ApsimX-Publications

From CSDMS
References ApsimX

Publication(s)YearTypeCited
Keating, B.A; Carberry, P.S; Hammer, G.L; Probert, M.E; Robertson, M.J; Holzworth, D; Huth, N.I; Hargreaves, J.N.G; Meinke, H; Hochman, Z; McLean, G; Verburg, K; Snow, V; Dimes, J.P; Silburn, M; Wang, E; Brown, S; Bristow, K.L; Asseng, S; Chapman, S; McCown, R.L; Freebairn, D.M; Smith, C.J; 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267–288. 10.1016/S1161-0301(02)00108-9
(View/edit entry)
2003Model overview 1919
McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; Freebairn, D.M.; 1996. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 50, 255–271. 10.1016/0308-521X(94)00055-V
(View/edit entry)
1996Model overview 732
Asseng, S; Keating, B.A; Fillery, I.R.P; Gregory, P.J; Bowden, J.W; Turner, N.C; Palta, J.A; Abrecht, D.G; 1998. Performance of the APSIM-wheat model in Western Australia. Field Crops Research, 57, 163–179. 10.1016/S0378-4290(97)00117-2
(View/edit entry)
1998Model application 242
Wang, E.; Robertson, M.J.; Hammer, G.L.; Carberry, P.S.; Holzworth, D.; Meinke, H.; Chapman, S.C.; Hargreaves, J.N.G.; Huth, N.I.; McLean, G.; 2002. Development of a generic crop model template in the cropping system model APSIM. European Journal of Agronomy, 18, 121–140. 10.1016/S1161-0301(02)00100-4
(View/edit entry)
2002Model overview 222
Robertson, M. J.; Carberry, P. S.; Huth, N. I.; Turpin, J. E.; Probert, M. E.; Poulton, P. L.; Bell, M.; Wright, G. C.; Yeates, S. J.; Brinsmead, R. B.; 2002. Simulation of growth and development of diverse legume species in APSIM. Australian Journal of Agricultural Research, 53, 429. 10.1071/AR01106
(View/edit entry)
2002Model application 241
Holzworth, Dean P.; Huth, Neil I.; deVoil, Peter G.; Zurcher, Eric J.; Herrmann, Neville I.; McLean, Greg; Chenu, Karine; van Oosterom, Erik J.; Snow, Val; Murphy, Chris; Moore, Andrew D.; Brown, Hamish; Whish, Jeremy P.M.; Verrall, Shaun; Fainges, Justin; Bell, Lindsay W.; Peake, Allan S.; Poulton, Perry L.; Hochman, Zvi; Thorburn, Peter J.; Gaydon, Donald S.; Dalgliesh, Neal P.; Rodriguez, Daniel; Cox, Howard; Chapman, Scott; Doherty, Alastair; Teixeira, Edmar; Sharp, Joanna; Cichota, Rogerio; Vogeler, Iris; Li, Frank Y.; Wang, Enli; Hammer, Graeme L.; Robertson, Michael J.; Dimes, John P.; Whitbread, Anthony M.; Hunt, James; van Rees, Harm; McClelland, Tim; Carberry, Peter S.; Hargreaves, John N.G.; MacLeod, Neil; McDonald, Cam; Harsdorf, Justin; Wedgwood, Sara; Keating, Brian A.; 2014. APSIM – Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327–350. 10.1016/j.envsoft.2014.07.009
(View/edit entry)
2014Model overview 787
Asseng, S.; Anderson, G. C.; Dunin, F. X.; Fillery, I. R. P.; Dolling, P. J.; Keating, B. A.; 1998. Use of the APSIM wheat model to predict yield, drainage, and NO3- leaching for a deep sand. Australian Journal of Agricultural Research, 49, 363. 10.1071/A97095
(View/edit entry)
1998Model application 126
Asseng, S; van Keulen, H; Stol, W; 2000. Performance and application of the APSIM Nwheat model in the Netherlands. European Journal of Agronomy, 12, 37–54. 10.1016/S1161-0301(99)00044-1
(View/edit entry)
2000Model application 127
Thorburn, Peter J.; Probert, Mervyn E.; Robertson, Fiona A.; 2001. Modelling decomposition of sugar cane surface residues with APSIM–Residue. Field Crops Research, 70, 223–232. 10.1016/S0378-4290(01)00141-1
(View/edit entry)
2001Model application 125
Hammer, Graeme L.; van Oosterom, Erik; McLean, Greg; Chapman, Scott C.; Broad, Ian; Harland, Peter; Muchow, Russell C.; 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61, 2185–2202. 10.1093/jxb/erq095
