productivity. Agroforestry Systems, 92, 1699–1709. 10.1007/s10457-017-0119-0 (View/edit entry) | 2018 | Model application | 20 |
Zhao, Zhigan; Verburg, Kirsten; Huth, Neil; 2017. Modelling sugarcane nitrogen uptake patterns to inform design of controlled release fertiliser for synchrony of N supply and demand. Field Crops Research, 213, 51–64. 10.1016/j.fcr.2017.08.001 (View/edit entry) | 2017 | Model application | 14 |
Xiao, Dengpan; Liu, De Li; Wang, Bin; Feng, Puyu; Bai, Huizi; Tang, Jianzhao; 2020. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agricultural Water Management, 238, 106238. 10.1016/j.agwat.2020.106238 (View/edit entry) | 2020 | Model application | 65 |
Wu, Renye; Lawes, Roger; Oliver, Yvette; Fletcher, Andrew; Chen, Chao; 2019. How well do we need to estimate plant-available water capacity to simulate water-limited yield potential?. Agricultural Water Management, 212, 441–447. 10.1016/j.agwat.2018.09.029 (View/edit entry) | 2019 | Model application | 9 |
Mupangwa, W.; Jewitt, G.P.W.; 2011. Simulating the impact of no-till systems on field water fluxes and maize productivity under semi-arid conditions. Physics and Chemistry of the Earth, Parts A/B/C, 36, 1004–1011. 10.1016/j.pce.2011.07.069 (View/edit entry) | 2011 | Model application | 16 |
Hoffmann, Munir P.; Isselstein, Johannes; Rötter, Reimund P.; Kayser, Manfred; 2018. Nitrogen management in crop rotations after the break-up of grassland: Insights from modelling. Agriculture, Ecosystems & Environment, 259, 28–44. 10.1016/j.agee.2018.02.009 (View/edit entry) | 2018 | Model application | 15 |
Wunsch, E. M.; Bell, L. W.; Bell, M. J.; 2017. Can legumes provide greater benefits than millet as a spring cover crop in southern Queensland farming systems?. Crop and Pasture Science, 68, 746. 10.1071/CP17223 (View/edit entry) | 2017 | Model application | 7 |
Solomon, K. F.; Chauhan, Y.; Zeppa, A.; 2017. Risks of yield loss due to variation in optimum density for different maize genotypes under variable environmental conditions. Journal of Agronomy and Crop Science, 203, 519–527. 10.1111/jac.12213 (View/edit entry) | 2017 | Model application | 19 |
Meier, Elizabeth A.; Thorburn, Peter J.; Bell, Lindsay W.; Harrison, Matthew T.; Biggs, Jody S.; 2020. Greenhouse Gas Emissions From Cropping and Grazed Pastures Are Similar: A Simulation Analysis in Australia. Frontiers in Sustainable Food Systems, 3, 121. 10.3389/fsufs.2019.00121 (View/edit entry) | 2020 | Model application | 6 |
Connolly, R. D.; Freebairn, D. M.; Bell, M. J.; 1998. Change in soil infiltration associated with leys in south-eastern Queensland. Soil Research, 36, 1057. 10.1071/S98028 (View/edit entry) | 1998 | Model application | 26 |
Herridge, D. F.; Turpin, J. E.; Robertson, M. J.; 2001. Improving nitrogen fixation of crop legumes through breeding and agronomic management: analysis with simulation modelling. Australian Journal of Experimental Agriculture, 41, 391. 10.1071/EA00041 (View/edit entry) | 2001 | Model application | 42 |
Luo, Zhongkui; Wang, Enli; Viscarra Rossel, Raphael A.; 2016. Can the sequestered carbon in agricultural soil be maintained with changes in management, temperature and rainfall? A sensitivity assessment. Geoderma, 268, 22–28. 10.1016/j.geoderma.2016.01.015 (View/edit entry) | 2016 | Model application | 7 |
Ahmed, Mukhtar; Van Ogtrop, F.F.; 2014. Can models help to forecast rainwater dynamics for rainfed ecosystem?. Weather and Climate Extremes, 5, 48–55. 10.1016/j.wace.2014.07.001 (View/edit entry) | 2014 | Model application | 8 |
My Phung, Nguyen Thi; Brown, Peter R.; Leung, Luke K.P.; 2013. Use of computer simulation models to encourage farmers to adopt best rodent management practices in lowland irrigated rice systems in An Giang Province, the Mekong Delta, Vietnam. Agricultural Systems, 116, 69–76. 10.1016/j.agsy.2012.11.003 (View/edit entry) | 2013 | Model application | 11 |
Meier, Elizabeth A.; Thorburn, Peter J.; Kragt, Marit E.; Dumbrell, Nikki P.; Biggs, Jody S.; Hoyle, Frances C.; van Rees, Harm; 2017. Greenhouse gas abatement on southern Australian grains farms: B iophysical potential and financial impacts. Agricultural Systems, 155, 147–157. 10.1016/j.agsy.2017.04.012 (View/edit entry) | 2017 | Model application | 8 |
Nelson, R.A; Dimes, J.P; Silburn, D.M; Paningbatan, E.P; Cramb, R.A; 1998. Erosion/productivity modelling of maize farming in the Philippine uplands. Agricultural Systems, 58, 147–163. 10.1016/S0308-521X(98)00044-4 (View/edit entry) | 1998 | Model application | 20 |
Meinke, Holger; Rabbinge, Rudy; Hammer, Graeme L.; van Keulen, Herman; Jamieson, Peter D.; 1998. Improving wheat simulation capabilities in Australia from a cropping systems perspective II. Testing simulation capabilities of wheat growth. European Journal of Agronomy, 8, 83–99. 10.1016/S1161-0301(97)00016-6 (View/edit entry) | 1998 | Model application | 72 |
Araya, A.; Prasad, P. V. V.; Gowda, P. H.; Djanaguiraman, M.; Kassa, A. H.; 2020. Potential impacts of climate change factors and agronomic adaptation strategies on wheat yields in central highlands of Ethiopia. Climatic Change, 159, 461–479. 10.1007/s10584-019-02627-y (View/edit entry) | 2020 | Model application | 9 |
Lisson, S. N.; Mendham, N. J.; Carberry, P. S.; 2000. Development of a hemp (Cannabis sativa L.) simulation model 4. Model description and validation. Australian Journal of Experimental Agriculture, 40, 425. 10.1071/EA99061 (View/edit entry) | 2000 | Model application | 17 |
Sheraz Mahdi, Syed; Kalra, Naveen; Kumar, Manoj; 2019. Simulating the Impact of Climate Change and its Variability on Agriculture. In: (eds.)Climate Change and Agriculture in India: Impact and Adaptation.. 21–28. (View/edit entry) | 2019 | Model application | 23 |
Stuermer, Arne W.; Akkermans, Rinie A.; 2014. Validation of Aerodynamic and Aeroacoustic Simulations of Contra-Rotating Open Rotors at Low-Speed Flight Conditions. . Volume . (View/edit entry) | 2014 | Model application | 14 |
Paydar, Zahra; Huth, Neil; Snow, Val; 2005. Modelling irrigated Eucalyptus for salinity control on shallow watertables. Soil Research, 43, 587. 10.1071/SR04152 (View/edit entry) | 2005 | Model application | 19 |
Chauhan, Yashvir; Tatnell, Jeff; Krosch, Stephen; Karanja, James; Gnonlonfin, Benoit; Wanjuki, Immaculate; Wainaina, James; Harvey, Jagger; 2015. An improved simulation model to predict pre-harvest aflatoxin risk in maize. Field Crops Research, 178, 91–99. 10.1016/j.fcr.2015.03.024 (View/edit entry) | 2015 | Model application | 25 |
Meier, Elizabeth; Lilley, Julianne; Kirkegaard, John; Whish, Jeremy; McBeath, Therese; 2020. Management practices that maximise gross margins in Australian canola (Brassica napus L.). Field Crops Research, 252, 107803. 10.1016/j.fcr.2020.107803 (View/edit entry) | 2020 | Model application | 9 |
Brown, Peter R.; My Phung, Nguyen Thi; Gaydon, Donald S.; 2011. Rats in rice: linking crop and pest models to explore management strategies. Wildlife Research, 38, 560. 10.1071/WR10194 (View/edit entry) | 2011 | Model application | 7 |
Cleugh, H. A.; 2002. Parameterising the impact of shelter on crop microclimates and evaporation fluxes. Australian Journal of Experimental Agriculture, 42, 859. 10.1071/EA02006 (View/edit entry) | 2002 | Model application | 13 |
Mwambo, Francis Molua; Fürst, Christine; Nyarko, Benjamin K.; Borgemeister, Christian; Martius, Christopher; 2020. Maize production and environmental costs: Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis. Land Use Policy, 95, 104490. 10.1016/j.landusepol.2020.104490 (View/edit entry) | 2020 | Model application | 15 |
van der Weerden, T.J.; Laurenson, S.; Vogeler, I.; Beukes, P.C.; Thomas, S.M.; Rees, R.M.; Topp, C.F.E.; Lanigan, G.; de Klein, C.A.M.; 2017. Mitigating nitrous oxide and manure-derived methane emissions by removing cows in response to wet soil conditions. Agricultural Systems, 156, 126–138. 10.1016/j.agsy.2017.06.010 (View/edit entry) | 2017 | Model application | 14 |
Nascimento, Alexandre Ferreira do; Mendonça, Eduardo de Sá; Leite, Luiz Fernando Carvalho; Neves, Júlio Cesar Lima; 2011. Calibration of the century, apsim and ndicea models of decomposition and n mineralization of plant residues in the humid tropics. Revista Brasileira de Ciência do Solo, 35, 917–928. 10.1590/S0100-06832011000300026 (View/edit entry) | 2011 | Model application | 7 |
Silungwe, Festo; Graef, Frieder; Bellingrath-Kimura, Sonoko; Tumbo, Siza; Kahimba, Frederick; Lana, Marcos; 2018. Crop Upgrading Strategies and Modelling for Rainfed Cereals in a Semi-Arid Climate—A Review. Water, 10, 356. 10.3390/w10040356 (View/edit entry) | 2018 | Model application | 9 |
Carberry, P. S.; Meinke, H.; Poulton, P. L.; Hargreaves, J. N. G.; Snell, A. J.; Sudmeyer, R. A.; 2002. Modelling crop growth and yield under the environmental changes induced by windbreaks. 2. Simulation of potential benefits at selected sites in Australia. Australian Journal of Experimental Agriculture, 42, 887. 10.1071/EA02020 (View/edit entry) | 2002 | Model application | 16 |
Paydar, Zahra; Gaydon, Donald; Chen, Yun; 2009. A methodology for up-scaling irrigation losses. Irrigation Science, 27, 347–356. 10.1007/s00271-009-0151-6 (View/edit entry) | 2009 | Model application | 13 |
Foale, M. A.; Probert, M. E.; Carberry, P. S.; Lack, D.; Yeates, S.; Brimblecombe, D.; Crocker, M.; 2004. Participatory research in dryland cropping systems — monitoring and simulation of soil water and nitrogen in farmers' paddocks in Central Queensland. Australian Journal of Experimental Agriculture, 44, 321. 10.1071/EA02205 (View/edit entry) | 2004 | Model application | 16 |
Marcillo, Guillermo S.; Carlson, Sarah; Filbert, Meghan; Kaspar, Thomas; Plastina, Alejandro; Miguez, Fernando E.; 2019. Maize system impacts of cover crop management decisions: A simulation analysis of rye biomass response to planting populations in Iowa, U.S.A.. Agricultural Systems, 176, 102651. 10.1016/j.agsy.2019.102651 (View/edit entry) | 2019 | Model application | 13 |
Dixit, Prakash N.; Telleria, Roberto; Al Khatib, Amal N.; Allouzi, Siham F.; 2018. Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan. Science of The Total Environment, 610, 219–233. 10.1016/j.scitotenv.2017.07.270 (View/edit entry) | 2018 | Model application | 19 |
Vilvert, Elisa; Lana, Marcos; Zander, Peter; Sieber, Stefan; 2018. Multi-model approach for assessing the sunflower food value chain in Tanzania. Agricultural Systems, 159, 103–110. 10.1016/j.agsy.2017.10.014 (View/edit entry) | 2018 | Model application | 13 |
Yang, Xuan; Zheng, Lina; Yang, Qian; Wang, Zikui; Cui, Song; Shen, Yuying; 2018. Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using APSIM. Agricultural Systems, 166, 111–123. 10.1016/j.agsy.2018.08.005 (View/edit entry) | 2018 | Model application | 30 |
Whish, J. P. M.; Price, L.; Castor, P. A.; 2009. Do spring cover crops rob water and so reduce wheat yields in the northern grain zone of eastern Australia?. Crop and Pasture Science, 60, 517. 10.1071/CP08397 (View/edit entry) | 2009 | Model application | 16 |
Moeller, Carina; Pala, Mustafa; Manschadi, Ahmad M.; Meinke, Holger; Sauerborn, Joachim; 2007. Assessing the sustainability of wheat-based cropping systems using APSIM: model parameterisation and evaluation. Australian Journal of Agricultural Research, 58, 75. 10.1071/AR06186 (View/edit entry) | 2007 | Model application | 20 |
Kandulu, John; Thorburn, Peter; Biggs, Jody; Verburg, Kirsten; 2018. Estimating economic and environmental trade-offs of managing nitrogen in Australian sugarcane systems taking agronomic risk into account. Journal of Environmental Management, 223, 264–274. 10.1016/j.jenvman.2018.06.023 (View/edit entry) | 2018 | Model application | 9 |
Msongaleli, Barnabas; Rwehumbiza, Filbert; Tumbo, Siza D.; Kihupi, Nganga; 2014. Sorghum Yield Response to Changing Climatic Conditions in Semi-Arid Central Tanzania: Evaluating Crop Simulation Model Applicability. Agricultural Sciences, 5, 822–833. 10.4236/as.2014.510087 (View/edit entry) | 2014 | Model application | 18 |
Zheng, Bangyou; Holland, Edward; Chapman, Scott C.; 2016. A standardized workflow to utilise a grid-computing system through advanced message queuing protocols. Environmental Modelling & Software, 84, 304–310. 10.1016/j.envsoft.2016.07.012 (View/edit entry) | 2016 | Model application | 2 |
Subash, N.; Shamim, M.; Singh, V. K.; Gangwar, B.; Singh, B.; Gaydon, D. S.; Roth, C. H.; Poulton, P. L.; Sikka, A. K.; 2015. Applicability of APSIM to capture the effectiveness of irrigation management decisions in rice-based cropping sequence in the Upper-Gangetic Plains of India. Paddy and Water Environment, 13, 325–335. 10.1007/s10333-014-0443-1 (View/edit entry) | 2015 | Model application | 12 |
Tidjani, M. A.; Akponikpe, P. B. I.; 2012. Evaluation des stratégies paysannes d’adaptation aux changements Climatiques : Cas de la production du maïs au Nord-Bénin. African Crop Science Journal, 20, 425–441. 10.4314/ACSJ.V20I2 (View/edit entry) | 2012 | Model application | 147 |
Snow, V. O.; Houlbrooke, D. J.; Huth, N. I.; 2007. Predicting soil water, tile drainage, and runoff in a mole‐tile drained soil. New Zealand Journal of Agricultural Research, 50, 13–24. 10.1080/00288230709510278 (View/edit entry) | 2007 | Model application | 19 |
McNunn, Gabriel; Heaton, Emily; Archontoulis, Sotirios; Licht, Mark; VanLoocke, Andy; 2019. Using a Crop Modeling Framework for Precision Cost-Benefit Analysis of Variable Seeding and Nitrogen Application Rates. Frontiers in Sustainable Food Systems, 3, 108. 10.3389/fsufs.2019.00108 (View/edit entry) | 2019 | Model application | 13 |
Peake, A.S.; Das, B.T.; Bell, K.L.; Gardner, M.; Poole, N.; 2018. Effect of variable crop duration on grain yield of irrigated spring-wheat when flowering is synchronised. Field Crops Research, 228, 183–194. 10.1016/j.fcr.2018.09.004 (View/edit entry) | 2018 | Model application | 10 |
Gao, Jiqing; Yang, Xiaoguang; Zheng, Bangyou; Liu, Zhijuan; Zhao, Jin; Sun, Shuang; Li, Kenan; Dong, Chaoyang; 2019. Effects of climate change on the extension of the potential double cropping region and crop water requirements in Northern China. Agricultural and Forest Meteorology, 268, 146–155. 10.1016/j.agrformet.2019.01.009 (View/edit entry) | 2019 | Model application | 29 |
Muchow, R. C.; Keating, B. A.; 1998. Assessing irrigation requirements in the Ord Sugar Industry using a simulation modelling approach. Australian Journal of Experimental Agriculture, 38, 345. 10.1071/EA98023 (View/edit entry) | 1998 | Model application | 19 |
McMaster, G.S.; Hargreaves, J.N.G.; 2009. CANON in D(esign): Composing scales of plant canopies from phytomers to whole-plants using the composite design pattern. NJAS - Wageningen Journal of Life Sciences, 57, 39–51. 10.1016/j.njas.2009.07.008 (View/edit entry) | 2009 | Model application | 10 |
Fletcher, Andrew L.; Chen, Chao; Ota, Noboru; Lawes, Roger A.; Oliver, Yvette M.; 2020. Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?. Climatic Change, 159, 347–364. 10.1007/s10584-020-02666-w (View/edit entry) | 2020 | Model application | 13 |
Chauhan, Yashvir S.; 2010. Potential productivity and water requirements of maize–peanut rotations in Australian semi-arid tropical environments—A crop simulation study. Agricultural Water Management, 97, 457–464. 10.1016/j.agwat.2009.11.005 (View/edit entry) | 2010 | Model application | 7 |
Dalal, R. C.; Weston, E. J.; Strong, W. M.; Probert, M. E.; Lehane, K. J.; Cooper, J. E.; King, A. J.; Holmes, C. J.; 2004. Sustaining productivity of a Vertosol at Warra, Queensland, with fertilisers, no-tillage or legumes. 8. Effect of duration of lucerne ley on soil nitrogen and water, wheat yield and protein. Australian Journal of Experimental Agriculture, 44, 1013. 10.1071/EA03166 (View/edit entry) | 2004 | Model application | 17 |
Meinke, H.; Carberry, P. S.; Cleugh, H. A.; Poulton, P. L.; Hargreaves, J. N. G.; 2002. Modelling crop growth and yield under the environmental changes induced by windbreaks 1. Model development and validation. Australian Journal of Experimental Agriculture, 42, 875. 10.1071/EA02019 (View/edit entry) | 2002 | Model application | 18 |
Kisaka, M. Oscar; Mucheru-Muna, M.; Ngetich, F. K.; Mugwe, J. N.; Mugendi, D. N.; Mairura, F.; Muriuki, J.; 2016. USING APSIM-MODEL AS A DECISION-SUPPORT-TOOL FOR LONG-TERM INTEGRATED-NITROGEN-MANAGEMENT AND MAIZE PRODUCTIVITY UNDER SEMI-ARID CONDITIONS IN KENYA. Experimental Agriculture, 52, 279–299. 10.1017/S0014479715000095 (View/edit entry) | 2016 | Model application | 15 |
Zeleke, Ketema Tilahun; 2017. Fallow management increases soil water and nitrogen storage. Agricultural Water Management, 186, 12–20. 10.1016/j.agwat.2017.02.011 (View/edit entry) | 2017 | Model application | 10 |
Acuña, Tina Botwright; Lisson, Shaun; Johnson, Peter; Dean, Geoff; 2015. Yield and water-use efficiency of wheat in a high-rainfall environment. Crop and Pasture Science, 66, 419. 10.1071/CP14308 (View/edit entry) | 2015 | Model application | 9 |
Chauhan, Yashvir S.; Thorburn, Peter; Biggs, Jody S.; Wright, Graeme C.; 2015. Agronomic benefits and risks associated with the irrigated peanut–maize production system under a changing climate in northern Australia. Crop and Pasture Science, 66, 1167. 10.1071/CP15068 (View/edit entry) | 2015 | Model application | 4 |
Chimonyo, Vgp; Modi, At; Mabhaudhi, T; 2016. Assessment of sorghum–cowpea intercrop system under waterlimited conditions using a decision support tool. Water SA, 42, 316. 10.4314/wsa.v42i2.15 (View/edit entry) | 2016 | Model application | 10 |
Grenz, Jan H.; Manschadi, Ahmad M.; DeVoil, Peter; Meinke, Holger; Sauerborn, Joachim; 2005. Assessing Strategies for Orobanche sp. Control Using a Combined Seedbank and Competition Model. Agronomy Journal, 97, 1551–1559. 10.2134/agronj2005.0061 (View/edit entry) | 2005 | Model application | 29 |
Nezomba, Hatirarami; Mtambanengwe, Florence; Rurinda, Jairos; Mapfumo, Paul; 2018. Integrated soil fertility management sequences for reducing climate risk in smallholder crop production systems in southern Africa. Field Crops Research, 224, 102–114. 10.1016/j.fcr.2018.05.003 (View/edit entry) | 2018 | Model application | 13 |
Li, Yan; Xue, Changying; Yang, Xiaoguang; Wang, Jing; Liu, Yuan; Enli, Wang; 2009 (View/edit entry) | 2009 | Model application | 4 |
Kouadio, Louis; Newlands, Nathaniel; Potgieter, Andries; McLean, Greg; Hill, Harvey; 2015. Exploring the Potential Impacts of Climate Variability on Spring Wheat Yield with the APSIM Decision Support Tool. Agricultural Sciences, 6, 686–698. 10.4236/as.2015.67066 (View/edit entry) | 2015 | Model application | 9 |
Yunusa, Isa A M; Manoharan, Veeragathipillai; Harris, Rob; Lawrie, Roy; Pal, Yash; Quiton, Jonathan T; Bell, Richard; Eamus, Derek; 2013. Differential growth and yield by canola ( Brassica napus L.) and wheat ( Triticum aestivum L.) arising from alterations in chemical properties of sandy soils due to additions of fly ash: Differential responses by canola and wheat to coal fly ash addition. Journal of the Science of Food and Agriculture, 93, 995–1002. 10.1002/jsfa.5889 (View/edit entry) | 2013 | Model application | 3 |
Singh, D. K.; Strahan, R.; Christodoulou, N.; Cawley, S.; 2009. Validating economic and environmental sustainability of a short-term summer forage legume in dryland wheat cropping systems in south-west Queensland. Animal Production Science, 49, 816. 10.1071/AN09016 (View/edit entry) | 2009 | Model application | 7 |
Harrison, Matthew Tom; Roggero, Pier Paolo; Zavattaro, Laura; 2019. Simple, efficient and robust techniques for automatic multi-objective function parameterisation: Case studies of local and global optimisation using APSIM. Environmental Modelling & Software, 117, 109–133. 10.1016/j.envsoft.2019.03.010 (View/edit entry) | 2019 | Model application | 18 |
Huth, N.I.; Carberry, P.S.; Cocks, B.; Graham, S.; McGinness, H.M.; O’Connell, D.A.; 2008. Managing drought risk in eucalypt seedling establishment: An analysis using experiment and model. Forest Ecology and Management, 255, 3307–3317. 10.1016/j.foreco.2008.02.024 (View/edit entry) | 2008 | Model application | 12 |
Chauhan, Yash; Wright, Graeme; Rachaputi, Nageswara Rao; Krosch, Stephen; Robertson, Michael; Hargreaves, John; Broome, Alan; 2007. Using APSIM-soiltemp to simulate soil temperature in the podding zone of peanut. Australian Journal of Experimental Agriculture, 47, 992. 10.1071/EA06137 (View/edit entry) | 2007 | Model application | 10 |
Berhe, A.A.; Kisekka, I.; Prasad, P.V.V.; Holman, J.; Foster, A.J.; Lollato, R.; 2017. Assessing Wheat Yield, Biomass, and Water Productivity Responses to Growth Stage Based Irrigation Water Allocation. Transactions of the ASABE, 60, 107–121. 10.13031/trans.11883 (View/edit entry) | 2017 | Model application | 12 |
Anser, Muhammad Khalid; Hina, Tayyaba; Hameed, Shahzad; Nasir, Muhammad Hamid; Ahmad, Ishfaq; Naseer, Muhammad Asad ur Rehman; 2020. Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. International Journal of Environmental Research and Public Health, 17, 2522. 10.3390/ijerph17072522 (View/edit entry) | 2020 | Model application | 19 |
Nelson, R.A; Cramb, R.A; 1998. Economic incentives for farmers in the Philippine uplands to adopt hedgerow intercropping. Journal of Environmental Management, 54, 83–100. 10.1006/jema.1998.0220 (View/edit entry) | 1998 | Model application | 26 |
Viscarra Rossel, Raphael A.; McBratney, Alex B.; Minasny, Budiman; Florin, M.J.; McBratney, A.B.; Whelan, B.M.; 2010. Inverse Meta-modelling of Yield-Monitor Data for Estimating Soil-Available Water-Holding Capacities at a Farm Resolution of 10 m. In: (eds.)Proximal Soil Sensing.. 413–421. (View/edit entry) | 2010 | Model application | 0 |
Connolly, R. D.; Freebairn, D. M.; Bell, M. J.; Thomas, G.; 2001. Effects of rundown in soil hydraulic condition on crop productivity in south-eastern Queensland - a simulation study. Soil Research, 39, 1111. 10.1071/SR00089 (View/edit entry) | 2001 | Model application | 19 |