(View/edit entry)
2010Model application 229
Thorburn, P.J.; Biggs, J.S.; Collins, K.; Probert, M.E.; 2010. Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agriculture, Ecosystems & Environment, 136, 343–350. 10.1016/j.agee.2009.12.014
(View/edit entry)
2010Model application 108
Asseng, S; Bar-Tal, A; Bowden, J.W; Keating, B.A; Van Herwaarden, A; Palta, J.A; Huth, N.I; Probert, M.E; 2002. Simulation of grain protein content with APSIM-Nwheat. European Journal of Agronomy, 16, 25–42. 10.1016/S1161-0301(01)00116-2
(View/edit entry)
2002Model application 87
Farré, I.; Robertson, M. J.; Walton, G. H.; Asseng, S.; 2002. Simulating phenology and yield response of canola to sowing date in Western Australia using the APSIM model. Australian Journal of Agricultural Research, 53, 1155. 10.1071/AR02031
(View/edit entry)
2002Model application 71
Stewart, L.K.; Charlesworth, P.B.; Bristow, K.L.; Thorburn, P.J.; 2006. Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM. Agricultural Water Management, 81, 315–334. 10.1016/j.agwat.2005.05.002
(View/edit entry)
2006Model application 62
McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.; Huth, N.I.; 1995. APSIM: an agricultural production system simulation model for operational research. Mathematics and Computers in Simulation, 39, 225–231. 10.1016/0378-4754(95)00063-2
(View/edit entry)
1995Model overview 53
Carberry, P. S.; Hochman, Z.; Hunt, J. R.; Dalgliesh, N. P.; McCown, R. L.; Whish, J. P. M.; Robertson, M. J.; Foale, M. A.; Poulton, P. L.; van Rees, H.; 2009. Re-inventing model-based decision support with Australian dryland farmers. 3. Relevance of APSIM to commercial crops. Crop and Pasture Science, 60, 1044. 10.1071/CP09052
(View/edit entry)
2009Model application 83
Probert, M. E.; Carberry, P. S.; McCown, R. L.; Turpin, J. E.; 1998. Simulation of legume-cereal systems using APSIM. Australian Journal of Agricultural Research, 49, 317. 10.1071/A97070
(View/edit entry)
1998Model application 56
Huth, N.I.; Carberry, P.S.; Poulton, P.L.; Brennan, L.E.; Keating, B.A.; 2002. A framework for simulating agroforestry options for the low rainfall areas of Australia using APSIM. European Journal of Agronomy, 18, 171–185. 10.1016/S1161-0301(02)00103-X
(View/edit entry)
2002Model application 49
Akponikpè, P.B. Irénikatché; Gérard, Bruno; Michels, Karlheinz; Bielders, Charles; 2010. Use of the APSIM model in long term simulation to support decision making regarding nitrogen management for pearl millet in the Sahel. European Journal of Agronomy, 32, 144–154. 10.1016/j.eja.2009.09.005
(View/edit entry)
2010Model application 48
Zhao, Gang; Bryan, Brett A.; Song, Xiaodong; 2014. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecological Modelling, 279, 1–11. 10.1016/j.ecolmodel.2014.02.003
(View/edit entry)
2014Model application 83
Wang, Enli; Smith, Chris J.; Bond, Warren J.; Verburg, Kirsten; 2004. Estimations of vapour pressure deficit and crop water demand in APSIM and their implications for prediction of crop yield, water use, and deep drainage. Australian Journal of Agricultural Research, 55, 1227. 10.1071/AR03216
(View/edit entry)
2004Model application 43
Malone, R.W.; Huth, N.; Carberry, P.S.; Ma, L.; Kaspar, T.C.; Karlen, D.L.; Meade, T.; Kanwar, R.S.; Heilman, P.; 2007. Evaluating and predicting agricultural management effects under tile drainage using modified APSIM. Geoderma, 140, 310–322. 10.1016/j.geoderma.2007.04.014
(View/edit entry)
2007Model application 47
MacCarthy, Dilys S.; Sommer, Rolf; Vlek, Paul L.G.; 2009. Modeling the impacts of contrasting nutrient and residue management practices on grain yield of sorghum (Sorghum bicolor (L.) Moench) in a semi-arid region of Ghana using APSIM. Field Crops Research, 113, 105–115. 10.1016/j.fcr.2009.04.006
(View/edit entry)
2009Model application 42
Chikowo, R.; Corbeels, M.; Tittonell, P.; Vanlauwe, B.; Whitbread, A.; Giller, K.E.; 2008. Aggregating field-scale knowledge into farm-scale models of African smallholder systems: Summary functions to simulate crop production using APSIM. Agricultural Systems, 97, 151–166. 10.1016/j.agsy.2008.02.008
(View/edit entry)
2008Model application 32
Connolly, R. D.; Bell, M.; Huth, N.; Freebairn, D. M.; Thomas, G.; 2002. Simulating infiltration and the water balance in cropping systems with APSIM-SWIM. Soil Research, 40, 221. 10.1071/SR01007
(View/edit entry)
2002Model application 27
Archontoulis, Sotirios V.; Miguez, Fernando E.; Moore, Kenneth J.; 2014. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environmental Modelling & Software, 62, 465–477. 10.1016/j.envsoft.2014.04.009
(View/edit entry)
2014Model application 70
Delve, R. J.; Probert, M. E.; Cobo, J. G.; Ricaurte, J.; Rivera, M.; Barrios, E.; Rao, I. M.; 2009. Simulating phosphorus responses in annual crops using APSIM: model evaluation on contrasting soil types. Nutrient Cycling in Agroecosystems, 84, 293–306. 10.1007/s10705-008-9243-6
(View/edit entry)
2009Model application 29
Chauhan, Y.S.; Solomon, K.F.; Rodriguez, D.; 2013. Characterization of north-eastern Australian environments using APSIM for increasing rainfed maize production. Field Crops Research, 144, 245–255. 10.1016/j.fcr.2013.01.018
(View/edit entry)
2013Model application 41
Yunusa, I. A. M.; Bellotti, W. D.; Moore, A. D.; Probert, M. E.; Baldock, J. A.; Miyan, S. M.; 2004. An exploratory evaluation of APSIM to simulate growth and yield processes for winter cereals in rotation systems in South Australia. Australian Journal of Experimental Agriculture, 44, 787. 10.1071/EA03121
(View/edit entry)
2004Model application 31
Archontoulis, Sotirios V.; Miguez, Fernando E.; Moore, Kenneth J.; 2014. Evaluating APSIM Maize, Soil Water, Soil Nitrogen, Manure, and Soil Temperature Modules in the Midwestern United States. Agronomy Journal, 106, 1025. 10.2134/agronj2013.0421
(View/edit entry)
2014Model application 81
Gaydon, D.S.; Humphreys, E.; Eberbach, P.L.; 2011. The effects of mulch and irrigation management on wheat in Punjab, India—Evaluation of the APSIM model. Field Crops Research, 124, 1–13. 10.1016/j.fcr.2011.04.016
(View/edit entry)
2011Model application 48
Brown, Hamish E.; Huth, Neil I.; Holzworth, Dean P.; Teixeira, Edmar I.; Zyskowski, Rob F.; Hargreaves, John N.G.; Moot, Derrick J.; 2014. Plant Modelling Framework: Software for building and running crop models on the APSIM platform. Environmental Modelling & Software, 62, 385–398. 10.1016/j.envsoft.2014.09.005
(View/edit entry)
2014Model application 65
Grenz, J.H.; Manschadi, A.M.; deVoil, P.; Meinke, H.; Sauerborn, J.; 2006. Simulating crop–parasitic weed interactions using APSIM: Model evaluation and application. European Journal of Agronomy, 24, 257–267. 10.1016/j.eja.2005.10.002
(View/edit entry)
2006Model application 15
Zhang, Xike; Lee, Jae-Hong; Abawi, Yahya; Kim, Young-ho; McClymont, David; Kim, Hee-Dong; 2007. Testing the simulation capability of APSIM-ORYZA under different levels of nitrogen fertiliser and transplanting time regimes in Korea. Australian Journal of Experimental Agriculture, 47, 1446. 10.1071/EA05363