Machwitz, Miriam; Hass, Erik; Junk, Jürgen; Udelhoven, Thomas; Schlerf, Martin; 2019. CropGIS – A web application for the spatial and temporal visualization of past, present and future crop biomass development. Computers and Electronics in Agriculture, 161, 185–193. 10.1016/j.compag.2018.04.026 (View/edit entry) | 2019 | Model application | 18 |
Young, Rick; Huth, Neil; Harden, Steven; McLeod, Ross; 2014. Impact of rain-fed cropping on the hydrology and fertility of alluvial clays in the more arid areas of the upper Darling Basin, eastern Australia. Soil Research, 52, 388. 10.1071/SR13194 (View/edit entry) | 2014 | Model application | 3 |
Magaia, E.; Famba, S.; Wesström, I.; Brito, R.; Joel, A.; 2017. Modelling maize yield response to plant density and water and nitrogen supply in a semi-arid region. Field Crops Research, 205, 170–181. 10.1016/j.fcr.2016.12.025 (View/edit entry) | 2017 | Model application | 16 |
Ahmed, Mukhtar; Ijaz, Waqas; Ahmad, Shakeel; 2018. Adapting and evaluating APSIM-SoilP-Wheat model for response to phosphorus under rainfed conditions of Pakistan. Journal of Plant Nutrition, 41, 2069–2084. 10.1080/01904167.2018.1485933 (View/edit entry) | 2018 | Model application | 17 |
Vogeler, Iris; Cichota, Rogerio; Snow, Val; 2013. Identification and testing of early indicators for N leaching from urine patches. Journal of Environmental Management, 130, 55–63. 10.1016/j.jenvman.2013.08.047 (View/edit entry) | 2013 | Model application | 10 |
Akinseye, Folorunso M.; Ajeigbe, Hakeem A.; Traore, Pierre C.S.; Agele, Samuel O.; Zemadim, Birhanu; Whitbread, Anthony; 2020. Improving sorghum productivity under changing climatic conditions: A modelling approach. Field Crops Research, 246, 107685. 10.1016/j.fcr.2019.107685 (View/edit entry) | 2020 | Model application | 17 |
Jones, Rk; Probert, Me; Dalgliesh, Np; McCown, Rl; 1996. Nitrogen inputs from a pasture legume in rotations with cereals in the semi-arid tropics of northern Australia: experimentation and modelling on a clay loam soil. Australian Journal of Experimental Agriculture, 36, 985. 10.1071/EA9960985 (View/edit entry) | 1996 | Model application | 22 |
Rosenstock, Todd S.; Nowak, Andreea; Girvetz, Evan; Masikati, Patricia; Descheemaeker, Katrien; Crespo, Olivier; 2019. Understanding the Role of Soils and Management on Crops in the Face of Climate Uncertainty in Zimbabwe: A Sensitivity Analysis. In: (eds.)The Climate-Smart Agriculture Papers.. 49–64. (View/edit entry) | 2019 | Model application | 4 |
Araya, A.; Kisekka, I.; Girma, A.; Hadgu, K. M.; Tegebu, F. N.; Kassa, A. H.; Ferreira-Filho, H. R.; Beltrão, N. E.; Afewerk, A.; Abadi, B.; Tsehaye, Y.; Martorano, L. G.; Abraha, A. Z.; 2017. The challenges and opportunities for wheat production under future climate in Northern Ethiopia. The Journal of Agricultural Science, 155, 379–393. 10.1017/S0021859616000460 (View/edit entry) | 2017 | Model application | 13 |
Kodur, S.; 2017. Improving the prediction of soil evaporation for different soil types under dryland cropping. Agricultural Water Management, 193, 131–141. 10.1016/j.agwat.2017.07.016 (View/edit entry) | 2017 | Model application | 8 |
Xiao, Dengpan; Bai, Huizi; Liu, De; 2018. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System. Sustainability, 10, 1277. 10.3390/su10041277 (View/edit entry) | 2018 | Model application | 41 |
Ahmed, Mukhtar; Stockle, Claudio O.; Ijaz, Waqas; Asim, Muhammad; Aslam, M.; 2017. Models to Study Phosphorous Dynamics Under Changing Climate. In: (eds.)Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability.. 371–386. (View/edit entry) | 2017 | Model application | 10 |
Khan, Muhammad Aamir; Tahir, Alishba; Khurshid, Nabila; Husnain, Muhammad Iftikhar ul; Ahmed, Mukhtar; Boughanmi, Houcine; 2020. Economic Effects of Climate Change-Induced Loss of Agricultural Production by 2050: A Case Study of Pakistan. Sustainability, 12, 1216. 10.3390/su12031216 (View/edit entry) | 2020 | Model application | 21 |
MacCarthy, D. S.; Akponikpe, P. B. I.; Narh, S.; Tegbe, R.; 2015. Modeling the effect of seasonal climate variability on the efficiency of mineral fertilization on maize in the coastal savannah of Ghana. Nutrient Cycling in Agroecosystems, 102, 45–64. 10.1007/s10705-015-9701-x (View/edit entry) | 2015 | Model application | 11 |
Nelson, R.A.; Cramb, R.A.; Mamicpic, M.A.; 1998. Erosion/productivity modelling of maize farming in the Philippine uplands. Agricultural Systems, 58, 165–183. 10.1016/S0308-521X(98)00045-6 (View/edit entry) | 1998 | Model application | 25 |
Yin, Jianping; Stuermer, Arne; Aversano, Marco; 2012. Aerodynamic and Aeroacoustic Analysis of Installed Pusher-Propeller Aircraft Configurations. Journal of Aircraft, 49, 1423–1433. 10.2514/1.C031704 (View/edit entry) | 2012 | Model application | 10 |
Vogeler, Iris; Cichota, Rogerio; Snow, Val; Thomas, Steve; Lloyd-West, Catherine; 2017. Effects of soil heterogeneity on the uncertainty in modelling the fate of urinary nitrogen deposited during winter forage grazing. Soil and Tillage Research, 169, 81–91. 10.1016/j.still.2017.01.014 (View/edit entry) | 2017 | Model application | 8 |
Sennhenn, A.; Njarui, D.M.G.; Maass, B.L.; Whitbread, A.M.; 2015. Can Short-season Grain Legumes Contribute to More Resilient and Productive Farming Systems in Semi-arid Eastern Kenya?. Procedia Environmental Sciences, 29, 81–82. 10.1016/j.proenv.2015.07.169 (View/edit entry) | 2015 | Model application | 0 |
Khaembah, E.N.; Brown, H.E.; Zyskowski, R.; Chakwizira, E.; de Ruiter, J.M.; Teixeira, E.I.; 2017. Development of a fodder beet potential yield model in the next generation APSIM. Agricultural Systems, 158, 23–38. 10.1016/j.agsy.2017.08.005 (View/edit entry) | 2017 | Model application | 11 |
Liu, Ke; Harrison, Matthew Tom; Hunt, James; Angessa, Tefera Tolera; Meinke, Holger; Li, Chengdao; Tian, Xiaohai; Zhou, Meixue; 2020. Identifying optimal sowing and flowering periods for barley in Australia: a modelling approach. Agricultural and Forest Meteorology, 282, 107871. 10.1016/j.agrformet.2019.107871 (View/edit entry) | 2020 | Model application | 24 |
Nash, David; Riffkin, Penny; Harris, Robert; Blackburn, Alan; Nicholson, Cam; McDonald, Mark; 2013. Modelling gross margins and potential N exports from cropland in south-eastern Australia. European Journal of Agronomy, 47, 23–32. 10.1016/j.eja.2013.01.001 (View/edit entry) | 2013 | Model application | 13 |
Phelan, David C.; Harrison, Matthew T.; McLean, Greg; Cox, Howard; Pembleton, Kieth G.; Dean, Geoff J.; Parsons, David; do Amaral Richter, Maria E.; Pengilley, Georgie; Hinton, Sue J.; Mohammed, Caroline L.; 2018. Advancing a farmer decision support tool for agronomic decisions on rainfed and irrigated wheat cropping in Tasmania. Agricultural Systems, 167, 113–124. 10.1016/j.agsy.2018.09.003 (View/edit entry) | 2018 | Model application | 12 |
Shabbir, Ghulam; Khaliq, Tasneem; Ahmad, Ashfaq; Saqib, Muhammad; 2020. Assessing the climate change impacts and adaptation strategies for rice production in Punjab, Pakistan. Environmental Science and Pollution Research, , . 10.1007/s11356-020-08846-6 (View/edit entry) | 2020 | Model application | 11 |
Vogeler, Iris; Carrick, Sam; Cichota, Rogerio; Lilburne, Linda; 2019. Estimation of soil subsurface hydraulic conductivity based on inverse modelling and soil morphology. Journal of Hydrology, 574, 373–382. 10.1016/j.jhydrol.2019.04.002 (View/edit entry) | 2019 | Model application | 21 |
Ramankutty, P; Ryan, M; Lawes, R; Speijers, J; Renton, M; 2013. Statistical emulators of a plant growth simulation model. Climate Research, 55, 253–265. 10.3354/cr01138 (View/edit entry) | 2013 | Model application | 9 |
Leal Filho, Walter; Esilaba, Anthony O.; Rao, Karuturi P.C.; Sridhar, Gummadi; Ngugi, L. W.; Rao, K. P. C.; Oyoo, A.; Kwena, K.; 2015. Opportunities for Coping with Climate Change and Variability Through Adoption of Soil and Water Conservation Technologies in Semi-arid Eastern Kenya. In: (eds.)Adapting African Agriculture to Climate Change.. 149–157. (View/edit entry) | 2015 | Model application | 8 |
Dumbrell, Nikki P.; Kragt, Marit E.; Biggs, Jody; Meier, Elizabeth; Thorburn, Peter; 2015. Climate change abatement and farm profitability analyses across agricultural environments. In: (eds.).. . (View/edit entry) | 2015 | Model application | 0 |
Ahmed, Mukhtar; Stockle, Claudio O.; Aslam, Muhammad Aqeel; Hayat, Riffat; 2017. Modeling Nitrogen Use Efficiency Under Changing Climate. In: (eds.)Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability.. 71–90. (View/edit entry) | 2017 | Model application | 6 |
Cao, Weixing; White, Jeffrey W.; Wang, Enli; Monks, D. P.; Moot, D. J.; Brown, H. E.; Teixeira, E. I.; 2009. APSIM-Lucerne Validation in the Temperate Climate of New Zealand. In: (eds.)Crop Modeling and Decision Support.. 265–270. (View/edit entry) | 2009 | Model application | 2 |
LIU, Zhi-Juan; YANG, Xiao-Guang; WANG, Jing; LÜ, Shuo; LI, Ke-Nan; XUN, Xin; WANG, En-Li; 2013. Adaptability of APSIM Maize Model in Northeast China. ACTA AGRONOMICA SINICA, 38, 740-746. 10.3724/sp.j.1006.2012.00740 (View/edit entry) | 2013 | Model application | 9 |
An-Vo, Duc-Anh; Mushtaq, Shahbaz; Reardon-Smith, Kathryn; Kouadio, Louis; Attard, Steve; Cobon, David; Stone, Roger; 2019. Value of seasonal forecasting for sugarcane farm irrigation planning. European Journal of Agronomy, 104, 37–48. 10.1016/j.eja.2019.01.005 (View/edit entry) | 2019 | Model application | 20 |
Ahmed, Mukhtar; Stockle, Claudio O.; Aslam, Muhammad Umair; Shehzad, Armghan; Iqbal, Muhammad; Asim, Muhammad; Aslam, M.; 2017. QTL Modelling: An Adaptation Option in Spring Wheat for Drought Stress. In: (eds.)Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability.. 113–136. (View/edit entry) | 2017 | Model application | 5 |
Li, Jianzheng; Luo, Zhongkui; Wang, Yingchun; Li, Hu; Xing, Hongtao; Wang, Ligang; Wang, Enli; Xu, Hui; Gao, Chunyu; Ren, Tianzhi; 2019. Optimizing Nitrogen and Residue Management to Reduce GHG Emissions while Maintaining Crop Yield: A Case Study in a Mono-Cropping System of Northeast China. Sustainability, 11, 5015. 10.3390/su11185015 (View/edit entry) | 2019 | Model application | 4 |
Reading, L. P.; Bajracharya, K.; Wang, J.; 2019. Simulating deep drainage and nitrate leaching on a regional scale: implications for groundwater management in an intensively irrigated area. Irrigation Science, 37, 561–581. 10.1007/s00271-019-00636-4 (View/edit entry) | 2019 | Model application | 8 |
Vogeler, Iris; Thomas, Steve; van der Weerden, Tony; 2019. Effect of irrigation management on pasture yield and nitrogen losses. Agricultural Water Management, 216, 60–69. 10.1016/j.agwat.2019.01.022 (View/edit entry) | 2019 | Model application | 18 |
Vogeler, Iris; Vibart, Ronaldo; Cichota, Rogerio; 2017. Potential benefits of diverse pasture swards for sheep and beef farming. Agricultural Systems, 154, 78–89. 10.1016/j.agsy.2017.03.015 (View/edit entry) | 2017 | Model application | 8 |
Lal, Rattan; Singh, Bal Ram; Mwaseba, Dismas L.; Kraybill, David; Hansen, David O.; Eik, Lars Olav; Mbungu, Winfred B.; Mahoo, Henry F.; Tumbo, Siza D.; Kahimba, Frederick C.; Rwehumbiza, Filbert B.; Mbilinyi, Boniface P.; 2015. Using Climate and Crop Simulation Models for Assessing Climate Change Impacts on Agronomic Practices and Productivity. In: (eds.)Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa.. 201–219. (View/edit entry) | 2015 | Model application | 4 |
Cichota, Rogerio; Vogeler, Iris; Werner, Armin; Wigley, Kathryn; Paton, Brittany; 2018. Performance of a fertiliser management algorithm to balance yield and nitrogen losses in dairy systems. Agricultural Systems, 162, 56–65. 10.1016/j.agsy.2018.01.017 (View/edit entry) | 2018 | Model application | 8 |
Yin, Jianping; Stuermer, Arne; 2010. Noise Radiation from Installed Pusher Propeller Using Coupling of Unsteady Panel Method, Actuator Disk and FW-H Methodology. . Volume . (View/edit entry) | 2010 | Model application | 5 |
Amarasingha, R. K.; Suriyagoda, L. D. B.; Marambe, B.; Galagedara, L. W.; Punyawardena, R.; 2018. Impact of climate change on rice yield in Sri Lanka: a crop modelling approach using Agriculture Production System Simulator (APSIM). Sri Lanka Journal of Food and Agriculture, 4, 21. 10.4038/sljfa.v4i1.54 (View/edit entry) | 2018 | Model application | 2 |
Luo, Q; Bange, M; Devoil, P; 2016. Effects of a wheat rotation on cotton production in a changing climate: a simulation study. Climate Research, 70, 29–38. 10.3354/cr01413 (View/edit entry) | 2016 | Model application | 1 |
G, Gebrekiros; A, Araya; 2015. Modeling Impact of Climate Change and Variability on Sorghum Production in Southern Zone of Tigray, Ethiopia. Journal of Earth Science & Climatic Change, 7, . 10.4172/2157-7617.1000322 (View/edit entry) | 2015 | Model application | 11 |
Luetkemeier, Robert; Stein, Lina; Drees, Lukas; Müller, Hannes; Liehr, Stefan; 2018. Uncertainty of Rainfall Products: Impact on Modelling Household Nutrition from Rain-Fed Agriculture in Southern Africa. Water, 10, 499. 10.3390/w10040499 (View/edit entry) | 2018 | Model application | 6 |
Nascimento, Alexandre Ferreira do; Mendonça, Eduardo de Sá; Leite, Luiz Fernando Carvalho; Scholberg, Johannes; Neves, Julio Cesar Lima; 2012. Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics. Scientia Agricola, 69, 393–401. 10.1590/S0103-90162012000600008 (View/edit entry) | 2012 | Model application | 10 |
Jaradat, Abdullah A.; Boody, George; 2011. Modeling Agroecosystem Services under Simulated Climate and Land-Use Changes. ISRN Ecology, 2011, 1–17. 10.5402/2011/568723 (View/edit entry) | 2011 | Model application | 9 |
Rigobelo, Everlon Cid; Ibrahim, Ahmed; Harrison, Matthew; Meinke, Holger; Zhou, Meixue; 2016. Barley Phenology: Physiological and Molecular Mechanisms for Heading Date and Modelling of Genotype‐Environment‐ Management Interactions. In: (eds.)Plant Growth.. . (View/edit entry) | 2016 | Model application | 3 |
Borus, D.J.; Mohammed, C.; Parsons, D.; Boersma, M.; Schulte-Geldermann, E.; 2016. Modelling future potato ( Solanum tuberosum L.) production in Tasmania and Kenya. Acta Horticulturae, , 217–224. 10.17660/ActaHortic.2016.1118.32 (View/edit entry) | 2016 | Model application | 4 |
Zeleke, Ketema Tilahun; 2020. Evaluating Dry Matter Production and Grain Yield of Dual-Purpose Winter Wheat Using Field Experiment and Modelling. Agronomy, 10, 338. 10.3390/agronomy10030338 (View/edit entry) | 2020 | Model application | 2 |
Zhao, Junfang; Kong, Xiangna; He, Kejun; Xu, Hui; Mu, Jia; 2020. Assessment of the radiation effect of aerosols on maize production in China. Science of The Total Environment, 720, 137567. 10.1016/j.scitotenv.2020.137567 (View/edit entry) | 2020 | Model application | 8 |
Myoung, B.; Kim, S.H.; Kafatos, M.; Kim, J.; Stack, D.H.; 2015. Temperature, sowing and harvest dates, and yield potential of maize in the southwestern US. . Volume . (View/edit entry) | 2015 | Model application | 0 |
Yang, Xuan; Li, Zhou; Cui, Song; Cao, Quan; Deng, Jianqiang; Lai, Xingfa; Shen, Yuying; 2020. Cropping system productivity and evapotranspiration in the semiarid Loess Plateau of China under future temperature and precipitation changes: An APSIM-based analysis of rotational vs. continuous systems. Agricultural Water Management, 229, 105959. 10.1016/j.agwat.2019.105959 (View/edit entry) | 2020 | Model application | 11 |
Bationo, Andre; Waswa, Boaz; Kihara, Job; Adolwa, Ivan; Vanlauwe, Bernard; Saidou, Koala; Kihanda, F. M.; Warren, G. P.; 2012. Management of Soil Fertility in a Long-Term Field Trial of Semi-arid Kenya. In: (eds.)Lessons learned from Long-term Soil Fertility Management Experiments in Africa.. 85–103. (View/edit entry) | 2012 | Model application | 4 |
Zull, A. F.; Owens, J.; Bourgault, M.; Johnson, B.; Peck, G.; Christodoulou, N.; 2017. Mixed farming diversification may be costly: southern Queensland case study. Crop and Pasture Science, 68, 378. 10.1071/CP16193 (View/edit entry) | 2017 | Model application | 2 |
Vogeler, Iris; Cichota, Rogerio; 2018. Effect of variability in soil properties plus model complexity on predicting topsoil water content and nitrous oxide emissions. Soil Research, 56, 810. 10.1071/SR18080 (View/edit entry) | 2018 | Model application | 9 |
Zhao, Gang; Song, Xiaodong; Yan, Changqing; Yu, Qiang; 2012. Porting a process-based crop model to a high-performance computing environment for plant simulation. . Volume . (View/edit entry) | 2012 | Model application | 0 |
Antille, D.L.; Huth, N.I.; Eberhard, J.; Marinoni, O.; Cocks, B.; Poulton, P.L.; Macdonald, B.C.T.; Schmidt, E.J.; 2016. The Effects of Coal Seam Gas Infrastructure Development on Arable Land in Southern Queensland, Australia: Field Investigations and Modeling. Transactions of the ASABE, 59, 879–901. 10.13031/trans.59.11547 (View/edit entry) | 2016 | Model application | 12 |
Kogo, Benjamin Kipkemboi; Kumar, Lalit; Koech, Richard; Langat, Philip; 2019. Modelling Impacts of Climate Change on Maize (<i>Zea mays</i> L.) Growth and Productivity: A Review of Models, Outputs and Limitations. Journal of Geoscience and Environment Protection, 7, 76–95. 10.4236/gep.2019.78006 (View/edit entry) | 2019 | Model application | 8 |
Cichota, Rogerio; Vogeler, Iris; 2018. Response to ‘Comments on “Linking Land Use Capability classes and APSIM to estimate pasture growth for regional planning” in Soil Research 54, 94–110 (2016)'. Soil Research, 56, 216. 10.1071/SR18023 (View/edit entry) | 2018 | Model application | 0 |
Levitan, Nathaniel; Gross, Barry; 2018. Utilizing Collocated Crop Growth Model Simulations to Train Agronomic Satellite Retrieval Algorithms. Remote Sensing, 10, 1968. 10.3390/rs10121968 (View/edit entry) | 2018 | Model application | 3 |
Zeleke, Ketema; Nendel, Claas; 2019. Growth and yield response of faba bean to soil moisture regimes and sowing dates: Field experiment and modelling study. Agricultural Water Management, 213, 1063–1077. 10.1016/j.agwat.2018.12.023 (View/edit entry) | 2019 | Model application | 6 |
Tong, Dai; 2016. Modelling the impacts of climate change on spring maize yield in Southwest China using the APSIM model. 资源科学, 38, 113–119. 10.18402/resci.2016.01.17 (View/edit entry) | 2016 | Model application | 7 |
Hammer, Graeme L.; Van Oosterom, Erik; McLean, Greg; Chapman, Scott; 2009. Designing the sorghum crop model in APSIM to simulate the physiology and genetics of complex adaptive traits. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 153, S222. 10.1016/j.cbpa.2009.04.550 (View/edit entry) | 2009 | Model application | 2 |
Gunarathna, M.H.J.P.; Sakai, Kazuhito; Nakandakari, Tamotsu; Momii, Kazuro; Kumari, M.K.N.; 2019. Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar Model: Variation between Climates and Management Conditions. Agronomy, 9, 242. 10.3390/agronomy9050242 (View/edit entry) | 2019 | Model application | 11 |
Bai, Huiqing; Wang, Jing; Fang, Quanxiao; Huang, Binxiang; 2020. Does a trade-off between yield and efficiency reduce water and nitrogen inputs of winter wheat in the North China Plain?. Agricultural Water Management, 233, 106095. 10.1016/j.agwat.2020.106095 (View/edit entry) | 2020 | Model application | 11 |
Badgery, Warwick B.; Mwendwa, James M.; Anwar, Muhuddin Rajin; Simmons, Aaron T.; Broadfoot, Kim M.; Rohan, Maheswaran; Singh, Bhupinder Pal; 2020. Unexpected increases in soil carbon eventually fell in low rainfall farming systems. Journal of Environmental Management, 261, 110192. 10.1016/j.jenvman.2020.110192 (View/edit entry) | 2020 | Model application | 2 |
Touch, Van; Liu, De Li; Martin, Robert John; Scott, Jeannette Fiona; Cowie, Annette; Tan, Daniel K. Y.; 2020. Building Farming Resilience to Climate Change: Upland Crop Production in Northwest Cambodia. Proceedings, 36, 157. 10.3390/proceedings2019036157 (View/edit entry) | 2020 | Model application | 0 |
Msongaleli, Barnabas M.; Tumbo, S. D.; Kihupi, N. I.; Rwehumbiza, Filbert B.; 2017. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania. International Scholarly Research Notices, 2017, 1–10. 10.1155/2017/2506946 (View/edit entry) | 2017 | Model application | 16 |
Lynn, Ian H.; 2018. Comments on ‘Linking Land Use Capability classes and APSIM to estimate pasture growth for regional planning' in Soil Research 54, 94–110 (2016). Soil Research, 56, 215. 10.1071/SR17166 (View/edit entry) | 2018 | Model application | 0 |
Zhang, Hong-wei; Neale, Christopher M. U.; Maltese, Antonino; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong; 2010. The review of dynamic monitoring technology for crop growth. . Volume . (View/edit entry) | 2010 | Model application | 3 |
Vogeler, I.; Cichota, R.; 2017. Development of an algorithm for relating pasture nitrogen status to yield response curves. Grass and Forage Science, 72, 734–742. 10.1111/gfs.12284 (View/edit entry) | 2017 | Model application | 2 |
Akinseye, Folorunso M.; Ajegbe, Hakeem A.; Kamara, Alpha Y.; Adefisan, Elijah A.; Whitbread, Anthony M.; 2020. Understanding the response of sorghum cultivars to nitrogen applications in the semi-arid Nigeria using the agricultural production systems simulator. Journal of Plant Nutrition, 43, 834–850. 10.1080/01904167.2020.1711943 (View/edit entry) | 2020 | Model application | 4 |
Machecourt, J.; Bassand, J.P.; Cassagnes, J.; Anguenot, T.; Lusson, J.R.; Wolf, J.E.; Ducellier, D.; Borrel, E.; Peycelon, P.; 1988. 27 A multicenter double-blind trial of intravenous APSAC versus heparin in acute myocardial infarction. The APSIM study. Fibrinolysis, 2, 14. 10.1016/0268-9499(88)90052-5 (View/edit entry) | 1988 | Model application | 2 |
Zhao, Jin; Yang, Xiaoguang; 2019. Spatial patterns of yield-based cropping suitability and its driving factors in the three main maize-growing regions in China. International Journal of Biometeorology, 63, 1659–1668. 10.1007/s00484-019-01783-1 (View/edit entry) | 2019 | Model application | 6 |
Ahmed, Mukhtar; H. Hirani, Arvind; Asif, Muhammad; Sajad, Muhammad; 2013. Modelling Soil Water Dynamics under Rainfed Agriculture to Mitigate Climate Change. Journal of Agricultural Science, 5, p90. 10.5539/jas.v5n3p90 (View/edit entry) | 2013 | Model application | 1 |
Wang, Yaxu; Lv, Juan; Wang, Yicheng; Sun, Hongquan; Hannaford, Jamie; Su, Zhicheng; Barker, Lucy J.; Qu, Yanping; 2020. Drought risk assessment of spring maize based on APSIM crop model in Liaoning province, China. International Journal of Disaster Risk Reduction, 45, 101483. 10.1016/j.ijdrr.2020.101483 (View/edit entry) | 2020 | Model application | 9 |
Stone, Luís F.; Heinemann, Alexandre B.; 2012. Simulação do manejo do nitrogênio em arroz de terras altas com o modelo ORYZA/APSIM 2000. Revista Brasileira de Engenharia Agrícola e Ambiental, 16, 611–617. 10.1590/S1415-43662012000600004 (View/edit entry) | 2012 | Model application | 1 |
Bassand, Jean-Pierre; Machecourt, Jacques; 1989. Limitation of myocardial infarct size and preservation of left ventricular function by early administration of APSAC in myocardial infarction. The American Journal of Cardiology, 64, A18–A23. 10.1016/0002-9149(89)90924-7 (View/edit entry) | 1989 | Model application | 11 |
Peng, Ting; Fu, Jingying; Jiang, Dong; Du, Jinshuang; 2020. Simulation of the Growth Potential of Sugarcane as an Energy Crop Based on the APSIM Model. Energies, 13, 2173. 10.3390/en13092173 (View/edit entry) | 2020 | Model application | 5 |
Wu, Lu; Feng, Liping; Li, Yizhuo; Wang, Jing; Wu, Lianhai; 2019. A Yield-Related Agricultural Drought Index Reveals Spatio-Temporal Characteristics of Droughts in Southwestern China. Sustainability, 11, 714. 10.3390/su11030714 (View/edit entry) | 2019 | Model application | 7 |
Rahimi-Moghaddam, Sajjad; Kambouzia, Jafar; Deihimfard, Reza; 2019. Optimal genotype × environment × management as a strategy to increase grain maize productivity and water use efficiency in water-limited environments and rising temperature. Ecological Indicators, 107, 105570. 10.1016/j.ecolind.2019.105570 (View/edit entry) | 2019 | Model application | 7 |
Charles, B. Chisanga; Elijah, Phiri; Vernon, R. N. Chinene; 2017. Climate change impact on maize (Zea mays L.) yield using crop simulation and statistical downscaling models: A review. Scientific Research and Essays, 12, 167–187. 10.5897/SRE2017.6521 (View/edit entry) | 2017 | Model application | 9 |
Minshew, Hudson; Selker, John; Hemphill, Delbert; Dick, Richard P.; 2002. NLEAP Computer Model and Multiple Linear Regression Prediction of Nitrate Leaching in Vegetable Systems. HortTechnology, 12, 250–256. 10.21273/HORTTECH.12.2.250 (View/edit entry) | 2002 | Model application | 5 |
Zeleke, Ketema Tilahun; 2018. Effect of summer fallow management on crop yield: Field experiment and simulation analysis. Agricultural Water Management, 203, 405–410. 10.1016/j.agwat.2018.03.032 (View/edit entry) | 2018 | Model application | 0 |
Frija, Aymen; Telleria, Roberto; 2016. Country-Level Bio-Economic Modeling of Agricultural Technologies to Enhance Wheat-Based Systems Productivity in the Dry Areas. Sustainable Agriculture Research, 5, 113. 10.5539/sar.v5n3p113 (View/edit entry) | 2016 | Model application | 3 |
Singh, Anil Kumar; Dagar, Jagdish Chander; Arunachalam, Ayyanadar; R, Gopichandran; Shelat, Kirit Nanubhai; Mohanty, M.; Sinha, Nishant K.; Lenka, Sangeeta; Hati, K. M.; Somasundaram, J.; Saha, R.; Singh, R. K.; Chaudhary, R. S.; Subba Rao, A.; 2015. Climate Change Impacts on Rainfed Soybean Yield of Central India: Management Strategies Through Simulation Modelling. In: (eds.)Climate Change Modelling, Planning and Policy for Agriculture.. 39–44. (View/edit entry) | 2015 | Model application | 5 |
Stuermer, Arne W.; 2015. Validation of Installation Effect Predictions through Simulations of Contra-Rotating Open Rotors at Low-Speed Flight Conditions. . Volume . (View/edit entry) | 2015 | Model application | 3 |
Sarkar, Sukamal; Gaydon, Donald S; Brahmachari, Koushik; Nanda, Manoj Kumar; Ghosh, Argha; Mainuddin, Mohammed; 2020. Modelling Yield and Seasonal Soil Salinity Dynamics in Rice-Grasspea Cropping System for the Coastal Saline Zone of West Bengal, India. Proceedings, 36, 146. 10.3390/proceedings2019036146 (View/edit entry) | 2020 | Model application | 2 |
Zhao, Junfang; Kong, Xiangna; Xu, Hui; Zhang, Yanhong; Jiang, Yueqing; 2020. Assessment of biomass and yield loss of maize caused by aerosols in heavily polluted agricultural areas of China based on APSIM model. Physics and Chemistry of the Earth, Parts A/B/C, 115, 102835. 10.1016/j.pce.2019.102835 (View/edit entry) | 2020 | Model application | 3 |
Mthandi, John; 2014. Modification, Calibration and Validation of APSIM to Suit Maize (Zeamays L.) Production System: A Case of Nkango Irrigation Scheme in Malawi. American Journal of Agriculture and Forestry, 2, 1. 10.11648/j.ajaf.s.2014020601.11 (View/edit entry) | 2014 | Model application | 4 |
Fan, Dongliang; Yang, Feiyun; Pan, Zhihua; Su, Xiaoyun; Pan, Yuying; Han, Guolin; Wang, Jialin; Wu, Dong; Dong, Zhiqiang; 2018. Development of an Improved Model to Evaluate Vulnerability in Spring Wheat under Climate Change in Inner Mongolia. Sustainability, 10, 4581. 10.3390/su10124581 (View/edit entry) | 2018 | Model application | 1 |
Carcedo, Ana J.P.; Gambin, Brenda L.; 2019. Sorghum drought and heat stress patterns across the Argentinean temperate central region. Field Crops Research, 241, 107552. 10.1016/j.fcr.2019.06.009 (View/edit entry) | 2019 | Model application | 11 |
Casalino, Damiano; 2010. Aeroacoustics research in Europe: The CEAS-ASC report on 2009 highlights. Journal of Sound and Vibration, 329, 4810–4828. 10.1016/j.jsv.2010.06.001 (View/edit entry) | 2010 | Model application | 0 |
Ndukhu, O. H.; Wahome, G. R.; 2018. Modelling Nutrient Dynamics and Maize Yields under Different Cropping Systems and Organic Amendments Using APSIM in Central Kenya. International Journal of Plant & Soil Science, 24, 1–16. 10.9734/IJPSS/2018/16201 (View/edit entry) | 2018 | Model application | 0 |
Jolly, Ben; Lyons, Paul; Snow, Val; 2010. ADEPT: a visual tool for organising simulations. . Volume . (View/edit entry) | 2010 | Model application | 0 |
Lorençoni, Rogério; Dourado Neto, Durval; Heinemann, Alexandre Bryan; Soares, Leonardo Cirilo da Silva; Silva, Adilson Nunes da; 2016. CALIBRAÇÃO DO MODELO ORYZA-APSIM PARA O ARROZ DE TERRAS ALTAS NO BRASIL. BRAZILIAN JOURNAL OF AGRICULTURE - Revista de Agricultura, 85, 237. 10.37856/bja.v85i3.2855 (View/edit entry) | 2016 | Model application | 0 |
Bal, Santanu Kumar; Mukherjee, Joydeep; Choudhury, Burhan Uddin; Dhawan, Ashok Kumar; Dhakar, Rajkumar; Sarath Chandran, M. A.; Nagar, Shivani; Visha Kumari, V.; Subbarao, A. V. M.; Vijaya Kumar, P.; 2018. Field Crop Response to Water Deficit Stress: Assessment Through Crop Models. In: (eds.)Advances in Crop Environment Interaction.. 287–315. (View/edit entry) | 2018 | Model application | 7 |
Gunarathna, M. H. J. P.; Sakai, Kazuhito; Kumari, M. K. N.; Ranagalage, Manjula; 2020. A Functional Analysis of Pedotransfer Functions Developed for Sri Lankan soils: Applicability for Process-Based Crop Models. Agronomy, 10, 285. 10.3390/agronomy10020285 (View/edit entry) | 2020 | Model application | 2 |
Chauhan, Yashvir S.; Ryan, Merrill; 2020. Frost Risk Management in Chickpea Using a Modelling Approach. Agronomy, 10, 460. 10.3390/agronomy10040460 (View/edit entry) | 2020 | Model application | 6 |
Okwach, G. E.; Siambi, M. M.; Simiyu, C.S.; 2003. Assessing the Interaction in Maize Cropping Density, Nitrogen and Soil Moisture with a Systems Simulator in Semi-Arid Machakos District, Kenya. East African Agricultural and Forestry Journal, 69, 157–171. 10.4314/eaafj.v69i2.1817 (View/edit entry) | 2003 | Model application | 2 |
Saddique, Qaisar; Ji, Jianmei; Ajaz, Ali; Jiatun, Xu; Yufeng, Zou; He, Jianqiang; Cai, Huanjie; 2019. <i>Performance Comparison of the APSIM and CERES-Wheat models in Guanzhong Plain, China</i>. . Volume . (View/edit entry) | 2019 | Model application | 1 |
Li, G.; Huang, G.-B.; 2010. China Science Journal. Chinese Journal of Eco-Agriculture, , 342-347. 10.3724/SP.J.1011.2010.00342 (View/edit entry) | 2010 |
Model application | 0 |
Ning, Li; Xu, Jingwen; Zhao, Junfang; Pu, Feiyu; Xiang, Surong; 2015. The study of the relationship between climate factors and growth period of spring wheat based on APSIM model. . Volume . (View/edit entry) | 2015 | Model application | 0 |
Tang, Jianzhao; Xiao, Dengpan; Bai, Huizi; Wang, Bin; Liu, De Li; Feng, Puyu; Zhang, Yuan; Zhang, Jun; 2020. Potential Benefits of Potato Yield at Two Sites of Agro-Pastoral Ecotone in North China Under Future Climate Change. International Journal of Plant Production, , . 10.1007/s42106-020-00092-7 (View/edit entry) | 2020 | Model application | 5 |
Tenreiro, Tomás R.; García-Vila, Margarita; Gómez, José A.; Jimenez-Berni, José A.; Fereres, Elías; 2020. Water modelling approaches and opportunities to simulate spatial water variations at crop field level. Agricultural Water Management, 240, 106254. 10.1016/j.agwat.2020.106254 (View/edit entry) | 2020 | Model application | 14 |
Bogard, Matthieu; Biddulph, Ben; Zheng, Bangyou; Hayden, Matthew; Kuchel, Haydn; Mullan, Dan; Allard, Vincent; Gouis, Jacques Le; Chapman, Scott C.; 2020. Linking genetic maps and simulation to optimize breeding for wheat flowering time in current and future climates. Crop Science, 60, 678–699. 10.1002/csc2.20113 (View/edit entry) | 2020 | Model application | 11 |
Kawakita, Satoshi; Takahashi, Hidehiro; Moriya, Kazuyuki; 2020. Prediction and parameter uncertainty for winter wheat phenology models depend on model and parameterization method differences. Agricultural and Forest Meteorology, 290, 107998. 10.1016/j.agrformet.2020.107998 (View/edit entry) | 2020 | Model application | 9 |
Schepen, Andrew; Everingham, Yvette; Wang, Quan J.; 2020. An improved workflow for calibration and downscaling of GCM climate forecasts for agricultural applications – A case study on prediction of sugarcane yield in Australia. Agricultural and Forest Meteorology, 291, 107991. 10.1016/j.agrformet.2020.107991 (View/edit entry) | 2020 | Model application | 3 |
Gomes, Fagner Junior; Bosi, Cristiam; Pedreira, Bruno Carneiro; Santos, Patrícia Menezes; Pedreira, Carlos Guilherme Silveira; 2020. Parameterization of the APSIM model for simulating palisadegrass growth under continuous stocking in monoculture and in a silvopastoral system. Agricultural Systems, 184, 102876. 10.1016/j.agsy.2020.102876 (View/edit entry) | 2020 | Model application | 7 |
Hoffmann, M.P.; Swanepoel, C.M.; Nelson, W.C.D.; Beukes, D.J.; van der Laan, M.; Hargreaves, J.N.G.; Rötter, R.P.; 2020. Simulating medium-term effects of cropping system diversification on soil fertility and crop productivity in southern Africa. European Journal of Agronomy, , 126089. 10.1016/j.eja.2020.126089 (View/edit entry) | 2020 | Model application | 10 |
Zingore, Shamie; Gonzalez-Estrada, E.; Delve, Robert J.; Dimes, J. P.; Herrero, Mario; Murwira, H. K.; Giller, Ken E.; 2006. Evaluation of Resource Management Options for Smallholder Farms Using an Integrated Modelling Approach. In: (eds.).. . (View/edit entry) | 2006 | Model application | 4 |
Fosu-Mensah, B. Y.; Manchadi, A.; Vlek, P. L. G.; 2019. Impacts of climate change and climate variability on maize yield under rainfed conditions in the sub-humid zone of Ghana: A scenario analysis using APSIM. West African Journal of Applied Ecology, 27, 108 126–108 126. 10.4314/wajae.v27i1. (View/edit entry) | 2019 | Model application | 3 |
Feldman, David; Thomas, Quenten; Farre Codina, Imma; Plunkett, Brad; Kingwell, Ross; 2015. Is a low-input strategy a sound business defence in a drying climate?. In: (eds.).. . (View/edit entry) | 2015 | Model application | 1 |
Scanlan, C.A.; Huth, N.I.; Bell, R.W.; 2015. Simulating wheat growth response to potassium availability under field conditions with sandy soils. I. Model development. Field Crops Research, 178, 109–124. 10.1016/j.fcr.2015.03.022 (View/edit entry) | 2015 |
Model application | 12 |
Descheemaeker, k.; Smith, A.P.; Robertson, M.J.; Whitbread, A.M.; Huth, N.I.; Davoren, W.; Emms, J.; Llewellyn, R.; 2014. Simulation of water-limited growth of the forage shrub saltbush (Atriplex nummularia Lindl.) in a low-rainfall environment of southern Australia. Crop and Pasture Science, 65, 1068. 10.1071/CP13452 (View/edit entry) | 2014 |
Model application | 9 |
Osman, R.; Zhu, Y.; Ma, W.; Zhang, D.; Ding, Z.; Liu, L.; Tang, L.; Liu, B.; Cao, W.; 2020. Comparison of wheat simulation models for impacts of extreme temperature stress on grain quality. Agricultural and Forest Meteorology, 288, 107995. 10.1016/j.agrformet.2020.107995 (View/edit entry) | 2020 |
Model application | 19 |
Borus, D.; Parsons, D.; Boersma, M.; Brown, H.; Mohammed, C.; 2018. Improving the prediction of potato productivity: APSIM-Potato model parameterization and evaluation in Tasmania, Australia. Australian Journal of Crop Science, 12, 32–43. 10.21475/ajcs.18.12.01.pne570 (View/edit entry) | 2018 |
Model application | 11 |
Morel, J.; Parsons, D.; Halling, M.A.; Kumar, U.; Peake, A.; Bergkvist, G.; Brown, H.; Hetta, M.; 2020. Challenges for Simulating Growth and Phenology of Silage Maize in a Nordic Climate with APSIM. Agronomy, 10, 645. 10.3390/agronomy10050645 (View/edit entry) | 2020 |
Model application | 10 |
Nie, Zhi-Gang; Li, Guang; Luo, Cui-Ping; Ma, Wei-Wei; Dai, Yong-Qiang; 2018. Parameter Optimization in APSIM-Based Simulation Model for Yield For-mation of Dryland Wheat Using Shuffled Frog Leaping Algorithm. Acta Agronomica Sinica, 44, 1229. 10.3724/SP.J.1006.2018.01229 (View/edit entry) | 2018 | Model application | 0 |
Ahmad, Ashfaq; Ashfaq, Muhammad; Wajid, Aftab; Khaliq, Tasneem; Ahmd, Ishfaq; Hoogenboom, Gerrit; 2019. Development of Climate Change Adaptation Strategies for Rice-wheat Cropping System of Punjab Pakistan. In: (eds.).. . (View/edit entry) | 2019 | Model application | 3 |
Huda, Abul; 2013. Integrated crop and environmental management for improved productivity and food security. . Volume 2013. (View/edit entry) | 2013 | Model application | 0 |
Fuchs, Kathrin; Merbold, Lutz; Buchmann, Nina; Bretscher, Daniel; Brilli, Lorenzo; Fitton, Nuala; Topp, Cairistiona F. E.; Klumpp, Katja; Lieffering, Mark; Martin, Raphaël; Newton, Paul C. D.; Rees, Robert M.; Rolinski, Susanne; Smith, Pete; Snow, Val; 2020. Multimodel Evaluation of Nitrous Oxide Emissions From an Intensively Managed Grassland. Journal of Geophysical Research: Biogeosciences, 125, . 10.1029/2019JG005261 (View/edit entry) | 2020 | Model application | 13 |
Giltrap, Donna; Yeluripati, Jagadeesh; Smith, Pete; Fitton, Nuala; Smith, Ward; Grant, Brian; Dorich, Christopher D.; Deng, Jia; Topp, Cairistiona FE; Abdalla, Mohamed; Liáng, Lìyǐn L.; Snow, Val; 2020. Global Research Alliance N 2 O chamber methodology guidelines: Summary of modeling approaches. Journal of Environmental Quality, 49, 1168–1185. 10.1002/jeq2.20119 (View/edit entry) | 2020 | Model application | 11 |
Shahhosseini, Mohsen; Martinez-Feria, Rafael A; Hu, Guiping; Archontoulis, Sotirios V; 2019. Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters, 14, 124026. 10.1088/1748-9326/ab5268 (View/edit entry) | 2019 | Model application | 65 |
Brown, Hamish E.; Huth, Neil I.; Holzworth, Dean P.; Teixeira, Edmar I.; Zyskowski, Rob F.; Hargreaves, John N.G.; Moot, Derrick J.; 2014. Plant Modelling Framework: Software for building and running crop models on the APSIM platform. Environmental Modelling & Software, 62, 385–398. 10.1016/j.envsoft.2014.09.005 (View/edit entry) | 2014 | Model application | 87 |
Vogel, Johannes; Rivoire, Pauline; Deidda, Cristina; Rahimi, Leila; Sauter, Christoph Alexander; Tschumi, Elisabeth; van der Wiel, Karin; Zhang, Tianyi; Zscheischler, Jakob; 2020. Identifying meteorological drivers of extreme impacts: an application to simulated crop yields. . (View/edit entry) | 2020 | Model application | 19 |
Ye, Zi; Qiu, Xiaolei; Chen, Jian; Cammarano, Davide; Ge, Zhonglei; Ruane, Alex C.; Liu, Leilei; Tang, Liang; Cao, Weixing; Liu, Bing; Zhu, Yan; 2020. Impacts of 1.5 °C and 2.0 °C global warming above pre-industrial on potential winter wheat production of China. European Journal of Agronomy, 120, 126149. 10.1016/j.eja.2020.126149 (View/edit entry) | 2020 | Model application | 21 |
Marin, Fábio R.; Thorburn, Peter J.; Nassif, Daniel S.P.; Costa, Leandro G.; 2015. Sugarcane model intercomparison: Structural differences and uncertainties under current and potential future climates. Environmental Modelling & Software, 72, 372–386. 10.1016/j.envsoft.2015.02.019 (View/edit entry) | 2015 | Model application | 57 |
Hussain, Jamshad; Khaliq, Tasneem; Asseng, Senthold; Saeed, Umer; Ahmad, Ashfaq; Ahmad, Burhan; Ahmad, Ishfaq; Fahad, Muhammad; Awais, Muhammad; Ullah, Asmat; Hoogenboom, Gerrit; 2020. Climate change impacts and adaptations for wheat employing multiple climate and crop modelsin Pakistan. Climatic Change, 163, 253–266. 10.1007/s10584-020-02855-7 (View/edit entry) | 2020 | Model application | 3 |
Mohanty, M.; Sinha, Nishant K.; Somasundaram, J.; McDermid, Sonali S.; Patra, Ashok K.; Singh, Muneshwar; Dwivedi, A.K.; Reddy, K. Sammi; Rao, Ch. Srinivas; Prabhakar, M.; Hati, K.M.; Jha, P.; Singh, R.K.; Chaudhary, R.S.; Kumar, Soora Naresh; Tripathi, Prabhat; Dalal, Ram C.; Gaydon, Donald S.; Chaudhari, S.K.; 2020. Soil carbon sequestration potential in a Vertisol in central India- results from a 43-year long-term experiment and APSIM modeling. Agricultural Systems, 184, 102906. 10.1016/j.agsy.2020.102906 (View/edit entry) | 2020 | Model application | 15 |
Elli, Elvis Felipe; Sentelhas, Paulo Cesar; Bender, Fabiani Denise; 2020. Impacts and uncertainties of climate change projections on Eucalyptus plantations productivity across Brazil. Forest Ecology and Management, 474, 118365. 10.1016/j.foreco.2020.118365 (View/edit entry) | 2020 | Model application | 20 |
Peterson, Caitlin A.; Bell, Lindsay W.; Carvalho, Paulo C. de F.; Gaudin, Amélie C. M.; 2020. Resilience of an Integrated Crop–Livestock System to Climate Change: A Simulation Analysis of Cover Crop Grazing in Southern Brazil. Frontiers in Sustainable Food Systems, 4, 604099. 10.3389/fsufs.2020.604099 (View/edit entry) | 2020 | Model application | 6 |
Cichota, R.; Vogeler, I.; Snow, V.O.; Shepperd, M.; 2010. Modelling the effect of a nitrification inhibiter on N leaching from grazed pastures. Proceedings of the New Zealand Grassland Association, , 43–47. 10.33584/jnzg.2010.72.2815 (View/edit entry) | 2010 | Model application | 27 |
Gummadi, Sridhar; Kadiyala, M. D. M.; Rao, K. P. C.; Athanasiadis, Ioannis; Mulwa, Richard; Kilavi, Mary; Legesse, Gizachew; Amede, Tilahun; Shahid, Shamsuddin; 2020. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. PLOS ONE, 15, e0241147. 10.1371/journal.pone.0241147 (View/edit entry) | 2020 | Model application | 1 |
Pembleton, K. G.; Cullen, B. R.; Rawnsley, R. P.; Ramilan, T.; 2020. Climate change effects on pasture-based dairy systems in south-eastern Australia. Crop and Pasture Science, , . 10.1071/CP20108 (View/edit entry) | 2020 | Model application | 8 |
Bosi, Cristiam; Sentelhas, Paulo Cesar; Huth, Neil Ian; Pezzopane, José Ricardo Macedo; Andreucci, Mariana Pares; Santos, Patricia Menezes; 2020. APSIM-Tropical Pasture: A model for simulating perennial tropical grass growth and its parameterisation for palisade grass (Brachiaria brizantha). Agricultural Systems, 184, 102917. 10.1016/j.agsy.2020.102917 (View/edit entry) | 2020 | Model application | 13 |
Kadigi, Ibrahim L.; Richardson, James W.; Mutabazi, Khamaldin D.; Philip, Damas; Mourice, Sixbert K.; Mbungu, Winfred; Bizimana, Jean-Claude; Sieber, Stefan; 2020. The effect of nitrogen-fertilizer and optimal plant population on the profitability of maize plots in the Wami River sub-basin, Tanzania: A bio-economic simulation approach. Agricultural Systems, 185, 102948. 10.1016/j.agsy.2020.102948 (View/edit entry) | 2020 | Model application | 7 |
Yin, Xiaogang; Kersebaum, Kurt-Christian; Beaudoin, Nicolas; Constantin, Julie; Chen, Fu; Louarn, Gaëtan; Manevski, Kiril; Hoffmann, Munir; Kollas, Chris; Armas-Herrera, Cecilia M.; Baby, Sanmohan; Bindi, Marco; Dibari, Camilla; Ferchaud, Fabien; Ferrise, Roberto; de Cortazar-Atauri, Inaki Garcia; Launay, Marie; Mary, Bruno; Moriondo, Marco; Öztürk, Isik; Ruget, Françoise; Sharif, Behzad; Wachter-Ripoche, Dominique; Olesen, Jørgen E.; 2020. Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models. Field Crops Research, 255, 107863. 10.1016/j.fcr.2020.107863 (View/edit entry) | 2020 | Model application | 11 |
Vogeler, Iris; Hansen, Elly Møller; Nielsen, Svend; Labouriau, Rodrigo; Cichota, Rogerio; Olesen, Jørgen E.; Thomsen, Ingrid Kaag; 2020. Nitrate leaching from suction cup data: Influence of method of drainage calculation and concentration interpolation. Journal of Environmental Quality, 49, 440–449. 10.1002/jeq2.20020 (View/edit entry) | 2020 | Model application | 7 |
Saddique, Qaisar; Liu, De Li; Wang, Bin; Feng, Puyu; He, Jianqiang; Ajaz, Ali; Ji, Jianmei; Xu, Jiatun; Zhang, Chao; Cai, Huanjie; 2020. Modelling future climate change impacts on winter wheat yield and water use: A case study in Guanzhong Plain, northwestern China. European Journal of Agronomy, 119, 126113. 10.1016/j.eja.2020.126113 (View/edit entry) | 2020 | Model application | 25 |
Rotili, Diego Hernán; de Voil, Peter; Eyre, Joseph; Serafin, Loretta; Aisthorpe, Darren; Maddonni, Gustavo Ángel; Rodríguez, Daniel; 2020. Untangling genotype x management interactions in multi-environment on-farm experimentation. Field Crops Research, 255, 107900. 10.1016/j.fcr.2020.107900 (View/edit entry) | 2020 | Model application | 13 |