(View/edit entry)
2007Model application 19
Mohanty, M.; Probert, M.E.; Reddy, K. Sammi; Dalal, R.C.; Mishra, A.K.; Subba Rao, A.; Singh, M.; Menzies, N.W.; 2012. Simulating soybean–wheat cropping system: APSIM model parameterization and validation. Agriculture, Ecosystems & Environment, 152, 68–78. 10.1016/j.agee.2012.02.013
(View/edit entry)
2012Model application 43
Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent; 2018. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils. Computers & Geosciences, 113, 33–42. 10.1016/j.cageo.2018.01.014
(View/edit entry)
2018Model application 9
Lobell, David B.; Hammer, Graeme L.; McLean, Greg; Messina, Carlos; Roberts, Michael J.; Schlenker, Wolfram; 2013. The critical role of extreme heat for maize production in the United States. Nature Climate Change, 3, 497–501. 10.1038/nclimate1832
(View/edit entry)
2013Model application 496
Probert, M.E.; Dimes, J.P.; Keating, B.A.; Dalal, R.C.; Strong, W.M.; 1998. APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agricultural Systems, 56, 1–28. 10.1016/S0308-521X(97)00028-0
(View/edit entry)
1998Model application 457
Manschadi, Ahmad M.; Christopher, John; deVoil, Peter; Hammer, Graeme L.; 2006. The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 33, 823. 10.1071/FP06055
(View/edit entry)
2006Model application 439
Wong, M. T. F.; Asseng, S.; 2007. Yield and environmental benefits of ameliorating subsoil constraints under variable rainfall in a Mediterranean environment. Plant and Soil, 297, 29–42. 10.1007/s11104-007-9316-3
(View/edit entry)
2007Model application 39
Chenu, K.; Cooper, M.; Hammer, G. L.; Mathews, K. L.; Dreccer, M. F.; Chapman, S. C.; 2011. Environment characterization as an aid to wheat improvement: interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia. Journal of Experimental Botany, 62, 1743–1755. 10.1093/jxb/erq459
(View/edit entry)
2011Model application 197
Keating, B.A; Robertson, M.J; Muchow, R.C; Huth, N.I; 1999. Modelling sugarcane production systems I. Development and performance of the sugarcane module. Field Crops Research, 61, 253–271. 10.1016/S0378-4290(98)00167-1
(View/edit entry)
1999Model application 269
O'Leary, Garry J.; Christy, Brendan; Nuttall, James; Huth, Neil; Cammarano, Davide; Stöckle, Claudio; Basso, Bruno; Shcherbak, Iurii; Fitzgerald, Glenn; Luo, Qunying; Farre-Codina, Immaculada; Palta, Jairo; Asseng, Senthold; 2015. Response of wheat growth, grain yield and water use to elevated CO 2 under a Free-Air CO 2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Global Change Biology, 21, 2670–2686. 10.1111/gcb.12830
(View/edit entry)
2015Model application 131
Liu, Zhijuan; Yang, Xiaoguang; Hubbard, Kenneth G.; Lin, Xiaomao; 2012. Maize potential yields and yield gaps in the changing climate of northeast China. Global Change Biology, 18, 3441–3454. 10.1111/j.1365-2486.2012.02774.x
(View/edit entry)
2012Model application 163
Chen, Chao; Wang, Enli; Yu, Qiang; 2010. Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agricultural Water Management, 97, 1175–1184. 10.1016/j.agwat.2008.11.012
(View/edit entry)
2010Model application 158
Lobell, David B.; Hammer, Graeme L.; Chenu, Karine; Zheng, Bangyou; McLean, Greg; Chapman, Scott C.; 2015. The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 21, 4115–4127. 10.1111/gcb.13022
(View/edit entry)
2015Model application 149
Stuermer, Arne; Yin, Jianping; 2009. Low-Speed Aerodynamics and Aeroacoustics of CROR Propulsion Systems. . Volume .