Saddique, Qaisar; Cai, Huanjie; Xu, Jiatun; Ajaz, Ali; He, Jianqiang; Yu, Qiang; Wang, Yunfei; Chen, Hui; Khan, Muhammad Imran; Liu, De Li; He, Liang; 2020. Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China. Mitigation and Adaptation Strategies for Global Change, 25, 1523–1543. 10.1007/s11027-020-09935-0 (View/edit entry) | 2020 | Model application | 15 |
Ahmed, Mukhtar; Dias, Henrique Boriolo; Inman-Bamber, Geoff; 2020. Sugarcane: Contribution of Process-Based Models for Understanding and Mitigating Impacts of Climate Variability and Change on Production. In: (eds.)Systems Modeling.. 217–260. (View/edit entry) | 2020 | Model application | 3 |
McCarthy, D. S.; Vlek, P. L. G.; 2012. Impact of climate change on sorghum production under different nutrient and crop residue management in semi-arid region of Ghana: A modeling perspective. African Crop Science Journal, 20, 243–259. 10.4314/acsj.v20i2. (View/edit entry) | 2012 | Model application | 28 |
He, Di; Oliver, Yvette; Wang, Enli; 2020. Predicting plant available water holding capacity of soils from crop yield. Plant and Soil, , . 10.1007/s11104-020-04757-0 (View/edit entry) | 2020 | Model application | 3 |
Baum, Mitch E.; Licht, Mark A.; Huber, Isaiah; Archontoulis, Sotirios V.; 2020. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. European Journal of Agronomy, 119, 126101. 10.1016/j.eja.2020.126101 (View/edit entry) | 2020 | Model application | 30 |
Zhang, Meng; Gao, Yanmei; Zhang, Yinghua; Fischer, Tony; Zhao, Zhigan; Zhou, Xiaonan; Wang, Zhimin; Wang, Enli; 2020. The contribution of spike photosynthesis to wheat yield needs to be considered in process-based crop models. Field Crops Research, 257, 107931. 10.1016/j.fcr.2020.107931 (View/edit entry) | 2020 | Model application | 15 |
Wimalasiri, Eranga M.; Jahanshiri, Ebrahim; Suhairi, Tengku Adhwa Syaherah Tengku Mohd; Udayangani, Hasika; Mapa, Ranjith B.; Karunaratne, Asha S.; Vidhanarachchi, Lal P.; Azam-Ali, Sayed N.; 2020. Basic Soil Data Requirements for Process-Based Crop Models as a Basis for Crop Diversification. Sustainability, 12, 7781. 10.3390/su12187781 (View/edit entry) | 2020 | Model application | 10 |
MacCarthy, D. S.; Agyare, W. A.; Vlek, P. L. G.; 2018. Evaluation of soil properties of the Sudan Savannah ecological zone of Ghana for crop production. Ghana Journal of Agricultural Science, 52, 95–104. 10.4314/gjas.v52i1. (View/edit entry) | 2018 | Model application | 1 |
Dayal, Kavina; Brown, Jaclyn N.; Waldner, François; Lawes, Roger; Hochman, Zvi; Donohue, Randall; Horan, Heidi; Chen, Yang; 2020. Climate drivers provide valuable insights into late season prediction of Australian wheat yield. Agricultural and Forest Meteorology, 295, 108202. 10.1016/j.agrformet.2020.108202 (View/edit entry) | 2020 | Model application | 1 |
Nissanka, Sarath P.; Karunaratne, Asha S.; Perera, Ruchika; Weerakoon, W.M.W.; Thorburn, Peter J.; Wallach, Daniel; 2015. Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling & Software, 70, 128–137. 10.1016/j.envsoft.2015.04.007 (View/edit entry) | 2015 | Model application | 26 |
Nurulhuda, Khairudin; Zakaria, Mohamad Pauzi; Struik, Paul C.; Keesman, Karel J.; 2020. Equifinality in the modelling of ammonia volatilisation from a flooded rice system. Environmental Modelling & Software, 133, 104752. 10.1016/j.envsoft.2020.104752 (View/edit entry) | 2020 | Model application | 2 |
Dutta, S. K; Laing, Alison M.; Kumar, S.; Gathala, Mahesh K.; Singh, Ajoy K.; Gaydon, D.S.; Poulton, P.; 2020. Improved water management practices improve cropping system profitability and smallholder farmers’ incomes. Agricultural Water Management, 242, 106411. 10.1016/j.agwat.2020.106411 (View/edit entry) | 2020 | Model application | 4 |
Manschadi, A. M.; Eitzinger, J.; Breisch, M.; Fuchs, W.; Neubauer, T.; Soltani, A.; 2020. Full Parameterisation Matters for the Best Performance of Crop Models: Inter-comparison of a Simple and a Detailed Maize Model. International Journal of Plant Production, , . 10.1007/s42106-020-00116-2 (View/edit entry) | 2020 | Model application | 3 |
Chimonyo, Vimbayi G. P.; Wimalasiri, Eranga M.; Kunz, Richard; Modi, Albert T.; Mabhaudhi, Tafadzwanashe; 2020. Optimizing Traditional Cropping Systems Under Climate Change: A Case of Maize Landraces and Bambara Groundnut. Frontiers in Sustainable Food Systems, 4, 562568. 10.3389/fsufs.2020.562568 (View/edit entry) | 2020 | Model application | 6 |
, ; 2016. Sensitivity of Maize Yield Potential to Regional Climate in the Southwestern U.S.. Transactions of the ASABE, 59, 1745–1757. 10.13031/trans.59.11584 (View/edit entry) | 2016 | Model application | 4 |
Ahmed, Mukhtar; Mehmood, Muhammad Zeeshan; Afzal, Obaid; Aslam, Muhammad Aqeel; Riaz, Hasan; Raza, Muhammad Ali; Ahmed, Shakeel; Qadir, Ghulam; Ahmad, Mukhtar; Shaheen, Farid Asif; Shah, Zahid Hussain; 2020. Disease Modeling as a Tool to Assess the Impacts of Climate Variability on Plant Diseases and Health. In: (eds.)Systems Modeling.. 327–351. (View/edit entry) | 2020 | Model application | 3 |
Hina, Tayyaba; Adil, Sultan Ali; Ashfaq, Muhammad; Ahmad, Ashfaq; 2019. Economic Impact Assessment of Climatic Change Sensitivity in Rice-Wheat Cropping System of Pakistan. Indian Journal of Science and Technology, 12, 1–17. 10.17485/ijst/2019/v12i37/147643 (View/edit entry) | 2019 | Model application | 3 |
Jarolímek, Jan; Pavlík, Jan; Kholova, Jana; Ronanki, Swarna; 2019. Data Pre-processing for Agricultural Simulations. Agris on-line Papers in Economics and Informatics, 11, 49–53. 10.7160/aol.2019.110105 (View/edit entry) | 2019 | Model application | 3 |
MacPherson, Joseph; Paul, Carsten; Helming, Katharina; 2020. Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models. Sustainability, 12, 6617. 10.3390/su12166617 (View/edit entry) | 2020 | Model application | 2 |
Dilla, Aynalem M.; Smethurst, Philip J.; Huth, Neil I.; Barry, Karen M.; 2020. Plot-Scale Agroforestry Modeling Explores Tree Pruning and Fertilizer Interactions for Maize Production in a Faidherbia Parkland. Forests, 11, 1175. 10.3390/f11111175 (View/edit entry) | 2020 | Model application | 7 |
Saddique, Qaisar; Zou, Yufeng; Ajaz, Ali; Ji, Jianmei; Xu, Jiatun; Azmat, Muhammad; Rahman, Muhammad Habib ur; He, Jianqiang; Cai, Huanjie; 2020. Analyzing the Performance and Application of CERES-Wheat and APSIM in the Guanzhong Plain, China. Transactions of the ASABE, 63, 1879–1893. 10.13031/trans.13631 (View/edit entry) | 2020 | Model application | 3 |
Adam, Myriam; MacCarthy, Dilys Sefakor; Traoré, Pierre C. Sibiry; Nenkam, Andree; Freduah, Bright Salah; Ly, Mouhamed; Adiku, Samuel G.K.; 2020. Which is more important to sorghum production systems in the Sudano-Sahelian zone of West Africa: Climate change or improved management practices?. Agricultural Systems, 185, 102920. 10.1016/j.agsy.2020.102920 (View/edit entry) | 2020 | Model application | 9 |
Kwesiga, Julius; Grotelüschen, Kristina; Senthilkumar, Kalimuthu; Neuhoff, Daniel; Döring, Thomas F.; Becker, Mathias; 2020. Rice Yield Gaps in Smallholder Systems of the Kilombero Floodplain in Tanzania. Agronomy, 10, 1135. 10.3390/agronomy10081135 (View/edit entry) | 2020 | Model application | 10 |
Morvan, Thierry; Lemoine, Charlotte; Gaillard, Florian; Hamelin, Gaelle; Trinkler, Béatrice; Carteaux, Laurence; Petitjean, Patrice; Jaffrezic, Anne; 2020. A comprehensive dataset on nitrate, Nitrite and dissolved organic carbon leaching losses from a 4-year Lysimeter study. Data in Brief, 32, 106029. 10.1016/j.dib.2020.106029 (View/edit entry) | 2020 | Model application | 0 |
Campolo, Jake; Güereña, David; Maharjan, Shashish; Lobell, David B.; 2021. Evaluation of soil-dependent crop yield outcomes in Nepal using ground and satellite-based approaches. Field Crops Research, 260, 107987. 10.1016/j.fcr.2020.107987 (View/edit entry) | 2021 | Model application | 7 |
Xiao, Dengpan; Liu, De Li; Feng, Puyu; Wang, Bin; Waters, Cathy; Shen, Yanjun; Qi, Yongqing; Bai, Huizi; Tang, Jianzhao; 2021. Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain. Agricultural Water Management, 246, 106685. 10.1016/j.agwat.2020.106685 (View/edit entry) | 2021 | Model application | 12 |
Zhang, Yajie; Yu, Qiang; 2021. Does agroecosystem model improvement increase simulation accuracy for agricultural N2O emissions?. Agricultural and Forest Meteorology, 297, 108281. 10.1016/j.agrformet.2020.108281 (View/edit entry) | 2021 | Model application | 2 |
Fuchs, Kathrin; Merbold, Lutz; Buchmann, Nina; Bellocchi, Gianni; Bindi, Marco; Brilli, Lorenzo; Conant, Richard T.; Dorich, Christopher D.; Ehrhardt, Fiona; Fitton, Nuala; Grace, Peter; Klumpp, Katja; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; McAuliffe, Russell; Newton, Paul C. D.; Rees, Robert M.; Recous, Sylvie; Smith, Pete; Soussana, Jean‐François; Topp, Cairistiona F. E.; 2020. Evaluating the Potential of Legumes to Mitigate N 2 O Emissions From Permanent Grassland Using Process‐Based Models. Global Biogeochemical Cycles, 34, e2020GB006561. 10.1029/2020GB006561 (View/edit entry) | 2020 | Model application | 8 |
Xu, Xibao; Liu, Jingping; Tan, Yan; Yang, Guishan; 2021. Quantifying and optimizing agroecosystem services in China's Taihu Lake Basin. Journal of Environmental Management, 277, 111440. 10.1016/j.jenvman.2020.111440 (View/edit entry) | 2021 | Model application | 6 |
Mandrini, German; Bullock, David S.; Martin, Nicolas F.; 2021. Modeling the economic and environmental effects of corn nitrogen management strategies in Illinois. Field Crops Research, 261, 108000. 10.1016/j.fcr.2020.108000 (View/edit entry) | 2021 | Model application | 7 |
Jones, M.R.; Singels, A.; Chinorumba, S.; Poser, C.; Christina, M.; Shine, J.; Annandale, J.; Hammer, G.L.; 2021. Evaluating process-based sugarcane models for simulating genotypic and environmental effects observed in an international dataset. Field Crops Research, 260, 107983. 10.1016/j.fcr.2020.107983 (View/edit entry) | 2021 | Model application | 2 |
Rotili, Diego Hernán; Abeledo, L. Gabriela; deVoil, Peter; Rodríguez, Daniel; Maddonni, Gustavo Ángel; 2021. Exploring the effect of tillers on the water economy, plant growth and kernel set of low-density maize crops. Agricultural Water Management, 243, 106424. 10.1016/j.agwat.2020.106424 (View/edit entry) | 2021 | Model application | 6 |
Gaydon, Donald S.; Khaliq, Tasneem; Ahmad, Mobin-ud-Din; Cheema, M.J.M.; Gull, Umair; 2021. Tweaking Pakistani Punjab rice-wheat management to maximize productivity within nitrate leaching limits. Field Crops Research, 260, 107964. 10.1016/j.fcr.2020.107964 (View/edit entry) | 2021 | Model application | 5 |
Nan, Zhe; Wang, Xiaoyan; Du, Yi; Melching, Charles S.; Shang, Xueshen; 2021. Critical period and pathways of water borne nitrogen loss from a rice paddy in northeast China. Science of The Total Environment, 753, 142116. 10.1016/j.scitotenv.2020.142116 (View/edit entry) | 2021 | Model application | 3 |
Singh, Ajit Pratap; Dhadse, Kunal; 2021. Economic evaluation of crop production in the Ganges region under climate change: A sustainable policy framework. Journal of Cleaner Production, 278, 123413. 10.1016/j.jclepro.2020.123413 (View/edit entry) | 2021 | Model application | 17 |
Roberton, S.D.; Lobsey, C.R.; Bennett, J.McL.; 2021. A Bayesian approach toward the use of qualitative information to inform on-farm decision making: The example of soil compaction. Geoderma, 382, 114705. 10.1016/j.geoderma.2020.114705 (View/edit entry) | 2021 | Model application | 3 |
Rahimi-Moghaddam, Sajjad; Eyni-Nargeseh, Hamed; Ahmadi, Seyed Ahmad Kalantar; Azizi, Khosro; 2021. Towards withholding irrigation regimes and drought-resistant genotypes as strategies to increase canola production in drought-prone environments: A modeling approach. Agricultural Water Management, 243, 106487. 10.1016/j.agwat.2020.106487 (View/edit entry) | 2021 | Model application | 9 |
Beah, Aloysius; Kamara, Alpha Y.; Jibrin, Jibrin M.; Akinseye, Folorunso M.; Tofa, Abdullahi I.; Adam, Adam. M.; 2020. Simulating the Response of Drought–Tolerant Maize Varieties to Nitrogen Application in Contrasting Environments in the Nigeria Savannas Using the APSIM Model. Agronomy, 11, 76. 10.3390/agronomy11010076 (View/edit entry) | 2020 | Model application | 2 |
Luedeling, Eike; Smethurst, Philip J.; Baudron, Frédéric; Bayala, Jules; Huth, Neil I.; van Noordwijk, Meine; Ong, Chin K.; Mulia, Rachmat; Lusiana, Betha; Muthuri, Catherine; Sinclair, Fergus L.; 2016. Field-scale modeling of tree–crop interactions: Challenges and development needs. Agricultural Systems, 142, 51–69. 10.1016/j.agsy.2015.11.005 (View/edit entry) | 2016 |
Model application | 111 |
Kragt, Marit E.; Robertson, Michael J.; 2014. Quantifying ecosystem services trade-offs from agricultural practices. Ecological Economics, 102, 147–157. 10.1016/j.ecolecon.2014.04.001 (View/edit entry) | 2014 |
Model application | 114 |
Mohanty, M.; Reddy, K. Sammi; Probert, M.E.; Dalal, R.C.; Rao, A. Subba; Menzies, N.W.; 2011. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecological Modelling, 222, 719–726. 10.1016/j.ecolmodel.2010.10.027 (View/edit entry) | 2011 |
Model application | 84 |
Lu, Yang; Wang, Enli; Zhao, Zhigan; Liu, Xiuwei; Tian, Ailing; Zhang, Xiying; 2021. Optimizing irrigation to reduce N leaching and maintain high crop productivity through the manipulation of soil water storage under summer monsoon climate. Field Crops Research, 265, 108110. 10.1016/j.fcr.2021.108110 (View/edit entry) | 2021 |
Model application | 9 |
S.H.N.P., De Silva; Takahashi, Taro; Okada, Kensuke; 2021. Evaluation of APSIM-wheat to simulate the response of yield and grain protein content to nitrogen application on an Andosol in Japan. Plant Production Science, , 1–12. 10.1080/1343943X.2021.1883989 (View/edit entry) | 2021 | Model application | 1 |
Bandara, W. B. M. A. C.; Sakai, Kazuhito; Nakandakari, Tamotsu; Kapetch, Preecha; Rathnappriya, R. H. K.; 2020. A Gaussian-Process-Based Global Sensitivity Analysis of Cultivar Trait Parameters in APSIM-Sugar Model: Special Reference to Environmental and Management Conditions in Thailand. Agronomy, 10, 984. 10.3390/agronomy10070984 (View/edit entry) | 2020 | Model application | 3 |
Bilotto, Franco; Harrison, Matthew Tom; Migliorati, Massimiliano De Antoni; Christie, Karen M.; Rowlings, David W.; Grace, Peter R.; Smith, Andrew P.; Rawnsley, Richard P.; Thorburn, Peter J.; Eckard, Richard J.; 2021. Can seasonal soil N mineralisation trends be leveraged to enhance pasture growth?. Science of The Total Environment, 772, 145031. 10.1016/j.scitotenv.2021.145031 (View/edit entry) | 2021 |
Model application | 6 |
Collins, Brian; Najeeb, Ullah; Luo, Qunying; Tan, Daniel K.Y.; 2021. Contribution of climate models and APSIM phenological parameters to uncertainties in spring wheat simulations: application of SUFI-2 algorithm in northeast Australia. . (View/edit entry) | 2021 | Model application | 0 |
Collins, Brian; 2021. Limiting transpiration rate in high evaporative demand conditions to improve Australian wheat productivity. in silico Plants, 3, diab006. 10.1093/insilicoplants/diab006 (View/edit entry) | 2021 | Model application | 7 |
Yang, Kai-Wei; Chapman, Scott; Tuinstra, Mitchell; 2020. R Pipeline for Calculation of APSIM Parameters and Generating the XML File. , , . 10.4231/69H7-CV75 (View/edit entry) | 2020 | Model application | 1 |
Shahhosseini, Mohsen; Hu, Guiping; Huber, Isaiah; Archontoulis, Sotirios V.; 2021. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Scientific Reports, 11, 1606. 10.1038/s41598-020-80820-1 (View/edit entry) | 2021 |
Model application | 55 |
Chen, Qiaomin; Zheng, Bangyou; Chen, Tong; Chapman, Scott; 2021. Integration of APSIM and PROSAIL models to develop more precise radiometric estimation of crop traits using deep learning. bioRxiv. (View/edit entry) | 2021 | Model application | 0 |
Collins, Brian; Chenu, Karine; 2021. Improving productivity of Australian wheat by adapting sowing date and genotype phenology to future climate. Climate Risk Management, 32, 100300. 10.1016/j.crm.2021.100300 (View/edit entry) | 2021 | Model application | 14 |
Gaydon, D.S.; Radanielson, A.M.; Chaki, A.K.; Sarker, M.M.R.; Rahman, M.A.; Rashid, M.H.; Kabir, Md.J.; Khan, A.S.M.M.R.; Gaydon, E.R.; Roth, C.H.; 2021. Options for increasing Boro rice production in the saline coastal zone of Bangladesh. Field Crops Research, 264, 108089. 10.1016/j.fcr.2021.108089 (View/edit entry) | 2021 |
Model application | 8 |
Böldt, Matthias; Taube, Friedhelm; Vogeler, Iris; Reinsch, Thorsten; Kluß, Christof; Loges, Ralf; 2021. Evaluating Different Catch Crop Strategies for Closing the Nitrogen Cycle in Cropping Systems—Field Experiments and Modelling. Sustainability, 13, 394. 10.3390/su13010394 (View/edit entry) | 2021 | Model application | 13 |
Berghuijs, H.N.C.; Weih, M.; van der Werf, W.; Karley, A.J.; Adam, E.; Villegas-Fernandez, A.M.; Kiaer, L.P.; Newton, A.C.; Scherber, C.; Tavoletti, S.; Vico, G.; 2021. Calibrating and testing APSIM for wheat-faba bean pure cultures and intercrops across Europe. Field Crops Research, 264, 108088. 10.1016/j.fcr.2021.108088 (View/edit entry) | 2021 |
Model application | 6 |
Mwambo, Francis Molua; Fürst, Christine; Martius, Christopher; Jimenez-Martinez, Marcos; Nyarko, Benjamin Kofi; Borgemeister, Christian; 2021. Combined application of the EM-DEA and EX-ACT approaches for integrated assessment of resource use efficiency, sustainability and carbon footprint of smallholder maize production practices in sub-Saharan Africa. Journal of Cleaner Production, , 126132. 10.1016/j.jclepro.2021.126132 (View/edit entry) | 2021 | Model application | 7 |
Peake, A.S.; Carberry, P.S.; Raine, S.R.; Gett, V.; Smith, R.J.; 2016. An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia. Agricultural Water Management, 169, 61–76. 10.1016/j.agwat.2016.02.013 (View/edit entry) | 2016 |
Model application | 16 |
Wu, Yushan; He, Di; Wang, Enli; Liu, Xin; Huth, Neil I.; Zhao, Zhigan; Gong, Wanzhuo; Yang, Feng; Wang, Xiaochun; Yong, Taiwen; Liu, Jiang; Liu, Weiguo; Du, Junbo; Pu, Tian; Liu, Chunyan; Yu, Liang; van der Werf, Wopke; Yang, Wenyu; 2021. Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations. Field Crops Research, 265, 108122. 10.1016/j.fcr.2021.108122 (View/edit entry) | 2021 |
Model application | 3 |
Gladish, Daniel W.; He, Di; Wang, Enli; 2021. Pattern analysis of Australia soil profiles for plant available water capacity. Geoderma, 391, 114977. 10.1016/j.geoderma.2021.114977 (View/edit entry) | 2021 |
Model application | 0 |
Teixeira, Edmar; Kersebaum, Kurt Christian; Ausseil, Anne-Gaelle; Cichota, Rogerio; Guo, Jing; Johnstone, Paul; George, Michael; Liu, Jian; Malcolm, Brendon; Khaembah, Edith; Meiyalaghan, Sathiyamoorthy; Richards, Kate; Zyskowski, Robert; Michel, Alexandre; Sood, Abha; Tait, Andrew; Ewert, Frank; 2021. Understanding spatial and temporal variability of N leaching reduction by winter cover crops under climate change. Science of The Total Environment, 771, 144770. 10.1016/j.scitotenv.2020.144770 (View/edit entry) | 2021 |
Model application | 5 |
Bell, L.W.; Moore, A.D.; Thomas, D.T.; 2021. Diversified crop-livestock farms are risk-efficient in the face of price and production variability. Agricultural Systems, 189, 103050. 10.1016/j.agsy.2021.103050 (View/edit entry) | 2021 | Model application | 8 |
Hussein, Mahmood A.; Antille, Diogenes L.; Kodur, Shreevatsa; Chen, Guangnan; Tullberg, Jeff N.; 2021. Controlled traffic farming effects on productivity of grain sorghum, rainfall and fertiliser nitrogen use efficiency. Journal of Agriculture and Food Research, 3, 100111. 10.1016/j.jafr.2021.100111 (View/edit entry) | 2021 |
Model application | 6 |
Tonapi, Vilas A.; Talwar, Harvinder Singh; Are, Ashok Kumar; Bhat, B. Venkatesh; Reddy, Ch. Ravinder; Dalton, Timothy J.; Kholová, J.; Adam, M.; Diancoumba, M.; Hammer, G.; Hajjarpoor, A.; Chenu, K.; Jarolímek, J.; 2020. Sorghum: General Crop-Modelling Tools Guiding Principles and Use of Crop Models in Support of Crop Improvement Programs in Developing Countries. In: (eds.)Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World.. 189–207. (View/edit entry) | 2020 | Model application | 2 |
Kumar, Uttam; Morel, Julien; Bergkvist, Göran; Palosuo, Taru; Gustavsson, Anne-Maj; Peake, Allan; Brown, Hamish; Ahmed, Mukhtar; Parsons, David; 2021. Comparative Analysis of Phenology Algorithms of the Spring Barley Model in APSIM 7.9 and APSIM Next Generation: A Case Study for High Latitudes. Plants, 10, 443. 10.3390/plants10030443 (View/edit entry) | 2021 | Model application | 3 |
Balakrishna, K.; 2020. WSN-Based Information Dissemination for Optimizing Irrigation Through Prescriptive Farming:. International Journal of Agricultural and Environmental Information Systems, 11, 41–54. 10.4018/IJAEIS.2020100103 (View/edit entry) | 2020 |
Model application | 6 |
Liu, Ke; Harrison, Matthew Tom; Shabala, Sergey; Meinke, Holger; Ahmed, Ibrahim; Zhang, Yunbo; Tian, Xiaohai; Zhou, Meixue; 2020. The State of the Art in Modeling Waterlogging Impacts on Plants: What Do We Know and What Do We Need to Know. Earth's Future, 8, . 10.1029/2020EF001801 (View/edit entry) | 2020 |
Model application | 17 |
Su, Zheng-e; Liu, Zhi-juan; Bai, Fan; Zhang, Zhen-tao; Sun, Shuang; Huang, Qiu-wan; Liu, Tao; Liu, Xiao-qing; Yang, Xiao-guang; 2021. Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in Northeast China. Journal of Integrative Agriculture, 20, 371–382. 10.1016/S2095-3119(20)63359-7 (View/edit entry) | 2021 |
Model application | 3 |
Biswas, Amit; Mailapalli, Damodhara R.; Raghuwanshi, Narendra S.; 2021. Modelling the effect of changing transplanting date on consumptive water footprints for paddy under the system of rice intensification. Journal of the Science of Food and Agriculture, 0, . 10.1002/jsfa.11186 (View/edit entry) | 2021 |
Model application | 2 |
Arshad, Adnan; Raza, Muhammad Ali; Zhang, Yue; Zhang, Lizhen; Wang, Xuejiao; Ahmed, Mukhtar; Habib-ur-Rehman, Muhammad; 2021. Impact of Climate Warming on Cotton Growth and Yields in China and Pakistan: A Regional Perspective. Agriculture, 11, 97. 10.3390/agriculture11020097 (View/edit entry) | 2021 | Model application | 13 |
Khaembah, Edith N.; Cichota, Rogerio; Vogeler, Iris; 2021. Simulation of management strategies to mitigate nitrogen losses from crop rotations in Southland, New Zealand. Journal of the Science of Food and Agriculture, 0, . 10.1002/jsfa.11063 (View/edit entry) | 2021 |
Model application | 2 |
Tomar, Pradeep; Kaur, Gurjit; Wang, Yuchi; 2021. Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture:. In: (eds.).. . (View/edit entry) | 2021 | Model application | 4 |
Lungu, Olipa N.; Chabala, Lydia M.; Shepande, Chizumba; 2020. Satellite-Based Crop Monitoring and Yield Estimation—A Review. Journal of Agricultural Science, 13, 180. 10.5539/jas.v13n1p180 (View/edit entry) | 2020 | Model application | 2 |
Yang, Kai-Wei; Chapman, Scott; Carpenter, Neal; Hammer, Graeme; McLean, Greg; Zheng, Bangyou; Chen, Yuhao; Delp, Edward; Masjedi, Ali; Crawford, Melba; Ebert, David; Habib, Ayman; Thompson, Addie; Weil, Clifford; Tuinstra, Mitchell R; Yin, Xinyou; Long, Stephen P; 2021. Integrating crop growth models with remote sensing for predicting biomass yield of sorghum. in silico Plants, 3, diab001. 10.1093/insilicoplants/diab001 (View/edit entry) | 2021 | Model application | 12 |
Palosuo, Taru; Hoffmann, Munir P.; Rötter, Reimund P.; Lehtonen, Heikki S.; 2021. Sustainable intensification of crop production under alternative future changes in climate and technology: The case of the North Savo region. Agricultural Systems, 190, 103135. 10.1016/j.agsy.2021.103135 (View/edit entry) | 2021 |
Model application | 6 |
Vogeler, Iris; Carrick, Sam; Lilburne, Linda; Cichota, Rogerio; Pollacco, Joseph; Fernández-Gálvez, Jesús; 2021. How important is the description of soil unsaturated hydraulic conductivity values for simulating soil saturation level, drainage and pasture yield?. Journal of Hydrology, 598, 126257. 10.1016/j.jhydrol.2021.126257 (View/edit entry) | 2021 |
Model application | 3 |
Zhao, Panpan; Zhou, Yang; Li, Fengfeng; Ling, Xiaoxia; Deng, Nanyan; Peng, Shaobing; Man, Jianguo; 2020. The Adaptability of APSIM-Wheat Model in the Middle and Lower Reaches of the Yangtze River Plain of China: A Case Study of Winter Wheat in Hubei Province. Agronomy, 10, 981. 10.3390/agronomy10070981 (View/edit entry) | 2020 | Model application | 11 |
Rötter, Reimund; Scheiter, Simon; Hoffmann, Munir; Pfeiffer, Mirjam; Nelson, William; Ayisi, Kingsley; Taylor, Peter; Feil, Jan-Henning; Bakhsh, Sara Yazdan; Isselstein, J; Linstaedter, Anja; Behn, Kai; Westphal, Catrin; Grass, Ingo; Odhiambo, Jude J. O.; Twine, Wayne; Paolo, Merante; Bracho-Mujica, Gennady; Bringhenti, Thomas; Lamega, Sala; Abdulai, Issaka; Lam, Quang; Anders, Mina; Linden, Valerie; Weier, Sina; Foord, Stefan; Erasmus, Barend; 2021. Letter-to-the-Editor: Modelling the multi-functionality of African savanna landscapes under global change. . (View/edit entry) | 2021 | Model application | 0 |
Biswas, A.; Mailapalli, D. R.; Raghuwanshi, N. S.; 2021. APSIM-Oryza model for simulating paddy consumptive water footprints under alternate wetting and drying practice for Kharagpur, West Bengal, India. Paddy and Water Environment, , . 10.1007/s10333-021-00849-4 (View/edit entry) | 2021 | Model application | 1 |
Azmat, Muhammad; Ilyas, Fatima; Sarwar, Afia; Huggel, Christain; Vaghefi, Saeid Ashraf; Hui, Tao; Qamar, Muhammad Uzair; Bilal, Muhammad; Ahmed, Zeeshan; 2021. Impacts of climate change on wheat phenology and yield in Indus Basin, Pakistan. Science of The Total Environment, 790, 148221. 10.1016/j.scitotenv.2021.148221 (View/edit entry) | 2021 | Model application | 5 |
Li, Yang; Wang, Jing; Tang, Jianzhao; Wang, Enli; Pan, Zhihua; Pan, Xuebiao; Hu, Qi; 2021. Optimum planting date and cultivar maturity to optimize potato yield and yield stability in North China. Field Crops Research, 269, 108179. 10.1016/j.fcr.2021.108179 (View/edit entry) | 2021 | Model application | 4 |
Tang, Jianzhao; Xiao, Dengpan; Wang, Jing; Fang, Quanxiao; Zhang, Jun; Bai, Huizi; 2021. Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China. Agricultural Water Management, 253, 106945. 10.1016/j.agwat.2021.106945 (View/edit entry) | 2021 | Model application | 8 |
Dias, Henrique Boriolo; Sentelhas, Paulo Cesar; 2021. Assessing the performance of two gridded weather data for sugarcane crop simulations with a process-based model in Center-South Brazil. International Journal of Biometeorology, , . 10.1007/s00484-021-02145-6 (View/edit entry) | 2021 | Model application | 3 |
Pasley, Heather; Nichols, Virginia; Castellano, Michael; Baum, Mitchell; Kladivko, Eileen; Helmers, Matthew; Archontoulis, Sotirios; 2021. Rotating maize reduces the risk and rate of nitrate leaching. Environmental Research Letters, 16, 064063. 10.1088/1748-9326/abef8f (View/edit entry) | 2021 | Model application | 5 |
Wang, Xiaofang; Li, Yi; Chen, Xinguo; Wang, Haoran; Li, Linchao; Yao, Ning; Liu, De Li; Biswas, Asim; Sun, Shikun; 2021. Projection of the climate change effects on soil water dynamics of summer maize grown in water repellent soils using APSIM and HYDRUS-1D models. Computers and Electronics in Agriculture, 185, 106142. 10.1016/j.compag.2021.106142 (View/edit entry) | 2021 | Model application | 7 |
Akhavizadegan, Faezeh; Ansarifar, Javad; Wang, Lizhi; Huber, Isaiah; Archontoulis, Sotirios V.; 2021. A time-dependent parameter estimation framework for crop modeling. Scientific Reports, 11, 11437. 10.1038/s41598-021-90835-x (View/edit entry) | 2021 | Model application | 6 |
Raza, Ahsan; Ahrends, Hella; Habib-Ur-Rahman, Muhammad; Gaiser, Thomas; 2021. Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops. Land, 10, 422. 10.3390/land10040422 (View/edit entry) | 2021 | Model application | 9 |
Del Bimbo, Alberto; Cucchiara, Rita; Sclaroff, Stan; Farinella, Giovanni Maria; Mei, Tao; Bertini, Marco; Escalante, Hugo Jair; Vezzani, Roberto; Pylianidis, Christos; Snow, Val; Holzworth, Dean; Bryant, Jeremy; Athanasiadis, Ioannis N.; 2021. Location-Specific vs Location-Agnostic Machine Learning Metamodels for Predicting Pasture Nitrogen Response Rate. In: (eds.)Pattern Recognition. ICPR International Workshops and Challenges.. 45–54. (View/edit entry) | 2021 | Model application | 2 |
Timsina, Jagadish; Dutta, Sudarshan; Devkota, Krishna Prasad; Chakraborty, Somsubhra; Neupane, Ram Krishna; Bishta, Sudarshan; Amgain, Lal Prasad; Singh, Vinod K.; Islam, Saiful; Majumdar, Kaushik; 2021. Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency. Agricultural Systems, 192, 103181. 10.1016/j.agsy.2021.103181 (View/edit entry) | 2021 | Model application | 8 |
Feleke, Hirut Getachew; Savage, Mj; Tesfaye, Kindie; 2021. Calibration and validation of APSIM–Maize, DSSAT CERES–Maize and AquaCrop models for Ethiopian tropical environments. South African Journal of Plant and Soil, 38, 36–51. 10.1080/02571862.2020.1837271 (View/edit entry) | 2021 | Model application | 2 |
Beah, Aloysius; Kamara, Alpha Yaya; Jibrin, Jibrin Mohamed; Akinseye, Folorunso Mathew; Tofa, Abdullahi Ibrahim; Ademulegun, Temitope Damian; 2021. Simulation of the Optimum Planting Windows for Early and Intermediate-Maturing Maize Varieties in the Nigerian Savannas Using the APSIM Model. Frontiers in Sustainable Food Systems, 5, 624886. 10.3389/fsufs.2021.624886 (View/edit entry) | 2021 | Model application | 2 |
Morel, Julien; Kumar, Uttam; Ahmed, Mukhtar; Bergkvist, Göran; Lana, Marcos; Halling, Magnus; Parsons, David; 2021. Quantification of the Impact of Temperature, CO2, and Rainfall Changes on Swedish Annual Crops Production Using the APSIM Model. Frontiers in Sustainable Food Systems, 5, 665025. 10.3389/fsufs.2021.665025 (View/edit entry) | 2021 | Model application | 4 |
Bustos-Korts, Daniela; Boer, Martin P; Chenu, Karine; Zheng, Bangyou; Chapman, Scott; van Eeuwijk, Fred A; Messina, Carlos; Long, Stephen P; 2021. Genotype-specific P-spline response surfaces assist interpretation of regional wheat adaptation to climate change. in silico Plants, 3, diab018. 10.1093/insilicoplants/diab018 (View/edit entry) | 2021 | Model application | 2 |
Ababaei, Behnam; Chenu, Karine; 2019. Recent Trends in Drought, Heat and Frost-Induced Yield Losses Across the Australian Wheatbelt. Proceedings, 36, 5. 10.3390/proceedings2019036005 (View/edit entry) | 2019 | Model application | 7 |
Boote, Kenneth J.; Adam, Myriam; Ahmad, Ishfaq; Ahmad, Shakeel; Cammarano, Davide; Chattha, Ashfaq Ahmad; Claessens, Lieven; Dimes, John; Durand, Wiltrud; Freduah, Bright S.; Gummadi, Sridhar; Hargreaves, John; Hoogenboom, Gerrit; Homann-Kee Tui, Sabine; Jones, James W.; Khaliq, Tasneem; MacCarthy, Dilys S.; Masikati, Patricia; McDermid, Sonali; Kadiyala, Dakshina Murthy; Nenkam, Andree; Porter, Cheryl; Ruane, Alex C.; Subash, Nataraja; Thorburn, Peter; Traore, Pierre S.; Vellingiri, Geethalakshmi; Wajid, Syed Aftab; 2021. Understanding Differences in Climate Sensitivity Simulations of APSIM and DSSAT Crop Models. In: (eds.).. 15–46. (View/edit entry) | 2021 | Model application | 0 |
Dokoohaki, Hamze; Kivi, Marissa S; Martinez-Feria, Rafael; Miguez, Fernando E; Hoogenboom, Gerrit; 2021. A comprehensive uncertainty quantification of large-scale process-based crop modeling frameworks. Environmental Research Letters, 16, 084010. 10.1088/1748-9326/ac0f26 (View/edit entry) | 2021 | Model application | 5 |
Barton, Madeleine; Parry, Hazel; Ward, Samantha; Hoffmann, Ary A.; Umina, Paul A.; van Helden, Maarten; Macfadyen, Sarina; 2021. Forecasting impacts of biological control under future climates: mechanistic modelling of an aphid pest and a parasitic wasp. Ecological Modelling, 457, 109679. 10.1016/j.ecolmodel.2021.109679 (View/edit entry) | 2021 | Model application | 0 |
Shahhosseini, Mohsen; Hu, Guiping; Huber, Isaiah; Archontoulis, Sotirios V.; 2021. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Scientific Reports, 11, 1606. 10.1038/s41598-020-80820-1 (View/edit entry) | 2021 | Model application | 55 |
Ojeda, Jonathan J.; Rezaei, Ehsan Eyshi; Kamali, Bahareh; McPhee, John; Meinke, Holger; Siebert, Stefan; Webb, Mathew A.; Ara, Iffat; Mulcahy, Frank; Ewert, Frank; 2021. Impact of crop management and environment on the spatio-temporal variance of potato yield at regional scale. Field Crops Research, 270, 108213. 10.1016/j.fcr.2021.108213 (View/edit entry) | 2021 | Model application | 8 |
Nechaev, A. I.; 2021. Structure of the information management system of cereal crops cultivation. Siberian Herald of Agricultural Science, 51, 96–106. 10.26898/0370-8799-2021-2-12 (View/edit entry) | 2021 | Model application | 1 |
Dias, Henrique Boriolo; Sentelhas, Paulo Cesar; Inman-Bamber, Geoff; Everingham, Yvette; 2021. Sugarcane yield future scenarios in Brazil as projected by the APSIM-Sugar model. Industrial Crops and Products, 171, 113918. 10.1016/j.indcrop.2021.113918 (View/edit entry) | 2021 | Model application | 2 |
Ojeda, Jonathan J.; Huth, Neil; Holzworth, Dean; Raymundo, Rubí; Zyskowski, Robert F.; Sinton, Sarah M.; Michel, Alexandre J.; Brown, Hamish E.; 2021. Assessing errors during simulation configuration in crop models – A global case study using APSIM-Potato. Ecological Modelling, 458, 109703. 10.1016/j.ecolmodel.2021.109703 (View/edit entry) | 2021 | Model application | 4 |
Xu, Fang; Wang, Bin; He, Chuan; Liu, De Li; Feng, Puyu; Yao, Ning; Zhang, Renhe; Xu, Shutu; Xue, Jiquan; Feng, Hao; Yu, Qiang; He, Jianqiang; 2021. Optimizing Sowing Date and Planting Density Can Mitigate the Impacts of Future Climate on Maize Yield: A Case Study in the Guanzhong Plain of China. Agronomy, 11, 1452. 10.3390/agronomy11081452 (View/edit entry) | 2021 | Model application | 3 |
Luo, Z; Wang, E.; Bryan, B.; 2011. A meta-model for soil carbon stock in agricultural soils. . Volume . (View/edit entry) | 2011 |
Model application | 0 |
Yang, Xiumei; Brown, Hamish E.; Teixeira, Edmar I.; Moot, Derrick J.; 2021. Development of a lucerne model in APSIM next generation: 1 phenology and morphology of genotypes with different fall dormancies. European Journal of Agronomy, 130, 126372. 10.1016/j.eja.2021.126372 (View/edit entry) | 2021 | Model application | 2 |
Rahimi-Moghaddam, Sajjad; Deihimfard, Reza; Azizi, Khosro; Roostaei, Mozaffar; 2021. Characterizing spatial and temporal trends in drought patterns of rainfed wheat (Triticum aestivum L.) across various climatic conditions: A modelling approach. European Journal of Agronomy, 129, 126333. 10.1016/j.eja.2021.126333 (View/edit entry) | 2021 | Model application | 1 |
Tahir, Nazia; Li, Jumei; Ma, Yibing; Ullah, Aman; Zhu, Ping; Peng, Chang; Hussain, Babar; Danish, Subhan; 2021. 20 Years nitrogen dynamics study by using APSIM nitrogen model simulation for sustainable management in Jilin China. Scientific Reports, 11, 17505. 10.1038/s41598-021-96386-5 (View/edit entry) | 2021 | Model application | 1 |
Das, Bianca; Huth, Neil; Probert, Merv; Paul, Birthe; Kihara, Job; Bolo, Peter; Rodriguez, Daniel; Herrero, Mario; Schmidt, Susanne; 2019. Drivers of Phosphorus Efficiency in Tropical and Subtropical Cropping Systems. Proceedings, 36, 13. 10.3390/proceedings2019036013 (View/edit entry) | 2019 | Model application | 0 |
Hunt, J. R.; Browne, C.; McBeath, T. M.; Verburg, K.; Craig, S.; Whitbread, A. M.; 2013. Summer fallow weed control and residue management impacts on winter crop yield though soil water and N accumulation in a winter-dominant, low rainfall region of southern Australia. Crop and Pasture Science, 64, 922. 10.1071/CP13237 (View/edit entry) | 2013 |
Model application | 63 |
Li, Jianzheng; Wang, Ligang; Luo, Zhongkui; Wang, Enli; Wang, Guocheng; Zhou, Han; Li, Hu; Xu, Shiwei; 2021. Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM. Agricultural Systems, 194, 103277. 10.1016/j.agsy.2021.103277 (View/edit entry) | 2021 |
Model application | 2 |
Raymond, Nelly; Kopittke, Peter M.; Wang, Enli; Lester, David; Bell, Michael J.; 2021. Does the APSIM model capture soil phosphorus dynamics? A case study with Vertisols. Field Crops Research, 273, 108302. 10.1016/j.fcr.2021.108302 (View/edit entry) | 2021 |
Model application | 0 |
Yasin, Mubashra; Ahmad, Ashfaq; Khaliq, Tasneem; Habib-ur-Rahman, Muhammad; Niaz, Salma; Gaiser, Thomas; Ghafoor, Iqra; Hassan, Hafiz Suboor ul; Qasim, Muhammad; Hoogenboom, Gerrit; 2021. Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models. Environmental Science and Pollution Research, , . 10.1007/s11356-021-17050-z (View/edit entry) | 2021 |
Model application | 3 |
Dias, Henrique Boriolo; Inman-Bamber, Geoff; Sentelhas, Paulo Cesar; Everingham, Yvette; Bermejo, Rodrigo; Christodoulou, Diomedes; 2021. High-yielding sugarcane in tropical Brazil – Integrating field experimentation and modelling approach for assessing variety performances. Field Crops Research, 274, 108323. 10.1016/j.fcr.2021.108323 (View/edit entry) | 2021 |
Model application | 1 |
Hao, Shirui; Ryu, Dongryeol; Western, Andrew; Perry, Eileen; Bogena, Heye; Franssen, Harrie Jan Hendricks; 2021. Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis. Agricultural Systems, 194, 103278. 10.1016/j.agsy.2021.103278 (View/edit entry) | 2021 |
Model application | 6 |
Grotelüschen, Kristina; Gaydon, Donald S.; Langensiepen, Matthias; Ziegler, Susanne; Kwesiga, Julius; Senthilkumar, Kalimuthu; Whitbread, Anthony M.; Becker, Mathias; 2021. Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches. Agricultural Water Management, 258, 107146. 10.1016/j.agwat.2021.107146 (View/edit entry) | 2021 |
Model application | 1 |
Liu, Ke; Harrison, Matthew Tom; Archontoulis, Sotirios V; Huth, Neil; Yang, Rui; Liu, De Li; Yan, Haoliang; Meinke, Holger; Huber, Isaiah; Feng, Puyu; Ibrahim, Ahmed; Zhang, Yunbo; Tian, Xiaohai; Zhou, Meixue; 2021. Climate change shifts forward flowering and reduces crop waterlogging stress. Environmental Research Letters, 16, 094017. 10.1088/1748-9326/ac1b5a (View/edit entry) | 2021 |
Model application | 13 |
Afshar, Mehdi H.; Foster, Timothy; Higginbottom, Thomas P.; Parkes, Ben; Hufkens, Koen; Mansabdar, Sanjay; Ceballos, Francisco; Kramer, Berber; 2021. Improving the Performance of Index Insurance Using Crop Models and Phenological Monitoring. Remote Sensing, 13, 924. 10.3390/rs13050924 (View/edit entry) | 2021 |
Model application | 6 |
Nelson, William C. D.; Hoffmann, Munir P.; Vadez, Vincent; Rötter, Reimund P.; Koch, Marian; Whitbread, Anthony M.; 2021. Can intercropping be an adaptation to drought? A model‐based analysis for pearl millet–cowpea. Journal of Agronomy and Crop Science, , jac.12552. 10.1111/jac.12552 (View/edit entry) | 2021 |
Model application | 4 |
Cichota, Rogerio; Vogeler, Iris; Sharp, Joanna; Verburg, Kirsten; Huth, Neil; Holzworth, Dean; Dalgliesh, Neal; Snow, Val; 2021. A protocol to build soil descriptions for APSIM simulations. MethodsX, 8, 101566. 10.1016/j.mex.2021.101566 (View/edit entry) | 2021 |
Model application | 2 |
Zhu, Junqi; Parker, Amber; Gou, Fang; Agnew, Rob; Yang, Linlin; Greven, Marc; Raw, Victoria; Neal, Sue; Martin, Damian; Trought, Michael C T; Huth, Neil; Brown, Hamish Edward; Hammer, Graeme; 2021. Developing perennial fruit crop models in APSIM Next Generation using grapevine as an example. in silico Plants, 3, diab021. 10.1093/insilicoplants/diab021 (View/edit entry) | 2021 |
Model application | 3 |
Wajid, Aftab; Hussain, Khalid; Ilyas, Ayesha; Habib-ur-Rahman, Muhammad; Shakil, Qamar; Hoogenboom, Gerrit; 2021. Crop Models: Important Tools in Decision Support System to Manage Wheat Production under Vulnerable Environments. Agriculture, 11, 1166. 10.3390/agriculture11111166 (View/edit entry) | 2021 |
Model application | 3 |
Kandulu, John; Kandulu, John; 2011. Assessing the potential for beneficial diversification in rain-fed agricultural enterprises. , , . 10.22004/AG.ECON.100568 (View/edit entry) | 2011 |
Model application | 3 |
Owusu Danquah, Eric; Beletse, Yacob; Stirzaker, Richard; Smith, Christopher; Yeboah, Stephen; Oteng-Darko, Patricia; Frimpong, Felix; Ennin, Stella Ama; 2020. Monitoring and Modelling Analysis of Maize (Zea mays L.) Yield Gap in Smallholder Farming in Ghana. Agriculture, 10, 420. 10.3390/agriculture10090420 (View/edit entry) | 2020 |
Model application | 4 |
Chen, Shichao; Parsons, David; Du, Taisheng; Kumar, Uttam; Wang, Sufen; 2021. Simulation of yield and water balance using WHCNS and APSIM combined with geostatistics across a heterogeneous field. Agricultural Water Management, 258, 107174. 10.1016/j.agwat.2021.107174 (View/edit entry) | 2021 |
Model application | 1 |
Deihimfard, Reza; Rahimi-Moghaddam, Sajjad; Collins, Brian; Azizi, Khosro; 2022. Future climate change could reduce irrigated and rainfed wheat water footprint in arid environments. Science of The Total Environment, 807, 150991. 10.1016/j.scitotenv.2021.150991 (View/edit entry) | 2022 |
Model application | 4 |
Iragi, Daniel Muhindo; Mwanjalolo, Jackson Gilbert Majaliwa; Katushabe, Alice Amonding; Masamba, Jean Walangululu; Nkuba, Bossissi; Iragi, Daniel Muhindo; 2017. Projected impact of climate change on rice yield in two agro-ecological zones in South- Kivu, Democratic Republic of Congo. , , . 10.22004/AG.ECON.263431 (View/edit entry) | 2017 |
Model application | 3 |
Schuurs, Mark; Wegener, Malcolm K.; Schuurs, Mark; 1999. FARM DAMS - ARE THEY AN OPTION FOR THE QUEENSLAND SUGAR INDUSTRY. , , . 10.22004/AG.ECON.124549 (View/edit entry) | 1999 |
Model application | 1 |
Brennan, Lisa E.; Carberry, Peter S.; Hochman, Zvi; Brennan, Lisa E.; 2001. Participative research on use of enhanced climate variability information within agribusiness. , , . 10.22004/AG.ECON.125545 (View/edit entry) | 2001 |
Model application | 0 |
Guo, Hao; Huang, Zhigang; Tan, Mengchao; Ruan, Hongyan; Awe, Gabriel Oladele; Are, Kayode Steven; Abegunrin, Toyin Peter; Hussain, Zahid; Kuang, Zhaomin; Liu, Deli; 2021. Crop resilience to climate change: A study of spatio-temporal variability of sugarcane yield in a subtropical region, China. Smart Agricultural Technology, 1, 100014. 10.1016/j.atech.2021.100014 (View/edit entry) | 2021 |
Model application | 1 |
Beukes, P.C.; Romera, A.J.; Gregorini, P.; Clark, D.A.; Chapman, D.F.; 2011. Using a whole farm model linked to the APSIM suite to predict production, profit and N leaching for next generation dairy systems in the Canterbury region of New Zealand. 19th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2011 |
Model application | 6 |
Zhang, Y., Feng, L., Wang, E., Wang, J., & Li, B. 2012. Evaluation of the APSIM-Wheat model in terms of different cultivars, management regimes and environmental conditions. Canadian Journal of Plant Science, 92, 937-949. 10.4141/cjps2011-266 (View/edit entry) | 2012 |
Model application | 24 |
McCown, R. L., Keating, B. A., Carberry, P. S., Hochman, Z., & Hargreaves, D. 2016. The co-evolution of the Agricultural Production Systems Simulator (APSIM) and its use in Australian dryland cropping research and farm management intervention.. Agricultural system models in field research and technology transfer, , 149-175. 10.1201/9781420032413-8 (View/edit entry) | 2016 |
Model application | 1 |
Tidjani, M. A., & Akponikpe, P. B. I. 2012. Évaluation des stratégies paysannes d’adaptation aux changements climatiques: cas de la production du maïs au Nord-Bénin. African crop science journal, 20, 425-441. 10.4314/ACSJ.V20I2 (View/edit entry) | 2012 |
Model application | 25 |
Hadiya, N. J., Kumar, N., & Mote, B. M. 2018. Use of WOFOST model in agriculture-A review.. Agricultural Reviews, 39, 234-240. 10.18805/ag.R-1691 (View/edit entry) | 2018 |
Model application | 0 |
Huda, A. 2013. Integrated crop and environmental management for improved productivity and food security.. Qatar Foundation Annual Research Forum, 1, . 10.5339/qfarf.2013.EEP-017 (View/edit entry) | 2013 |