(View/edit entry)
2009Model application 67
Asseng, S; Jamieson, P.D; Kimball, B; Pinter, P; Sayre, K; Bowden, J.W; Howden, S.M; 2004. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research, 85, 85–102. 10.1016/S0378-4290(03)00154-0
(View/edit entry)
2004Model application 236
Carberry, P.S.; Hochman, Z.; McCown, R.L.; Dalgliesh, N.P.; Foale, M.A.; Poulton, P.L.; Hargreaves, J.N.G.; Hargreaves, D.M.G.; Cawthray, S.; Hillcoat, N.; Robertson, M.J.; 2002. The FARMSCAPE approach to decision support: farmers', advisers', researchers' monitoring, simulation, communication and performance evaluation. Agricultural Systems, 74, 141–177. 10.1016/S0308-521X(02)00025-2
(View/edit entry)
2002Model application 227
Zheng, Bangyou; Chapman, Scott; Christopher, Jack; Frederiks, Troy; Chenu, Karine; 2015. Frost Trends and their Estimated Impact on Yield in the Australian Wheatbelt. Procedia Environmental Sciences, 29, 171–172. 10.1016/j.proenv.2015.07.244
(View/edit entry)
2015Model application 26
Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian; 2014. The parallel system for integrating impact models and sectors (pSIMS). Environmental Modelling & Software, 62, 509–516. 10.1016/j.envsoft.2014.04.008
(View/edit entry)
2014Model application 82
Gaydon, D.S.; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.; Chen, C.; Choudhury, B.U.; Darai, R.; Das, A.; Hochman, Z.; Horan, H.; Hosang, E.Y.; Kumar, P. Vijaya; Khan, A.S.M.M.R.; Laing, A.M.; Liu, L.; Malaviachichi, M.A.P.W.K.; Mohapatra, K.P.; Muttaleb, M.A.; Power, B.; Radanielson, A.M.; Rai, G.S.; Rashid, M.H.; Rathanayake, W.M.U.K.; Sarker, M.M.R.; Sena, D.R.; Shamim, M.; Subash, N.; Suriadi, A.; Suriyagoda, L.D.B.; Wang, G.; Wang, J.; Yadav, R.K.; Roth, C.H.; 2017. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 204, 52–75. 10.1016/j.fcr.2016.12.015
(View/edit entry)
2017Model application 107
Jin, Zhenong; Ainsworth, Elizabeth A.; Leakey, Andrew D. B.; Lobell, David B.; 2018. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Global Change Biology, 24, e522–e533. 10.1111/gcb.13946
(View/edit entry)
2018Model application 47
Ludwig, Fulco; Asseng, Senthold; 2006. Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural Systems, 90, 159–179. 10.1016/j.agsy.2005.12.002
(View/edit entry)
2006Model application 168
Yang, Xiaoguang; Chen, Fu; Lin, Xiaomao; Liu, Zhijuan; Zhang, Hailin; Zhao, Jin; Li, Kenan; Ye, Qing; Li, Yong; Lv, Shuo; Yang, Peng; Wu, Wenbin; Li, Zhengguo; Lal, Rattan; Tang, Huajun; 2015. Potential benefits of climate change for crop productivity in China. Agricultural and Forest Meteorology, 208, 76–84. 10.1016/j.agrformet.2015.04.024
(View/edit entry)
2015Model application 92
Liu, Zhijuan; Hubbard, Kenneth G.; Lin, Xiaomao; Yang, Xiaoguang; 2013. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology, , n/a–n/a. 10.1111/gcb.12324
(View/edit entry)
2013Model application 132
Inman-Bamber, N.G.; McGlinchey, M.G.; 2003. Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements. Field Crops Research, 83, 125–138. 10.1016/S0378-4290(03)00069-8
(View/edit entry)
2003Model application 122
O'Grady, Michael J.; O'Hare, Gregory M.P.; 2017. Modelling the smart farm. Information Processing in Agriculture, 4, 179–187. 10.1016/j.inpa.2017.05.001
(View/edit entry)
2017Model application 83
Anwar, Muhuddin Rajin; Liu, De Li; Farquharson, Robert; Macadam, Ian; Abadi, Amir; Finlayson, John; Wang, Bin; Ramilan, Thiagarajah; 2015. Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agricultural Systems, 132, 133–144. 10.1016/j.agsy.2014.09.010
(View/edit entry)
2015Model application 110
Zheng, Bangyou; Biddulph, Ben; Li, Dora; Kuchel, Haydn; Chapman, Scott; 2013. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. Journal of Experimental Botany, 64, 3747–3761. 10.1093/jxb/ert209
(View/edit entry)
2013Model application 93
Brilli, Lorenzo; Bechini, Luca; Bindi, Marco; Carozzi, Marco; Cavalli, Daniele; Conant, Richard; Dorich, Cristopher D.; Doro, Luca; Ehrhardt, Fiona; Farina, Roberta; Ferrise, Roberto; Fitton, Nuala; Francaviglia, Rosa; Grace, Peter; Iocola, Ileana; Klumpp, Katja; Léonard, Joël; Martin, Raphaël; Massad, Raia Silvia; Recous, Sylvie; Seddaiu, Giovanna; Sharp, Joanna; Smith, Pete; Smith, Ward N.; Soussana, Jean-Francois; Bellocchi, Gianni; 2017. Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Science of The Total Environment, 598, 445–470. 10.1016/j.scitotenv.2017.03.208
(View/edit entry)
2017Model application 93
Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R.; 2017. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Research, 209, 108–119. 10.1016/j.fcr.2017.04.012
(View/edit entry)
2017Model application 82
Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R.; 2017. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. .