Model application | 0 |
McCown, R. L., Keating, B. A., Carberry, P. S., Hochman, Z., & Hargreaves, D. 2016. The co-evolution of the Agricultural Production Systems Simulator (APSIM) and its use in Australian dryland cropping research and farm management intervention.. Agricultural system models in field research and technology transfer, , 149-175. 10.1201/9781420032413-8 (View/edit entry) | 2016 |
Model application | 1 |
Wijekoon, W. M. P. C., Jayasinghe, G. Y., & Maheepala, S. A. D. S. S. 2018. Application of Crop Simulation Models as a Strategy for Climate Change Risk Assessment and Adaptation in Agricultural Systems.. Proceedings of International Forestry and Environment Symposium. Volume 23. (View/edit entry) | 2018 |
Model application | 0 |
Vibart, R.E.; Vogeler, I.; Cichota, R.; Horne, D.; 2015. Predictions of nitrogen leaching from a well-drained soil under dryland and irrigated dairy farming using APSIM and OVERSEER. 21st International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2015 |
Model application | 0 |
Holzworth, D.; Huth, N.I.; Fainges, J.; Herrmann, N.I.; Zurcher, E.; Brown, H.; Snow, V.; Verrall, S.; Cichota, R.; Boherty, A.; deVoil, P.; McLean, G.; Brider, J.; 2015. APSIM Next Generation: The final frontier?. . Volume . (View/edit entry) | 2015 |
Model application | 6 |
Tahir, N.; Li, J.; Ma, Y.; Ullah, A.; Liu, H.; 2021. A 20-YEAR LONG TERM STUDY OF YIELD SUSTAINABILITY AND SOIL FERTILITY AFFECTED BY FERTILIZATION AND APSIM CLIMATIC CHANGE MODEL OF URUMQI, XINJIANG, CHINA. Applied Ecology and Environmental Research, 19, 1827–1855. 10.15666/aeer/1903_18271855 (View/edit entry) | 2021 |
Model application | 1 |
کشاورز مهر, مصطفی; مقدم, حسین; اویسی, مصطفی; بذرافشان, جواد; 2021. پارامتریابی و ارزیابی مدل APSIM-Wheat برای گندم زمستانه : کاربرد مدل تحت تغییرات اقلیمی. به زراعی کشاورزی, , . 10.22059/jci.2021.240747.1824 (View/edit entry) | 2021 |
Model application | 0 |
Tomar, Pradeep; Kaur, Gurjit; 2021. WSN, APSim, and Communication Model-Based Irrigation Optimization for Horticulture Crops in Real Time:. In: (eds.)Advances in Environmental Engineering and Green Technologies.. 243–254. (View/edit entry) | 2021 |
Model application | 1 |
Briak, Hamza; Kebede, Fassil; 2021. Wheat (Triticum aestivum) adaptability evaluation in a semi-arid region of Central Morocco using APSIM model. Scientific Reports, 11, 23173. 10.1038/s41598-021-02668-3 (View/edit entry) | 2021 |
Model application | 1 |
Kheir, Ahmed M. S.; Alkharabsheh, Hiba M.; Seleiman, Mahmoud F.; Al-Saif, Adel M.; Ammar, Khalil A.; Attia, Ahmed; Zoghdan, Medhat G.; Shabana, Mahmoud M. A.; Aboelsoud, Hesham; Schillaci, Calogero; 2021. Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions. Land, 10, 1375. 10.3390/land10121375 (View/edit entry) | 2021 |
Model application | 7 |
Chisanga, Charles B.; Phiri, Elijah; Chinene, Vernon R. N.; 2021. Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars. Nitrogen, 2, 392–414. 10.3390/nitrogen2040027 (View/edit entry) | 2021 |
Model application | 0 |
Feitosa, Tiberio Sousa; 2021. Parametrização do modelo APSIM-Tropical Pasture para a simulação de crescimento de Megathyrsus maximus cv. Mombaça. , , . (View/edit entry) | 2021 |
Model application | 0 |
Collins, Brian; Najeeb, Ullah; Luo, Qunying; Tan, Daniel K. Y.; 2021. Contribution of climate models and APSIM phenological parameters to uncertainties in spring wheat simulations: Application of SUFI‐2 algorithm in northeast Australia. Journal of Agronomy and Crop Science, , jac.12575. 10.1111/jac.12575 (View/edit entry) | 2021 |
Model application | 2 |
Goyal, Megh R.; Ray, Lala I. P.; Ahmed, Mukhtar; Ahmad, Shakeel; Fahad, Shah; 2021. Potential Applications of DSSAT, AquaCrop, APSIM Models for Crop Water Productivity and Irrigation Scheduling. In: (eds.)Fertigation Technologies for Micro Irrigated Crops.. 137–170. (View/edit entry) | 2021 |
Model application | 0 |
Maitra, Sagar; Sarkar, Sukamal ,; 2020. Application of APSIM Model for Assessing the Complexities of Rice-based Cropping Systems of South-Asia. In: (eds.)Advanced Agriculture.. . (View/edit entry) | 2020 |
Model application | 3 |
Dias, Henrique Boriolo; 2020. Sugarcane variety trait modelling: evaluating and improving the APSIM-Sugar model for simulating crop performance under current and future climates across Brazil. , , . (View/edit entry) | 2020 |
Model application | 0 |
Zhang, Yuxi; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Sadeh, Yuval; 2021. Assimilation of Wheat and Soil States into the APSIM-Wheat Crop Model: A Case Study. Remote Sensing, 14, 65. 10.3390/rs14010065 (View/edit entry) | 2021 |
Model application | 4 |
Bana, Ram Swaroop; Bamboriya, Shanti Devi; Padaria, Rabindra Nath; Dhakar, Raj Kumar; Khaswan, Shanker Lal; Choudhary, Ram Lal; Bamboriya, Jitendra Singh; 2022. Planting Period Effects on Wheat Productivity and Water Footprints: Insights through Adaptive Trials and APSIM Simulations. Agronomy, 12, 226. 10.3390/agronomy12010226 (View/edit entry) | 2022 |
Model application | 2 |
Vogeler, Iris; Lilburne, Linda; Webb, Trevor; Cichota, Rogerio; Sharp, Joanna; Carrick, Sam; Brown, Hamish; Snow, Val; 2022. S-map parameters for APSIM. MethodsX, 9, 101632. 10.1016/j.mex.2022.101632 (View/edit entry) | 2022 |
Model application | 0 |
Sarkar, Sukamal; Gaydon, Donald S.; Brahmachari, Koushik; Poulton, Perry L.; Chaki, Apurbo Kumar; Ray, Krishnendu; Ghosh, Argha; Nanda, Manoj Kr; Mainuddin, Mohammed; 2022. Testing APSIM in a complex saline coastal cropping environment. Environmental Modelling & Software, 147, 105239. 10.1016/j.envsoft.2021.105239 (View/edit entry) | 2022 |
Model application | 1 |
Chaki, Apurbo K.; Gaydon, Donald S.; Dalal, Ram C.; Bellotti, William D.; Gathala, Mahesh K.; Hossain, Akbar; Menzies, Neal W.; 2022. How we used APSIM to simulate conservation agriculture practices in the rice-wheat system of the Eastern Gangetic Plains. Field Crops Research, 275, 108344. 10.1016/j.fcr.2021.108344 (View/edit entry) | 2022 |
Model application | 3 |
Kheir, A.M.S.; Zoghdan, M.G.; Aiad, M.A.; Rashed, Sahar H.; 2018. OPTIMIZING WHEAT YIELD AND WATER PRODUCTIVITY USING AQUACROP AND APSIM-WHEAT MODELS IN NORTH NILE DELTA, EGYPT. Menoufia Journal of Soil Science, 3, 177–201. 10.21608/mjss.2018.175608 (View/edit entry) | 2018 |
Model application | 0 |
A.M. Yamusa; F.M.Akinseye; 2018. Evaluation of APSIM – Maize model under different sowing dates at Samaru, Nigeria. Journal of Agrometeorology, 20, 206–210. 10.54386/jam.v20i3.545 (View/edit entry) | 2018 |
Model application | 0 |
کامبوزیا, جعفر; رحیمی مقدم, سجاد; دیهیم فرد, رضا; 2017. برآورد پارمترهای مربوط به برخی ارقام غالب ذرت دانهای در کشور به منظور استفاده در مدل مکانیزمگرای APSIM. مجله تولید گیاهان زراعی, 10, . 10.22069/ejcp.2017.11189.1870 (View/edit entry) | 2017 |
Model application | 0 |
Masere, Tirivashe; Worth, Steven; 2016. Applicability of APSIM in Decision-Making by Small-Scale Resource-Constrained Farmers: a Case of Lower Gweru Communal Area, Zimbabwe. Journal of International Agricultural and Extension Education, , . 10.5191/jiaee.2015.22302 (View/edit entry) | 2016 |
Model application | 8 |
Yanyang, Yidan; Xu, Jingwen; Zhao, Junfang; Li, Ning; He, Yue; 2016. Study on Spring Wheat Yield Change of Inner Mongolia in Time and Space Based on APSIM Model. . Volume . (View/edit entry) | 2016 |
Model application | 0 |
Ahmed, M.; Hassan, F.u.; 2011. APSIM and DSSAT models as decision support tools. 19th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2011 |
Model application | 14 |
Sergio Graziano Magalhaes, Paulo; Frizarin Pereira Ferraz, Gustavo; 2015. Simulações Múltiplas para Estimar a Variabilidade Espacial da Produtividade da Cana-de-Açúcar Utilizando o Modelo APSIM. . Volume . (View/edit entry) | 2015 |
Model application | 0 |
Prado, Pierre F.do; Carmo, Janaina B. do; Thorburn, Peter; 2015. Computational exploration: using APSIM, Knearest and Rosetta for the simulation of nitrous oxide emissions in Brazilian sugarcane soil. . Volume . (View/edit entry) | 2015 |
Model application | 0 |
Shelia, V.; Sharda, V.; Hansen, J.; Porter, C.; Zheng, M.; Aggarwal, P.; Hoogenboom, G.; 2015. CCAFS Regional Agricultural Forecasting Toolbox (CRAFT): software for forecasting of crop production, risk analysis and climate change impact studies. ASABE Annual International Meeting. Volume . (View/edit entry) | 2015 |
Model application | 1 |
李广; 李玥; 高宝; 罗珠珠; 王琦; 刘强; 燕振刚; 赵有益; 2012. 基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应. 中国生态农业学报(中英文), 20, 1088–1095. 10.3724/SP.J.1011.2012.01088 (View/edit entry) | 2012 |
Model application | 1 |
李广; 李玥; 高宝; 罗珠珠; 王琦; 刘强; 燕振刚; 赵有益; 2012. 基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应. 中国生态农业学报(中英文), 20, 1088–1095. 10.3724/SP.J.1011.2012.01088 (View/edit entry) | 2012 |
Model application | 2 |
Balcão, Lucas Fillietaz; 2021. APSIM - Tropical Pasture parameterization for biomass production, light and water competition in a silvopastoral system with >i/i< cv. Piatã and >i/i. , , . (View/edit entry) | 2021 |
Model application | 0 |
Romera, A.J.; Levy, G.; Beukes, P.C.; Clark, D.A.; Glassey, C.B.; 2011. Linking a whole farm model to the APSIM suite to predict N leaching on New Zealand dairy farms. 19th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2011 |
Model application | 1 |
Sanderson, C.; Pagendam, D.; Power, B.; Bennett, F.; Darnell, R.; 2021. Opportunistic emulation of computationally expensive simulations via Deep Learning. 24th International Congress on Modelling and Simulation, , . 10.36334/modsim.2021.L1.sanderson (View/edit entry) | 2021 |
Model application | 1 |
Ahuja, Lajpat; Ma, Liwang; Howell, Terry; McCown, R; Keating, B; Carberry, P; Hochman, Z; Hargreaves, D; 2002. The Co-Evolution of the Agricultural Production Systems Simulator (APSIM) and Its Use in Australian dryland Cropping Research and Farm Management Intervention. In: (eds.)Agricultural System Models in Field Research and Technology Transfer.. . (View/edit entry) | 2002 |
Model application | 1 |
Archontoulis, Sotirios V.; Castellano, Michael J.; Licht, Mark A.; Nichols, Virginia; Baum, Mitch; Huber, Isaiah; Martinez‐Feria, Rafael; Puntel, Laila; Ordóñez, Raziel A.; Iqbal, Javed; Wright, Emily E.; Dietzel, Ranae N.; Helmers, Matt; Vanloocke, Andy; Liebman, Matt; Hatfield, Jerry L.; Herzmann, Daryl; Córdova, S. Carolina; Edmonds, Patrick; Togliatti, Kaitlin; Kessler, Ashlyn; Danalatos, Gerasimos; Pasley, Heather; Pederson, Carl; Lamkey, Kendall R.; 2020. Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt. Crop Science, 60, 721–738. 10.1002/csc2.20039 (View/edit entry) | 2020 |
Model application | 52 |
Masikati, Patricia; Sisito, Givious; Chipatela, Floyd; Tembo, Howard; Winowiecki, Leigh Ann; 2021. Agriculture extensification and associated socio-ecological trade-offs in smallholder farming systems of Zambia. International Journal of Agricultural Sustainability, 19, 497–508. 10.1080/14735903.2021.1907108 (View/edit entry) | 2021 |
Model application | 5 |
Zeleke, Ketema; 2021. Simulating Agronomic Adaptation Strategies to Mitigate the Impacts of Climate Change on Wheat Yield in South-Eastern Australia. Agronomy, 11, 337. 10.3390/agronomy11020337 (View/edit entry) | 2021 |
Model application | 3 |
Rohit Patidar; M. Mohanty; Nishant K. Sinha; S.C. Gupta; J. Somasundaram; R.S. Chaudhary; R. Soliya; K.M. Hati; M. Prabhakar; K. Sammi Reddy; A.K. Patra; Srinivas Rao Ch.; 2021. Potential impact of future climate change on maize (Zea mays L.) under rainfed condition in central India. Journal of Agrometeorology, 22, 18–23. 10.54386/jam.v22i1.117 (View/edit entry) | 2021 |
Model application | 1 |
Dewi, E R; Susanti, E; Apriyana, Y; 2021. Planting time options to improve rice productivity based on the Integrated KATAM recommendations. IOP Conference Series: Earth and Environmental Science, 648, 012105. 10.1088/1755-1315/648/1/012105 (View/edit entry) | 2021 |
Model application | 2 |
Shukr, Hanan H.; Pembleton, Keith G.; Zull, Andrew F.; Cockfield, Geoff J.; 2021. Impacts of Effects of Deficit Irrigation Strategy on Water Use Efficiency and Yield in Cotton under Different Irrigation Systems. Agronomy, 11, 231. 10.3390/agronomy11020231 (View/edit entry) | 2021 |
Model application | 3 |
Hussein, Mahmood A.; Antille, Diogenes L.; Kodur, Shreevatsa; Chen, Guangnan; Tullberg, Jeff N.; 2021. Controlled traffic farming delivers improved agronomic performance of wheat as a result of enhanced rainfall and fertiliser nitrogen use efficiency. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71, 377–398. 10.1080/09064710.2021.1903984 (View/edit entry) | 2021 |
Model application | 1 |
Chemura, Abel; Yalew, Amsalu Woldie; Gornott, Christoph; 2021. Quantifying Agroforestry Yield Buffering Potential Under Climate Change in the Smallholder Maize Farming Systems of Ethiopia. Frontiers in Agronomy, 3, 609536. 10.3389/fagro.2021.609536 (View/edit entry) | 2021 |
Model application | 4 |
Langer, Stephanie; 2022. Improving irrigation management on hillslope pastures. Journal of New Zealand Grasslands, , 135–144. 10.33584/jnzg.2021.83.3495 (View/edit entry) | 2022 |
Model application | 0 |
Hathie, Ibrahima; MacCarthy, Dilys; Freduah, Bright; Ly, Mouhamed; Ly, Ahmadou; Porter, Cheryl; Valdivia, Roberto; Ruane, Alexander; Antle, John; Mutter, Carolyn; Hoogenboom, Gerrit; 2022. AgMIP Regional Integrated Assessment of Agricultural Systems in Nioro, Senegal: Representative Agricultural Pathways, Climate, Crop and Economic Data Sets. Open Data Journal for Agricultural Research, 7, . 10.18174/odjar.v7i0.17977 (View/edit entry) | 2022 |
Model application | 0 |
Chisanga, Charles Bwalya; 2022. Modelling climate change impacts on maize.. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 17, . 10.1079/cabireviews202217008 (View/edit entry) | 2022 |
Model application | 0 |
Smethurst, Philip J.; McVicar, Tim R.; Huth, Neil I.; Bradshaw, Ben P.; Stewart, Stephen B.; Baker, Thomas G.; Benyon, Richard G.; McGrath, John F.; Van Niel, Thomas G.; 2022. Nitrate Uptake from an Aquifer by Two Plantation Forests: Plausibility Strengthened by Process-Based Modelling. Forests, 13, 184. 10.3390/f13020184 (View/edit entry) | 2022 |
Model application | 2 |
Fayaz, Asma; Kumar, Y. Rajit; Lone, Bilal Ahmad; Kumar, Sandeep; Dar, Z. A.; Rasool, Faisal; Abidi, Ishfaq; Nisar, Fouzea; Kumar, Anil; 2021. Crop Simulation Models: A Tool for Future Agricultural Research and Climate Change. Asian Journal of Agricultural Extension, Economics & Sociology, , 146–154. 10.9734/ajaees/2021/v39i630602 (View/edit entry) | 2021 |
Model application | 2 |
Raza, Ahsan; Gaiser, Thomas; Habib-Ur-Rahman, Muhammad; Ahrends, Hella; 2021. Erosion and sediment transport models with reference to the needs of small scale. . (View/edit entry) | 2021 |
Model application | 0 |
Gunarathna, M.H.J.P.; Kumari, M.K.N.; 2021. Simulation of Sugarcane Growth and Yield Under Optimized Subsurface Irrigation System. . (View/edit entry) | 2021 |
Model application | 0 |
Zenone, Terenzio; Ottaiano, Lucia; Manco, Antonio; Vitale, Luca; Famulari, Daniela; 2021. Process-oriented simulation and observations of N 2 O emission from intensively managed agricultural cropping system. . Volume . (View/edit entry) | 2021 |
Model application | 0 |
An-Vo, D.-A.; Mushtaq, S.; Reardon-Smith, K.; 2017. Modelling irrigated sugarcane crop under seasonal climate variability: A case study in Burdekin district. 22nd International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2017 |
Model application | 3 |
Pinheiro, Antonio Gebson; Souza, Luciana Sandra Bastos de; Jardim, Alexandre Maniçoba da Rosa Ferraz; Araújo Júnior, George do Nascimento; Alves, Cleber Pereira; Souza, Carlos André Alves de; Silva, Gabriel Ítalo Novaes da; Silva, Thieres George Freire da; 2021. Importância dos modelos de simulação de culturas diante os impactos das alterações climáticas sobre a produção agrícola - Revisão. Revista Brasileira de Geografia Física, 14, 3648. 10.26848/rbgf.v14.6.p3648-3666 (View/edit entry) | 2021 |
Model application | 0 |
Noriega-Navarrete, José Luis; Salazar-Moreno, Raquel; López-Cruz, Irineo Lorenzo; 2021. Revisión: modelos de crecimiento y rendimiento de maíz en escenarios de cambio climático. Revista Mexicana de Ciencias Agrícolas, 12, 127–140. 10.29312/remexca.v12i1.2552 (View/edit entry) | 2021 |
Model application | 2 |
Yin, Fang; Jin, Ziyue; Zhu, Jiazheng; Liu, Lei; Zhao, Danyun; 2021. Spatial Assessment of Jerusalem Artichoke’s Potential as an Energy Crop in the Marginal Land of the Shaanxi Province, China. Sustainability, 13, 13576. 10.3390/su132413576 (View/edit entry) | 2021 |
Model application | 0 |
Bandara, W. B. M. A. C.; Sakai, Kazuhito; Nakandakari, Tamotsu; Kapetch, Preecha; Anan, Mitsumasa; Nakamura, Shinya; Setouchi, Hideki; Rathnappriya, R. H. K.; 2021. Global Optimization of Cultivar Trait Parameters in the Simulation of Sugarcane Phenology Using Gaussian Process Emulation. Agronomy, 11, 1379. 10.3390/agronomy11071379 (View/edit entry) | 2021 |
Model application | 1 |
Guo, Tianting; Liu, Chunwei; Xiang, Ying; Zhang, Pei; Wang, Ranghui; 2021. Simulations of the Soil Evaporation and Crop Transpiration Beneath a Maize Crop Canopy in a Humid Area. Water, 13, 1975. 10.3390/w13141975 (View/edit entry) | 2021 |
Model application | 1 |
Yang, Xuan; Menefee, Dorothy; Cui, Song; Rajan, Nithya; 2021. Assessing the impacts of projected climate changes on maize (Zea mays) productivity using crop models and climate scenario simulation. Crop and Pasture Science, 72, 969. 10.1071/CP21279 (View/edit entry) | 2021 |
Model application | 0 |
Susanti, Erni; Dewi, Elsa Rakhmi; Surmaini, Elza; Sopaheluwakan, Ardhasena; Linarko, Aji; Syahputra, Muhammad Ridho; Indrawanto, C.; 2021. The projection of rice production in Java Island to support Indonesia as the world food granary. E3S Web of Conferences, 306, 01011. 10.1051/e3sconf/202130601011 (View/edit entry) | 2021 |
Model application | 0 |
Sarvajayakesavalu, Suriyanarayanan; Charoensudjai, Pisit; Musundi Kwena, Kizito; Karuku, G.N.; Ayuke, F.O.; Esilaba, A.O.; 2021. Impact of Climate Change on Maize and Pigeonpea Yields in Semi-Arid Kenya. In: (eds.)Environmental Issues and Sustainable Development.. . (View/edit entry) | 2021 |
Model application | 2 |
Saira, Anam; Maria Mahmood, Hafiza; Bibi, Asma; Hussain, Sajid; Faizan Ullah, Muhammad; Aslam, Mahnoor; Amjad Farooq, Muhammad; 2021. A Review on Current Advances in Crop Productivity, Applications and Impact on Agricultural or Biological Farming. Scholars Bulletin, 7, 93–97. 10.36348/sb.2021.v07i04.005 (View/edit entry) | 2021 |
Model application | 0 |
Ziliani, Matteo G.; Aragon, Bruno; Franz, Trenton; Hoteit, Ibrahim; Sheffield, Justin; McCabe, Matthew F.; 2021. Target food security: assimilating ultra-high resolution satellite images into a crop-yield forecasting model. . (View/edit entry) | 2021 |
Model application | 0 |
Yang, Jinpeng; He, Yingbin; Luo, Shanjun; Ma, Xintian; Li, Zhiqiang; Lin, Zeru; Zhang, Zhiliang; 2021. Optimizing the Optimal Planting Period for Potato Based on Different Water-Temperature Year Types in the Agro-Pastoral Ecotone of North China. Agriculture, 11, 1061. 10.3390/agriculture11111061 (View/edit entry) | 2021 |
Model application | 0 |
Huang, Mingxia; Wang, Jing; Wang, Bin; Liu, De Li; Yu, Qiang; He, Di; Wang, Na; Pan, Xuebiao; 2020. Optimizing sowing window and cultivar choice can boost China’s maize yield under 1.5 °C and 2 °C global warming. Environmental Research Letters, 15, 024015. 10.1088/1748-9326/ab66ca (View/edit entry) | 2020 |
Model application | 19 |
Vogel, Johannes; Rivoire, Pauline; Deidda, Cristina; Rahimi, Leila; Sauter, Christoph Alexander; Tschumi, Elisabeth; van der Wiel, Karin; Zhang, Tianyi; Zscheischler, Jakob; 2020. Identifying meteorological drivers of extreme impacts: an application to simulated crop yields. . (View/edit entry) | 2020 |
Model application | 19 |
Elli, Elvis Felipe; Huth, Neil; Sentelhas, Paulo Cesar; Carneiro, Rafaela Lorenzato; Alvares, Clayton Alcarde; Messina, Carlos D; Long, Stephen P; 2020. Global sensitivity-based modelling approach to identify suitable Eucalyptus traits for adaptation to climate variability and change. in silico Plants, 2, diaa003. 10.1093/insilicoplants/diaa003 (View/edit entry) | 2020 |
Model application | 7 |
Dodd, Mike B.; Tozer, Katherine N.; Vogeler, Iris; Greenfield, Rose; Stevens, David R.; Rhodes, Tim; Quilter, Sue; 2020. Quantifying the value proposition for white clover persistence on a New Zealand summer-dry hill-country farm. Journal of New Zealand Grasslands, 82, 199–209. 10.33584/jnzg.2020.82.2973 (View/edit entry) | 2020 |
Model application | 1 |
Santos, Marshall Victor Chagas; Carvalho, André Luiz de; Souza, José Leonaldo de; Silva, Mauricio Bruno Prado da; Medeiros, Rui Palmeira; Junior, Ricardo Araújo Ferreira; Lyra, Gustavo Bastos; Teodoro, Iêdo; Lyra, Guilherme Bastos; Lemes, Marco Antonio Maringolo; 2020. A modelling assessment of the maize crop growth, yield and soil water dynamics in the Northeast of Brazil. Australian Journal of Crop Science, , 897–904. 10.21475/ajcs.20.14.06.p1410 (View/edit entry) | 2020 |
Model application | 1 |
YUXI ZHANG; 2020. Towards improved crop growth and yield estimation: observation constrained wheat modelling. , , 43807883 Bytes. 10.26180/13151318.V1 (View/edit entry) | 2020 |
Model application | 1 |
Tolomio, Massimo; Casa, Raffaele; 2020. Defining irrigation thresholds in remote sensing-based decision support systems: a review of crop models mechanistic descriptions of crop water stress. . (View/edit entry) | 2020 |
Model application | 0 |
Archontoulis, Sotirios V.; Huber, Isaiah; Miguez, Fernando E.; Thorburn, Peter J.; Rogovska, Natalia; Laird, David A.; 2016. A model for mechanistic and system assessments of biochar effects on soils and crops and trade‐offs. GCB Bioenergy, 8, 1028–1045. 10.1111/gcbb.12314 (View/edit entry) | 2016 |
Model application | 37 |
Hasan, Mk; Akhter, S; Chowdhury, Mah; Chaki, Ak; Chawdhery, Mra; Zahan, T; 2019. Prediction of changing climatic effect and risk management by using simulation approaches for rice-wheat system in Bangladesh. Bangladesh Journal of Agricultural Research, 44, 311–326. 10.3329/bjar.v44i2.41820 (View/edit entry) | 2019 |
Model application | 0 |
Lilley, Julianne M.; Bell, Lindsay W.; Kirkegaard, John A.; 2015. Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 2. Canola. Crop and Pasture Science, 66, 349. 10.1071/CP14240 (View/edit entry) | 2015 |
Model application | 34 |
Bosi, Cristiam; 2018. Parameterization and evaluation of mechanistic crop models for estimating Urochloa brizantha cv. BRS Piatã productivity under full sun and in silvopastoral system. , , . (View/edit entry) | 2018 |
Model application | 7 |
Lyon, Drew J.; Hammer, Graeme L.; McLean, Greg B.; Blumenthal, Jürg M.; 2003. Simulation Supplements Field Studies to Determine No‐Till Dryland Corn Population Recommendations for Semiarid Western Nebraska. Agronomy Journal, 95, 884–891. 10.2134/agronj2003.8840 (View/edit entry) | 2003 |
Model application | 48 |
Bosire, Emily; Karanja, Fredrick; Ouma, Gilbert; Gitau, Wilson; 2018. Assessment of Climate Change Impact on Sorghum Production in Machakos County. Sustainable Food Production, 3, 25–45. 10.18052/www.scipress.com/SFP.3.25 (View/edit entry) | 2018 |
Model application | 4 |
Pinto, Helena Maria Soares; Vianna, Murilo Dos Santos; Da Costa, Leandro Garcia; Marin, Fábio Ricardo; 2018. Produtividade de cana-de-açúcar no Estado de São Paulo baseada em simulações multimodelos e mudanças climáticas. Agrometeoros, 26, . 10.31062/agrom.v26i1.26300 (View/edit entry) | 2018 |
Model application | 3 |
Onwonga, Richard; Madegwa, Yvonne; Shibairo, Solomon; 2018. Simulating effect of climate change on finger millet (Eleusine Coracana) yield under selected tillage practices and soil fertilizers inputs in semi-arid lower Eastern Kenya. Journal of Agricultural Science and Practice, 3, 1–18. 10.31248/JASP2017.036 (View/edit entry) | 2018 |
Model application | 1 |
حیدری بنی, مهران; یزدانپناه, حجتالله; محنتکش, عبدالمحمد; 2018. بررسی اثرات تغییر اقلیم بر عملکرد و مراحل فنولوژیکی کلزا (مطالعۀ موردی: استان چهارمحال و بختیاری). پژوهشهای جغرافیای طبیعی, 50, . 10.22059/jphgr.2018.239399.1007101 (View/edit entry) | 2018 |
Model application | 0 |
Battisti, Rafael; 2016. Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil. , , . (View/edit entry) | 2016 |
Model application | 9 |
Chen, C.; Wu, R.; Fletcher, A.; Lawes, R.; Oliver, Y.; 2017. Sensitivity of simulated yield of dryland wheat to uncertainty in estimated plant-available water capacity. 22nd International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2017 |
Model application | 1 |
Li, F.Y.; Vibart, R.; Dynes, R.A.; Vogeler, I.; Brown, M.; 2012. Effects of weather variability on sheep and beef farming in northern Southland, New Zealand: A modelling analysis. Proceedings of the New Zealand Grassland Association, , 77–83. 10.33584/jnzg.2012.74.2887 (View/edit entry) | 2012 |
Model application | 9 |
Myoung, B.; Kim, S.H.; Kim, J.; Kafatos, M.; 2016. Regional Variations of Optimal Sowing Dates of Maize for the Southwestern U.S.. Transactions of the ASABE, 59, 1759–1769. 10.13031/trans.59.11583 (View/edit entry) | 2016 |
Model application | 3 |
Snow, V.O.; Cichota, R.; McAuliffe, R.J.; Dynes, R.A.; Vogeler, I.; Ledgard, S.F.; Shepherd, M.A.; 2019. What is "sufficient" complexity when modelling urine patches in grazed pastures?. 22nd International Congress on Modelling and Simulation, , . 10.36334/modsim.2017.Keynote.snow (View/edit entry) | 2019 |
Model application | 0 |
Lee, Seul-Bi; Lim, Jung-Eun; Lee, Ye-Jin; Sung, Jwa-Kyung; Lee, Deog-Bae; Hong, Suk-Young; 2016. Analysis of components and applications of major crop models for nutrient management in agricultural land. 농업과학연구, 43, 537–546. 10.7744/KJOAS.20160055 (View/edit entry) | 2016 |
Model application | 3 |
Manges, Eric; 2016. Analyzing the Impact of Climate Change on Future Wheat Yields. , , . (View/edit entry) | 2016 |
Model application | 3 |
He. D.; Wang, J.; Wang, E.; 2015. Modelling the impact of climate variability and irrigation on winter canola yield and yield gap in Southwest China. 21st International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2015 |
Model application | 2 |
Mohanty, Manaranjan; 2015. Simulation of nitrogen release from organic materials in the soybean/wheat cropping systems on Vertisols in central India. , , . (View/edit entry) | 2015 |
Model application | 2 |
Zhang, Y.; Zhao, Y.X.; 2015. Potential impact of increased heat tolerance of grain formation on maize yield under future warming. 21st International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2015 |
Model application | 1 |
Dillmann, Andreas; Heller, Gerd; Krämer, Ewald; Kreplin, Hans-Peter; Nitsche, Wolfgang; Rist, Ulrich; Stuermer, A.; Akkermans, R. A. D.; Delfs, J. W.; 2014. Assessment of Front Rotor Trailing Edge Blowing for the Reduction of Open Rotor Interaction Noise. In: (eds.)New Results in Numerical and Experimental Fluid Mechanics IX.. 609–618. (View/edit entry) | 2014 |
Model application | 2 |
Dong, Chaoyang; Li, Kenan; Yang, Xiaoguang; Liu, Zhijuan; Sun, Shuang; 2014. Effects of drought on grain yield of spring maize in Northern China. . Volume . (View/edit entry) | 2014 |
Model application | 2 |
De Silva, S.H.N.P.; Taro, Takahashi; Kensuke, Okada; 2016. Preliminary evaluation of optimum N management for soft and hard wheat in Kanto area through crop growth simulation. , , . (View/edit entry) | 2016 |
Model application | 0 |
Wang, Ya-xu; Sun, Hong-quan; Lv, Juan; Su, Zhi-cheng; 2016. Research on the deficit irrigation scheduling to winter wheat at critical period based on crop modeling method. . Volume . (View/edit entry) | 2016 |
Model application | 0 |
Xuan, Yang; Zikui, Wang; Quan, Cao; Xiaoming, Zhang; Yuying, Shen; 2016. 陇东地区几种旱作作物产量对降水与气温变化的响应. 农业工程学报, 32, 106–114. (View/edit entry) | 2016 |
Model application | 0 |
Lucci, G.M.; Shepherd, M.; Vogeler, I.; 2013. An assessment of the implications of timing and soil nitrogen dynamics during and after summer drought on Waikato Allophanic soils. Proceedings of the New Zealand Grassland Association, , 191–196. 10.33584/jnzg.2013.75.2901 (View/edit entry) | 2013 |
Model application | 2 |
Zhao, Z.; Wang, E.; Xue, L.; Wu, Y.; Zhang, J.; Wang, Z.; 2013. Accuracy of root modeling and its potential impact on simulation of grain yield of wheat. 20th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2013 |
Model application | 0 |
Chen, C.; McNee, M.; Lawes, R.; Fletcher, A.; 2015. Model-based explorations to assess climate risk to summer crop production and its effects on wheat yield in the central wheatbelt of Western Australia. 21st International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2015 |
Model application | 0 |
Teixeira, E.I.; Jognstone, P.; Chakwizira, E.; de Ruiter, J.; Malcolm, B.; Shaw, N.; Zyskowski, R.; Khaembah, E.; Sharp, J.; Meenken, E.; Fraser, P.; Thomas, S.; Brown, H.; Curtin, D.; 2015. Quantifying key sources of variability in cover crop reduction of N leaching. 21st International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2015 |
Model application | 1 |
董莉霞; 李广; 刘强; 燕振刚; 罗珠珠; 2013. 旱地春小麦产量对逐日最低温度和最高温度变化响应的模拟与分析. 中国生态农业学报(中英文), 21, 1016–1022. 10.3724/SP.J.1011.2013.01016 (View/edit entry) | 2013 |
Model application | 1 |
Vogeler, I.; Cichota, R.; Snow, V.; Jolly, B.; 2011. Development and desktop-assessment of a concept to forecast and mitigate N leaching from dairy farms. 19th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2011 |
Model application | 3 |
Pylianidis, Christos; Snow, Val; Overweg, Hiske; Athanasiadis, Ioannis N.; 2021. Comparing machine learning metamodels of different scale for pasture nitrogen response rate prediction. . (View/edit entry) | 2021 |
Model application | 0 |
Cichota, R.; Snow, V.O.; 2011. Simplifying pastoral systems modelling – accounting for the effect of urine deposition on N leaching. 19th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2011 |
Model application | 1 |
Carberry, P. S.; Probert, M.E.; Dimes, J.P.; Keating, B.A.; McCown, R.L.; 2002. Role of modelling in improving nutrient efficiency in cropping systems. Plant and Soil, 245, 193–203. 10.1023/A:1020612416034 (View/edit entry) | 2002 |
Model application | 37 |
Khaembah, E.N.; Cichota, R.; Zyskowski, R.; Vogeler, I.; 2019. Dynamic simulation of crop rotations to evaluate the impact of different nitrogen management strategies on water quality in Southland, New Zealand. 23rd International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2019 |
Model application | 0 |
Nape, K.M.; Steyn, A.S.; Walker, S.; 2009. The Proposed Use of Seasonal Forecasts to Improve Maize Production in the Free State. . Volume . (View/edit entry) | 2009 |
Model application | 0 |
Muermann, Alex; 2008. Investors and Markets: Portfolio Choices, Asset Prices, and Investment Advice. William F. Sharpe. Princeton University Press, 2006, ISBN 0-691-12842-1, 240 pages.. Journal of Pension Economics and Finance, 7, 255–255. 10.1017/S1474747208003600 (View/edit entry) | 2008 |
Model application | 2 |
Schröder, Winfried; Müller, Felix; Fränzle, Otto; 2014. Handbuch der Umweltwissenschaften: Grundlagen und Anwendungen der Ökosystemforschung. In: (eds.).. . (View/edit entry) | 2014 |
Model application | 0 |
Chudleigh, Fred; Cox, Howard W.; Chapman, Veronica J.; Chudleigh, Fred; 2002. Modelling profitable and sustainable farming systems in Central Queensland. , , . 10.22004/AG.ECON.125070 (View/edit entry) | 2002 |
Model application | 2 |
H. Afshar, Mehdi; Foster, Timothy; Parkes, Ben; Hufkens, Koen; Ceballos, Francisco; Kramer, Berber; 2020. Improving performance of index insurance using crop models and phenological monitoring. . (View/edit entry) | 2020 |
Model application | 6 |
Sparks, Adam; 2018. nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R. Journal of Open Source Software, 3, 1035. 10.21105/joss.01035 (View/edit entry) | 2018 |
Model application | 56 |
Masvaya, Esther Nyaradzo; 2019. Risk and crop production intensification options for semi-arid southern Zimbabwe. , , . (View/edit entry) | 2019 |
Model application | 0 |
Shaw, M.; Silburn, D.M.; Ellis, R.; Searle, R.; Biggs, J.; Thorburn, P.; Whish, G.; 2013. Paddock scale modelling to assess effectiveness of agricultural management practice in improving water quality in the Great Barrier Reef Catchments. 20th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2013 |
Model application | 3 |
Chen, Keru; Camberato, James J.; Vyn, Tony J.; 2017. Maize Grain Yield and Kernel Component Relationships to Morphophysiological Traits in Commercial Hybrids Separated by Four Decades. Crop Science, 57, 1641–1657. 10.2135/cropsci2016.06.0540 (View/edit entry) | 2017 |
Model application | 22 |
Poole, N. F.; Arnaudin, M. E.; 2014. The role of fungicides for effective disease management in cereal crops. Canadian Journal of Plant Pathology, 36, 1–11. 10.1080/07060661.2013.870230 (View/edit entry) | 2014 |
Model application | 44 |
Vianna, Murilo dos Santos; 2018. Functional, structural and agrohydrological sugarcane crop modelling: towards a simulation platform for Brazilian farming systems. , , . (View/edit entry) | 2018 |
Model application | 1 |
Grubert, Daniel Alves da Veiga; 2018. Consorciação de cana-de-açúcar e canola: desempenho agronômico e bases para simulação. , , . (View/edit entry) | 2018 |
Model application | 1 |
Dietzel, Ranae; 2014. A comparison of carbon storage potential in corn- and prairie-based agroecosystems. , , . (View/edit entry) | 2014 |
Model application | 10 |
Aller, Deborah Marie; 2017. Scaling understanding of biochar aging impacts on soil water and crop yields. , , . (View/edit entry) | 2017 |
Model application | 3 |
Reynolds, M. P.; Hodson, D.; White, J.; 2010. GIS and crop simulation modelling applications in climate change research.. In: (eds.)Climate change and crop production.. 245–262. (View/edit entry) | 2010 |
Model application | 23 |
Vogeler, I.; Giltrap, D.; Li, F.; Snow, V.; 2011. Comparison of models for predicting nitrification, denitrification and nitrous oxide emissions in pastoral systems. 19th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2011 |
Model application | 6 |
Pinto, Helena Maria Soares; 2015. Projeções de risco de produção de cana-de-açúcar no Estado de São Paulo baseadas em simulações multimodelos e cenários climáticos futuros. , , . (View/edit entry) | 2015 |
Model application | 0 |
King, D.; Bryan, B.A.; Zhao, G.; Luo, Z.; Wang, E.; 2013. High-resolution continental scale modelling of Australian wheat yield; biophysical and management drivers. 20th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2013 |
Model application | 0 |
Hathie, Ibrahima; MacCarthy, Dilys; Freduah, Bright; Ly, Mouhamed; Ly, Ahmadou; Porter, Cheryl; Valdivia, Roberto; Ruane, Alexander; Antle, John; Mutter, Carolyn; Hoogenboom, Gerrit; 2022. AgMIP Regional Integrated Assessment of Agricultural Systems in Nioro, Senegal: Representative Agricultural Pathways, Climate, Crop and Economic Data Sets. Open Data Journal for Agricultural Research, 7, . 10.18174/odjar.v7i0.17977 (View/edit entry) | 2022 |
Model application | 0 |
Lopes, Sara de Oliveira Romeiro; 2019. Planejamento e execução de adubações nitrogenadas em pastagens em sistemas de produção de gado de corte no Estado de São Paulo. , , . (View/edit entry) | 2019 |
Model application | 0 |
Chaki, Apurbo K.; Gaydon, Donald S.; Dalal, Ram C.; Bellotti, William D.; Gathala, Mahesh K.; Hossain, Akbar; Menzies, Neal W.; 2022. How we used APSIM to simulate conservation agriculture practices in the rice-wheat system of the Eastern Gangetic Plains. Field Crops Research, 275, 108344. 10.1016/j.fcr.2021.108344 (View/edit entry) | 2022 |
Model application | 3 |
Pardon, Lénaïc; 2017. Modelling of the nitrogen budget of oil palm plantations to help reduce losses to the environment. Case study in Sumatra, Indonesia. , , . 10.4225/28/5AB1EE1A9381D (View/edit entry) | 2017 |
Model application | 0 |
Balcão, Lucas Fillietaz; 2021. APSIM - Tropical Pasture parameterization for biomass production, light and water competition in a silvopastoral system with >i/i< cv. Piatã and >i/i. , , . (View/edit entry) | 2021 |
Model application | 0 |
Pinheiro, Antonio Gebson; Souza, Luciana Sandra Bastos de; Jardim, Alexandre Maniçoba da Rosa Ferraz; Araújo Júnior, George do Nascimento; Alves, Cleber Pereira; Souza, Carlos André Alves de; Silva, Gabriel Ítalo Novaes da; Silva, Thieres George Freire da; 2021. Importância dos modelos de simulação de culturas diante os impactos das alterações climáticas sobre a produção agrícola - Revisão. Revista Brasileira de Geografia Física, 14, 3648. 10.26848/rbgf.v14.6.p3648-3666 (View/edit entry) | 2021 |
Model application | 0 |
H. Afshar, Mehdi; Foster, Timothy; Parkes, Ben; Hufkens, Koen; Ceballos, Francisco; Kramer, Berber; 2020. Improving performance of index insurance using crop models and phenological monitoring. . (View/edit entry) | 2020 |
Model application | 6 |
Kheir, A.M.S.; Zoghdan, M.G.; Aiad, M.A.; Rashed, Sahar H.; 2018. OPTIMIZING WHEAT YIELD AND WATER PRODUCTIVITY USING AQUACROP AND APSIM-WHEAT MODELS IN NORTH NILE DELTA, EGYPT. Menoufia Journal of Soil Science, 3, 177–201. 10.21608/mjss.2018.123625 (View/edit entry) | 2018 |
Model application | 0 |
Phillips, Samuel; 2021. Evaluating drainage water recycling in Central Iowa: Long-term yield and financial implications. , , . (View/edit entry) | 2021 |
Model application | 0 |
Xing, H.; Liu, D.L.; Wang, E.; Smith, C.J.; Anwar, M.R.; Yu, Q.; 2013. Modelling the response of N2O emission factor to nitrogen application rates and inter-annual climate variability. 20th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2013 |
Model application | 0 |
Taylor, Anna; Andreucci, Mariana; Zydenbos, Sue; 2022. Size of the prize: the value of closing pasture yield gaps on heterogeneous soil types in a dairy farm in Canterbury, New Zealand. Journal of New Zealand Grasslands, , 189–199. 10.33584/jnzg.2021.83.3514 (View/edit entry) | 2022 |
Model application | 0 |
Ahmed, Zeeshan; Gui, Dongwei; Qi, Zhiming; Liu, Yi; Liu, Yunfei; Azmat, Muhammad; 2022. Agricultural system modeling: current achievements, innovations, and future roadmap. Arabian Journal of Geosciences, 15, 363. 10.1007/s12517-022-09654-7 (View/edit entry) | 2022 |
Model application | 0 |
Bai, Huizi; Xiao, Dengpan; Wang, Bin; Liu, De Li; Tang, Jianzhao; 2022. Simulation of Wheat Response to Future Climate Change Based on Coupled Model Inter-Comparison Project Phase 6 Multi-Model Ensemble Projections in the North China Plain. Frontiers in Plant Science, 13, 829580. 10.3389/fpls.2022.829580 (View/edit entry) | 2022 |
Model application | 0 |
Dias, Henrique Boriolo; 2020. Sugarcane variety trait modelling: evaluating and improving the APSIM-Sugar model for simulating crop performance under current and future climates across Brazil. , , . (View/edit entry) | 2020 |
Model application | 0 |
رحیمی مقدم, سجاد; کامبوزیا, جعفر; دیهیم فرد, رضا; 2018. ارزیابی ریسک ناشی از تنش گرما در ذرت دانهای استان خوزستان تحت شرایط تغییر اقلیم. تنشهای محیطی در علوم زراعی, , . 10.22077/escs.2017.801.1158 (View/edit entry) | 2018 |
Model application | 0 |
Vilas, M.P.; Bennett, F.R.; Verburg, K.; Adams, M.P.; 2021. Considering unknown uncertainty in imperfect models: nitrogen mineralization as a case study. 24th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2021 |
Model application | 1 |
Anwar, Muhuddin Rajin; Luckett, David J.; Chauhan, Yashvir S.; Ip, Ryan H. L.; Maphosa, Lancelot; Simpson, Marja; Warren, Annie; Raman, Rosy; Richards, Mark F.; Pengilley, Georgina; Hobson, Kristy; Graham, Neroli; 2022. Modelling the effects of cold temperature during the reproductive stage on the yield of chickpea (Cicer arietinum L.). International Journal of Biometeorology, 66, 111–125. 10.1007/s00484-021-02197-8 (View/edit entry) | 2022 |
Model application | 2 |
Bracho Mujica, Gennady; Hayman, Peter; Sadras, Victor; Ostendorf, Bertram; Ferreira C. R., Nicole; Abdulai, Issaka; Rötter, Reimund; 2021. Major weather-related risks to crop performance along the Australian wheat belt for recent past and longer-term historical weather records. . (View/edit entry) | 2021 |
Model application | 0 |
Xiao, Dengpan; Bai, Huizi; Liu, De Li; Tang, Jianzhao; Wang, Bin; Shen, Yanjun; Cao, Jiansheng; Feng, Puyu; 2022. Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date. Mitigation and Adaptation Strategies for Global Change, 27, 21. 10.1007/s11027-022-09995-4 (View/edit entry) | 2022 |
Model application | 1 |
F. M. Akinseye; A. H. Folorunsho; Ajeigbe; A. Hakeem; S. O. Agele; 2021. Impacts of rainfall and temperature on photoperiod insensitive sorghum cultivar : model evaluation and sensitivity analysis. Journal of Agrometeorology, 21, 262–269. 10.54386/jam.v21i3.248 (View/edit entry) | 2021 |
Model application | 0 |
Dumbrell, N.P.; Kragt, M.E.; Meier, E.A.; Biggs, J.S.; Thorburn, P.J.; 2015. Integrating biophysical and whole-farm economic modelling of agricultural climate change mitigation. 21st International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2015 |
Model application | 0 |
Kivi, Marissa; Blakely, Bethany; Masters, Michael; Bernacchi, Carl J.; Miguez, Fernando E.; Dokoohaki, Hamze; 2021. Development of a Data-Assimilation System to Forecast Agricultural Systems: A Case Study of Constraining Soil Water and Soil Nitrogen Dynamics in the Apsim Model. SSRN Electronic Journal, , . 10.2139/ssrn.3967423 (View/edit entry) | 2021 |
Model application | 1 |
De Silva, Salpadoru Hewawasam Nuwan Priyashantha; 高橋, 太郎; 岡田, 謙介; 2014. Parameterization of the APSIM crop growth model for Japanese wheat varieties across sowing times and N application rates: Step towards a decision support system for Japanese wheat farmers. , , . (View/edit entry) | 2014 |
Model application | 0 |
古丽娜扎尔·艾力null, 陶海宁; Gulnazar Ali, Hai-ning TAO; 2021. 基于APSIM模型的黄土旱塬区苜蓿——小麦轮作系统深层土壤水分及水分利用效率研究. 草业学报, 30, 22. 10.11686/cyxb2020271 (View/edit entry) | 2021 |
Model application | 0 |
Collins, Brian; Najeeb, Ullah; Luo, Qunying; Tan, Daniel K. Y.; 2021. Contribution of climate models and APSIM phenological parameters to uncertainties in spring wheat simulations: Application of SUFI‐2 algorithm in northeast Australia. Journal of Agronomy and Crop Science, , jac.12575. 10.1111/jac.12575 (View/edit entry) | 2021 |
Model application | 2 |
Bosi, Cristiam; Huth, Neil Ian; Sentelhas, Paulo Cesar; Pezzopane, José Ricardo Macedo; 2022. APSIM model performance in simulating Piatã palisade grass growth and soil water in different positions of a silvopastoral system with eucalyptus. Agricultural Systems, 195, 103302. 10.1016/j.agsy.2021.103302 (View/edit entry) | 2022 |
Model application | 1 |
Souza, Débora Pantojo de; 2021. Calibração de modelos produtivos e da dinâmica de água no solo da plataforma APSIM para capim-marandu, aveia preta e azevém. , , . (View/edit entry) | 2021 |
Model application | 0 |
Kivi, Marissa S.; Blakely, Bethany; Masters, Michael; Bernacchi, Carl J.; Miguez, Fernando E.; Dokoohaki, Hamze; 2022. Development of a data-assimilation system to forecast agricultural systems: A case study of constraining soil water and soil nitrogen dynamics in the APSIM model. Science of The Total Environment, 820, 153192. 10.1016/j.scitotenv.2022.153192 (View/edit entry) | 2022 |
Model application | 4 |
Swamila, Martha; Philip, Damas; Akyoo, Adam Meshack; Manda, Julius; Mwinuka, Lutengano; Smethurst, Philip J.; Sieber, Stefan; Kimaro, Anthony Anderson; 2021. Profitability of Gliricidia-Maize System in Selected Dryland Areas of Dodoma Region, Tanzania. Sustainability, 14, 53. 10.3390/su14010053 (View/edit entry) | 2021 |
Model application | 0 |
Zscheischler, Jakob; Vogel, Johannes; Rivoire, Pauline; Deidda, Cristina; Rahimi, Leila; Sauter, Christoph; Tschumi, Elisabeth; van der Wiel, Karin; Zhang, Tianyi; 2021. Identifying meteorological drivers of extreme impacts: an application to simulated crop yields. . (View/edit entry) | 2021 |
Model application | 19 |
Sauter, Christoph; Deidda, Cristina; Rahimi, Leila; Rivoire, Pauline; Tschumi, Elisabeth; Vogel, Johannes; van der Wiel, Karin; Zscheischler, Jakob; 2020. Identifying compound meteorological drivers of extreme wheat yield loss using Lasso regression. . (View/edit entry) | 2020 |
Model application | 0 |
Nóia Junior, Rogério de Souza; 2019. Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability. , , . (View/edit entry) | 2019 |
Model application | 0 |
Nelson, William; Hoffmann, Munir; May, Carlotta; Mashao, Frederick; Ayisi, Kingsley; Rötter, Reimund; 2021. Constraints and options to sustainably intensifying smallholder maize farming systems in southern Africa. . (View/edit entry) | 2021 |
Model application | 0 |
Nóia Junior, Rogério de Souza; 2019. Soybean and maize off-season sowing dates when cultivated in succession: impacts of climate variability on yield and profitability. , , . (View/edit entry) | 2019 |
Model application | 0 |
Jiménez Martínez, Marcos; Fürst, Christine; 2021. Simulating the Capacity of Rainfed Food Crop Species to Meet Social Demands in Sudanian Savanna Agro-Ecologies. Land, 10, 827. 10.3390/land10080827 (View/edit entry) | 2021 |
Model application | 1 |
Mullet, John; 2019. Genomics of Energy Sorghum's Water Use Efficiency/Drought Resilience. . (View/edit entry) | 2019 |
Model application | 0 |
دیهیم فرد, رضا; عینی نرگسه, حامد; فرشادی, شبنم; 2017. مدل سازی اثرات تغییر اقلیم بر نیاز آبیاری و کارایی مصرف آب در گندمزارهای استان خوزستان. آب و خاک, 31, . 10.22067/jsw.v31i4.58046 (View/edit entry) | 2017 |
Model application | 0 |
Ndoli, Alain; 2018. Farming with trees: a balancing act in the shade. , , . (View/edit entry) | 2018 |
Model application | 2 |
Darai, Rajendra; Babu Thapa Magar, Dinesh; Subash, Natraj; Baigorria, Guillermo; 2019. Crop Model Simulation Slants for Predicting and Managing the Climate Risks in Poor Rainfed Rice-Wheat Eco-System of Mid-Western Nepal: Application of APSIM, DSSAT Model and Trade off Economic Analysis. Acta Scientific Agriculture, 3, 196–210. 10.31080/ASAG.2019.03.0633 (View/edit entry) | 2019 |
Model application | 0 |
زینلی مبارکه, زهرا; دیهیم فرد, رضا; کامبوزیا, جعفر; 2019. ارزیابی اثرات تغییر اقلیم و راهکارهای سازگاری به آن بر عملکرد و کارایی مصرف آب گندم آبی (Triticum aestivum): مطالعه موردی استان خراسان رضوی. مجله پژوهشهای تولید گیاهی, 26, . 10.22069/jopp.2019.15046.2347 (View/edit entry) | 2019 |
Model application | 0 |
Cichota, R.; Snow, V.O.; Kelliher, F.M.; 2013. Sensitivity analysis to investigate the factors controlling the effectiveness of a nitrification inhibitor in the soil. 20th International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2013 |
Model application | 0 |
Luo, Z.; Wang, E.; Smith, C.J.; 2015. Potential of increasing yield while mitigating climate change in Australian wheat systems: a simulation study. 21st International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2015 |
Model application | 0 |
Zhao, Z.; Verburg, K.; 2015. Modelling nitrogen uptake by sugarcane crops to inform synchrony of N supply from controlled release fertiliser. 21st International Congress on Modelling and Simulation. Volume . (View/edit entry) | 2015 |
Model application | 3 |
عزیزی, خسرو; رحیمی مقدم, سجاد; 2020. Simulating the risk of heat stress on grain maize production under arid and semi-arid conditions. Environmental Sciences, 18, 85–105. 10.29252/envs.18.3.85 (View/edit entry) | 2020 |
Model application | 0 |
Ramilan, T.; Farquharson, R.; George, B.; Sammonds, d.M.; Vietz, G.; Yen, J.; Shenton, W.; Dassanyake, K.; Cullen, B.; Stewardson, M.; Western, A.; 2011. An environmental economic assessment of water sharing alternatives for the Broken catchment in Northern Victoria. 19th International Congress on Modelling and Simulation, , 1386-1392. 10.36334/modsim.2011.D3.ramilan (View/edit entry) | 2011 |
Model application | 0 |
Debas, Mezegebu; 2016. Crop intensification options and trade-offs with the water balance in the Central Rift Valley of Ethiopia. , , . (View/edit entry) | 2016 |
Model application | 0 |
Luo, Z.; Wang, E.; Shao, Q.; Baldock, J.A.; 2013. Uncertainty in modelled soil organic carbon changes under various cropping systems in Australian cropland. 20th International Congress on Modelling and Simulation, , 1673-1679. 10.36334/modsim.2013.H4.luo (View/edit entry) | 2013 |
Model application | 0 |
Ma, Qianhu; Zhang, Xuemei; Wu, Yuhuan; Yang, Huimin; Wang, Zikui; 2022. Optimizing Water and Nitrogen Strategies to Improve Forage Oat Yield and Quality on the Tibetan Plateau Using APSIM. Agronomy, 12, 933. 10.3390/agronomy12040933 (View/edit entry) | 2022 |
Model application | 1 |
Kirui, Benard Kipkoech; Makokha, Godfrey Ouma; Kuria, Bartholomew Thiong'o; 2022. Calibration and Parameterization of APSIM-Wheat using Earth Observation Data for wheat Simulation in Kenya. Journal of Agricultural Informatics, 13, None. 10.17700/jai.2022.13.1.629 (View/edit entry) | 2022 |
Model application | 0 |
Githui, Faith; Beverly, Craig; Aiad, Misbah; McCaskill, Malcolm; Liu, Ke; Harrison, Matthew Tom; 2022. Modelling Waterlogging Impacts on Crop Growth: A Review of Aeration Stress Definition in Crop Models and Sensitivity Analysis of APSIM. International Journal of Plant Biology, 13, 180–200. 10.3390/ijpb13030017 (View/edit entry) | 2022 |
Model application | 0 |
Ziliani, M. G.; Altaf, M. U.; Aragon, B.; Houborg, R.; Franz, T. E.; Lu, Y.; Sheffield, J.; Hoteit, I.; McCabe, M. F.; 2022. INTRA-FIELD CROP YIELD VARIABILITY BY ASSIMILATING CUBESAT LAI IN THE APSIM CROP MODEL. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, 1045–1052. 10.5194/isprs-archives-XLIII-B3-2022-1045-2022 (View/edit entry) | 2022 |
Model application | 0 |
Alderkamp, Lianne M.; Vogeler, Iris; Poyda, Arne; Manevski, Kiril; van Middelaar, Corina E.; Taube, Friedhelm; 2022. Yields and Nitrogen Dynamics in Ley-Arable Systems—Comparing Different Approaches in the APSIM Model. Agronomy, 12, 738. 10.3390/agronomy12030738 (View/edit entry) | 2022 |
Model application | 0 |
Zhu, Guangxin; Liu, Zhijuan; Qiao, Suliang; Zhang, Zhentao; Huang, Qiuwan; Su, Zhenge; Yang, Xiaoguang; 2022. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. European Journal of Agronomy, 136, 126511. 10.1016/j.eja.2022.126511 (View/edit entry) | 2022 |
Model application | 2 |
Della Nave, Facundo N.; Ojeda, Jonathan J.; Irisarri, J. Gonzalo N.; Pembleton, Keith; Oyarzabal, Mariano; Oesterheld, Martín; 2022. Calibrating APSIM for forage sorghum using remote sensing and field data under sub-optimal growth conditions. Agricultural Systems, 201, 103459. 10.1016/j.agsy.2022.103459 (View/edit entry) | 2022 |
Model application | 1 |
Zhang, Yuxi; Walker, Jeffrey P.; Pauwels, Valentijn R.N.; 2022. Assimilation of wheat and soil states for improved yield prediction: The APSIM-EnKF framework. Agricultural Systems, 201, 103456. 10.1016/j.agsy.2022.103456 (View/edit entry) | 2022 |
Model application | 0 |
Vogeler, Iris; Sharp, Joanna; Cichota, Rogerio; Lilburne, Linda; 2022. Sensitivity analysis of soil parameters in the Agricultural Production Systems sIMulator (APSIM). Soil Research, None, None. 10.1071/SR22110 (View/edit entry) | 2022 |
Model application | 0 |
Mamassi, Achraf; Marrou, Hélène; El Gharous, Mohamed; Wellens, Joost; Jabbour, Fatima-Ezzahra; Zeroual, Youssef; Hamma, Abdellah; Tychon, Bernard; 2022. Relevance of soil fertility spatial databases for parameterizing APSIM-wheat crop model in Moroccan rainfed areas. Agronomy for Sustainable Development, 42, 83. 10.1007/s13593-022-00813-4 (View/edit entry) | 2022 |
Model application | 0 |
Han, Xiangfei; Dong, Lina; Cao, Yujun; Lyu, Yanjie; Shao, Xiwen; Wang, Yongjun; Wang, Lichun; 2022. Adaptation to Climate Change Effects by Cultivar and Sowing Date Selection for Maize in the Northeast China Plain. Agronomy, 12, 984. 10.3390/agronomy12050984 (View/edit entry) | 2022 |
Model application | 3 |
Carcedo, Ana J. P.; Mayor, Laura; Demarco, Paula; Morris, Geoffrey P.; Lingenfelser, Jane; Messina, Carlos D.; Ciampitti, Ignacio A.; 2022. Environment Characterization in Sorghum (Sorghum bicolor L.) by Modeling Water-Deficit and Heat Patterns in the Great Plains Region, United States. Frontiers in Plant Science, 13, 768610. 10.3389/fpls.2022.768610 (View/edit entry) | 2022 |
Model application | 2 |
Yang, Rui; Dai, Panhong; Wang, Bin; Jin, Tao; Liu, Ke; Fahad, Shah; Harrison, Matthew Tom; Man, Jianguo; Shang, Jiandong; Meinke, Holger; Liu, Deli; Wang, Xiaoyan; Zhang, Yunbo; Zhou, Meixue; Tian, Yingbing; Yan, Haoliang; 2022. Over-Optimistic Projected Future Wheat Yield Potential in the North China Plain: The Role of Future Climate Extremes. Agronomy, 12, 145. 10.3390/agronomy12010145 (View/edit entry) | 2022 |
Model application | 1 |
Kamali, Bahareh; Lorite, Ignacio J.; Webber, Heidi A.; Rezaei, Ehsan Eyshi; Gabaldon-Leal, Clara; Nendel, Claas; Siebert, Stefan; Ramirez-Cuesta, Juan Miguel; Ewert, Frank; Ojeda, Jonathan J.; 2022. Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain. Scientific Reports, 12, 4049. 10.1038/s41598-022-08056-9 (View/edit entry) | 2022 |
Model application | 1 |
Xiao, Dengpan; Bai, Huizi; Liu, De Li; Tang, Jianzhao; Wang, Bin; Shen, Yanjun; Cao, Jiansheng; Feng, Puyu; 2022. Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date. Mitigation and Adaptation Strategies for Global Change, 27, 21. 10.1007/s11027-022-09995-4 (View/edit entry) | 2022 |
Model application | 1 |
Yasin, Mubashra; Ahmad, Ashfaq; Khaliq, Tasneem; Habib-ur-Rahman, Muhammad; Niaz, Salma; Gaiser, Thomas; Ghafoor, Iqra; Hassan, Hafiz Suboor ul; Qasim, Muhammad; Hoogenboom, Gerrit; 2022. Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models. Environmental Science and Pollution Research, 29, 18967–18988. 10.1007/s11356-021-17050-z (View/edit entry) | 2022 |
Model application | 3 |
Vogeler, Iris; Thomsen, Ingrid Kaag; Taube, Friedhelm; Poulsen, Henrik Vestergaard; Loges, Ralf; Hansen, Elly Møller; 2022. Effect of winter cereal sowing time on yield and nitrogen leaching based on experiments and modelling. Soil Use and Management, 38, 663–675. 10.1111/sum.12747 (View/edit entry) | 2022 |
Model application | 1 |
Xiao, Dengpan; Bai, Huizi; Tang, Jianzhao; Liu, De Li; Yang, Yanmin; 2022. The role of cropping system adjustment in balancing grain yield and groundwater use across a rainfall gradient in the North China Plain under future climate scenarios *. Irrigation and Drainage, 71, 495–509. 10.1002/ird.2653 (View/edit entry) | 2022 |
Model application | 1 |
Sajid, Saiara Samira; Huber, Isaiah; Archontoulis, Sotirios; Hu, Guiping; 2022. Integrating Crop Simulation and Machine Learning Models to Improve Crop Yield Prediction. None. Volume None. (View/edit entry) | 2022 |
Model application | 0 |
Gonçalves, Ivo Z.; Costa, Leandro G. da; Marin, Fábio R.; 2022. Simulating sugarcane yield response to ETc replacements and green cane trash blanket maintenance in Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, 26, 586–593. 10.1590/1807-1929/agriambi.v26n8p586-593 (View/edit entry) | 2022 |
Model application | 0 |
Smith, Andrew P.; Zurcher, Eric; Llewellyn, Rick S.; Norman, Hayley C.; 2022. Designing Integrated Systems for the Low Rainfall Zone Based on Grazed Forage Shrubs with a Managed Interrow. Agronomy, 12, 2348. 10.3390/agronomy12102348 (View/edit entry) | 2022 |
Model application | 0 |
Bartel, C. A.; Archontoulis, S. V.; Lenssen, A. W.; Moore, K. J.; Huber, I. L.; Laird, D. A.; Dixon, P. M.; 2020. Modeling perennial groundcover effects on annual maize grain crop growth with the Agricultural Production Systems sIMulator. Agronomy Journal, 112, 1895–1910. 10.1002/agj2.20108 (View/edit entry) | 2020 |
Model application | 8 |
Hosang, Evert Y.; Wish, Jeremy P W; 2020. Growth and development models for West Timor maize landraces. IOP Conference Series: Earth and Environmental Science, 484, 012124. 10.1088/1755-1315/484/1/012124 (View/edit entry) | 2020 |
Model application | 0 |
Cavalli, Daniele; Bellocchi, Gianni; Corti, Martina; Marino Gallina, Pietro; Bechini, Luca; 2019. Sensitivity analysis of C and N modules in biogeochemical crop and grassland models following manure addition to soil. European Journal of Soil Science, None, ejss.12793. 10.1111/ejss.12793 (View/edit entry) | 2019 |
Model application | 4 |
Liu, De Li; Wang, Bin; Evans, Jason; Ji, Fei; Waters, Cathy; Macadam, Ian; Yang, Xihua; Beyer, Kathleen; 2019. Propagation of climate model biases to biophysical modelling can complicate assessments of climate change impact in agricultural systems. International Journal of Climatology, 39, 424–444. 10.1002/joc.5820 (View/edit entry) | 2019 |
Model application | 12 |
Dias, Henrique Boriolo; Sentelhas, Paulo Cesar; 2018. Drying-Off Periods for Irrigated Sugarcane to Maximize Sucrose Yields Under Brazilian Conditions: DRYING-OFF PERIODS FOR IRRIGATED SUGARCANE. Irrigation and Drainage, 67, 527–537. 10.1002/ird.2263 (View/edit entry) | 2018 |
Model application | 7 |
Ahuja, L.R.; Reddy, V.R.; Saseendran, S.A.; Yu, Qiang; Saseendran, S. A.; Ahuja, L. R.; Ma, L.; Timlin, D.; Stöckle, C. O.; Boote, K. J.; Hoogenboom, G.; 2015. Current Water Deficit Stress Simulations in Selected Agricultural System Models. In: (eds.)Advances in Agricultural Systems Modeling.. 1–38. (View/edit entry) | 2015 |
Model application | 28 |
Chapman, Scott; Cooper, Mark; Podlich, Dean; Hammer, Graeme; 2003. Evaluating Plant Breeding Strategies by Simulating Gene Action and Dryland Environment Effects. Agronomy Journal, 95, 99–113. 10.2134/agronj2003.9900 (View/edit entry) | 2003 |
Model application | 210 |
None, None; None, None; None, None; None, None; None, None; None, None; None, None; None, None; None, None; None, None; 2017. Assessment of maize (Zea mays L.) productivity and yield gap analysis using simulation modelling in subtropical climate of central India. Journal of Agrometeorology, 19, 342–345. 10.54386/jam.v19i4.603 (View/edit entry) | 2017 |
Model application | 4 |
None, None; 2015. Elevated temperature and carbon dioxide concentration effects on wheat productivity in Madhya Pradesh: a simulation study. Journal of Agrometeorology, 17, 185–189. 10.54386/jam.v17i2.1001 (View/edit entry) | 2015 |
Model application | 8 |
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine; Wu, Rongling; 2016. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis. PLOS ONE, 11, e0146385. 10.1371/journal.pone.0146385 (View/edit entry) | 2016 |
Model application | 43 |
Schnell, R.; Yin, J.; Voss, C.; Nicke, E.; 2010. Assessment and Optimization of the Aerodynamic and Acoustic Characteristics of a Counter Rotating Open Rotor. None. Volume None. (View/edit entry) | 2010 |
Model application | 37 |
Li, Zhou; Menefee, Dorothy; Yang, Xuan; Cui, Song; Rajan, Nithya; 2022. Simulating productivity of dryland cotton using APSIM, climate scenario analysis, and remote sensing. Agricultural and Forest Meteorology, 325, 109148. 10.1016/j.agrformet.2022.109148 (View/edit entry) | 2022 |
Model application | 0 |
Vogeler, Iris; Sharp, Joanna; Cichota, Rogerio; Lilburne, Linda; 2022. Sensitivity analysis of soil parameters in the Agricultural Production Systems sIMulator (APSIM). Soil Research, None, None. 10.1071/SR22110 (View/edit entry) | 2022 |
Model application | 0 |
Kaini, Santosh; Harrison, Matthew Tom; Gardner, Ted; Nepal, Santosh; Sharma, Ashok K.; 2022. The Impacts of Climate Change on the Irrigation Water Demand, Grain Yield, and Biomass Yield of Wheat Crop in Nepal. Water, 14, 2728. 10.3390/w14172728 (View/edit entry) | 2022 |
Model application | 0 |
Akhavizadegan, Faezeh; Ansarifar, Javad; Wang, Lizhi; Archontoulis, Sotirios V.; 2022. Risk-averse Stochastic Optimization for Farm Management Practices and Cultivar Selection Under Uncertainty. None, None, None. 10.48550/ARXIV.2208.04840 (View/edit entry) | 2022 |
Model application | 0 |
Rahimi Jahangirlou, Maryam; Soufizadeh, Saeid; Akbari, Gholam Abbas; Alahdadi, Iraj; Parsons, David; Morel, Julien; 2022. Combined Use of Apsim and Logistic Regression Models to Predict the Quality Characteristics of Maize Grain. SSRN Electronic Journal, None, None. 10.2139/ssrn.4060871 (View/edit entry) | 2022 |
Model application | 0 |
فرشادی, شبنم; دیهیم فرد, رضا; نوری, امید; کامبوزیا, جعفر; 2017. تأثیر افزایش دما و غلظت CO2 ناشی از تغییر اقلیم بر عملکرد گندم در استان خوزستان: یک بررسی همانندسازی. علوم گیاهان زراعی ایران, 48, None. 10.22059/ijfcs.2017.135121.653971 (View/edit entry) | 2017 |
Model application | 0 |
Smith, Andrew P.; Zurcher, Eric; Llewellyn, Rick S.; Norman, Hayley C.; 2022. Designing Integrated Systems for the Low Rainfall Zone Based on Grazed Forage Shrubs with a Managed Interrow. Agronomy, 12, 2348. 10.3390/agronomy12102348 (View/edit entry) | 2022 |
Model application | 0 |
Mohanty, M.; Sinha, N.K.; Mcdermid, S.P.; Chaudhary, R.S.; Reddy, K.S.; Hati, K.M.; Somasundaram, J.; Lenka, S.; Patidar, R.K.; Prabhakar, M.; Cherukumalli, S.R.; Patra, A.K.; 2017. Climate change impacts vis-a-vis productivity of soybean in vertisol of Madhya Pradesh. Journal of Agrometeorology, 19, 10–16. 10.54386/jam.v19i1.749 (View/edit entry) | 2017 |
Model application | 0 |
Zhao, H.D.; Sassenrath, G.F.; Zambreski, Z.T.; Shi, L.; Lollato, R.; De Wolf, E.; Lin, X.; 2021. Predicting Winter Wheat Heading Date: A Simple Model and Its Validation in Kansas. Journal of Applied Meteorology and Climatology, 60, 1685–1696. 10.1175/JAMC-D-21-0040.1 (View/edit entry) | 2021 |
Model application | 0 |
Mkomwa, Saidi; Kassam, Amir; Micheni, Alfred; Gicheru, Patrick; Kitonyo, Onesmus; 2022. Conservation agriculture for climate smart agriculture in smallholder farming systems in Kenya.. In: (eds.)Conservation agriculture in Africa: climate smart agricultural development.. 431–442. (View/edit entry) | 2022 |
Model application | 0 |
شریفی حداد, ندا; دیهیم فرد, رضا; رحیمی مقدم, سجاد; نوری, امید; 2022. شبیهسازی عملکرد دانه و کارایی مصرف آب ارقام غالب ذرت تحت شرایط محدودیت آب و تغییر اقلیم. بوم شناسی کشاورزی, 13, None. 10.22067/jag.v13i1.80923 (View/edit entry) | 2022 |
Model application | 0 |
Elli, Elvis F.; Ciampitti, Ignacio A.; Castellano, Michael J.; Purcell, Larry C.; Naeve, Seth; Grassini, Patricio; La Menza, Nicolas C.; Moro Rosso, Luiz; de Borja Reis, André F.; Kovács, Péter; Archontoulis, Sotirios V.; 2022. Climate Change and Management Impacts on Soybean N Fixation, Soil N Mineralization, N2O Emissions, and Seed Yield. Frontiers in Plant Science, 13, 849896. 10.3389/fpls.2022.849896 (View/edit entry) | 2022 |
Model application | 0 |
Zhao, Yanxi; Xiao, Dengpan; Bai, Huizi; Liu, De Li; Tang, Jianzhao; Qi, Yongqing; Shen, Yanjun; 2022. Climate Change Impact on Yield and Water Use of Rice–Wheat Rotation System in the Huang-Huai-Hai Plain, China. Biology, 11, 1265. 10.3390/biology11091265 (View/edit entry) | 2022 |
Model application | 0 |
Wimalasiri, Eranga M; Ampitiyawatta, A D; Dissanayake, P K; Karunaratne, A S; 2022. Impact of climate change adaptation on paddy yield in dry zone Sri Lanka: A case study using agricultural production systems simulator (APSIM) model. IOP Conference Series: Earth and Environmental Science, 1016, 012036. 10.1088/1755-1315/1016/1/012036 (View/edit entry) | 2022 |
Model application | 0 |
Ahmed, Zeeshan; Gui, Dongwei; Qi, Zhiming; Liu, Yi; Liu, Yunfei; Azmat, Muhammad; 2022. Agricultural system modeling: current achievements, innovations, and future roadmap. Arabian Journal of Geosciences, 15, 363. 10.1007/s12517-022-09654-7 (View/edit entry) | 2022 |
Model application | 0 |
Guo, Danlu; Wang, Quan J.; Ryu, Dongryeol; Yang, Qichun; Moller, Peter; Western, Andrew W.; 2022. An analysis framework to evaluate irrigation decisions using short-term ensemble weather forecasts. Irrigation Science, None, None. 10.1007/s00271-022-00807-w (View/edit entry) | 2022 |
Model application | 0 |
Yang, Xiumei; Brown, Hamish E.; Teixeira, Edmar I.; Moot, Derrick J.; 2022. Development of a lucerne model in APSIM next generation: 2 canopy expansion and light interception of genotypes with different fall dormancy ratings. European Journal of Agronomy, 139, 126570. 10.1016/j.eja.2022.126570 (View/edit entry) | 2022 |
Model application | 0 |
Zhao, Yanxi; Xiao, Dengpan; Bai, Huizi; Tang, Jianzhao; Liu, Deli; 2022. Future Projection for Climate Suitability of Summer Maize in the North China Plain. Agriculture, 12, 348. 10.3390/agriculture12030348 (View/edit entry) | 2022 |
Model application | 0 |
Deihimfard, Reza; Rahimi-Moghaddam, Sajjad; Azizi, Khosro; Haghighat, Masoud; 2022. Increased heat stress risk for maize in arid-based climates as affected by climate change: threats and solutions. International Journal of Biometeorology, 66, 1365–1378. 10.1007/s00484-022-02282-6 (View/edit entry) | 2022 |
Model application | 0 |
Pfeiffer, Mirjam; Hoffmann, Munir P.; Scheiter, Simon; Nelson, William; Isselstein, Johannes; Ayisi, Kingsley; Odhiambo, Jude J.; Rötter, Reimund; 2022. Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective. Biogeosciences, 19, 3935–3958. 10.5194/bg-19-3935-2022 (View/edit entry) | 2022 |
Model application | 0 |
Niu, Xiaoli; Feng, Puyu; Liu, De-Li; Wang, Bin; Waters, Cathy; Zhao, Na; Ma, Tiancheng; 2022. Deficit Irrigation at Pre-Anthesis Can Balance Wheat Yield and Water Use Efficiency under Future Climate Change in North China Plain. Biology, 11, 692. 10.3390/biology11050692 (View/edit entry) | 2022 |
Model application | 0 |
Joseph, J.E.; Akinseye, F.M.; Worou, O.N.; Faye, A.; Konte, O.; Whitbread; Rötter, R.P.; 2023. Assessment of the relations between crop yield variability and the onset and intensity of the West African Monsoon. A |