(View/edit entry)
2017Model application 0
Zhao, Gang; Bryan, Brett A.; King, Darran; Luo, Zhongkui; Wang, Enli; Bende-Michl, Ulrike; Song, Xiaodong; Yu, Qiang; 2013. Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing. Environmental Modelling & Software, 41, 231–238. 10.1016/j.envsoft.2012.08.007
(View/edit entry)
2013Model application 58
Chapman, Scott; Cooper, Mark; Podlich, Dean; Hammer, Graeme; 2003. Evaluating Plant Breeding Strategies by Simulating Gene Action and Dryland Environment Effects. Agronomy Journal, 95, 99–113. 10.2134/agronj2003.9900
(View/edit entry)
2003Model application 182
Sultan, B; Guan, K; Kouressy, M; Biasutti, M; Piani, C; Hammer, G L; McLean, G; Lobell, D B; 2014. Robust features of future climate change impacts on sorghum yields in West Africa. Environmental Research Letters, 9, 104006. 10.1088/1748-9326/9/10/104006
(View/edit entry)
2014Model application 66
Jin, Zhenong; Prasad, Rishi; Shriver, John; Zhuang, Qianlai; 2017. Crop model- and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US Corn system. Precision Agriculture, 18, 779–800. 10.1007/s11119-016-9488-z
(View/edit entry)
2017Model application 33
Hunt, J. R.; Kirkegaard, J. A.; 2011. Re-evaluating the contribution of summer fallow rain to wheat yield in southern Australia. Crop and Pasture Science, 62, 915. 10.1071/CP11268
(View/edit entry)
2011Model application 71
Ncube, Bongani; Dimes, John P.; van Wijk, Mark T.; Twomlow, Steve J.; Giller, Ken E.; 2009. Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in south-western Zimbabwe: Unravelling the effects of water and nitrogen using a simulation model. Field Crops Research, 110, 173–184. 10.1016/j.fcr.2008.08.001
(View/edit entry)
2009Model application 42
Hochman, Z.; Holzworth, D.; Hunt, J. R.; 2009. Potential to improve on-farm wheat yield and WUE in Australia. Crop and Pasture Science, 60, 708. 10.1071/CP09064
(View/edit entry)
2009Model application 113
Araujo, Julio A.; Abiodun, Babatunde J.; Crespo, Olivier; 2016. Impacts of drought on grape yields in Western Cape, South Africa. Theoretical and Applied Climatology, 123, 117–130. 10.1007/s00704-014-1336-3
(View/edit entry)
2016Model application 40
Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.; 2017. Assessing climate adaptation options and uncertainties for cereal systems in West Africa. Agricultural and Forest Meteorology, 232, 291–305. 10.1016/j.agrformet.2016.07.021
(View/edit entry)
2017Model application 44
Keating, B.A; McCown, R.L; 2001. Advances in farming systems analysis and intervention. Agricultural Systems, 70, 555–579. 10.1016/S0308-521X(01)00059-2
(View/edit entry)
2001Model application 141
Fitton, Nuala; Bindi, Marco; Brilli, Lorenzo; Cichota, Rogerio; Dibari, Camila; Fuchs, Kathrin; Huguenin-Elie, Olivier; Klumpp, Katja; Lieffering, Mark; Lüscher, Andreas; Martin, Raphael; McAuliffe, Russel; Merbold, Lutz; Newton, Paul; Rees, Robert M.; Smith, Pete; Topp, Cairistiona F.E.; Snow, Valerie; 2019. Modelling biological N fixation and grass-legume dynamics with process-based biogeochemical models of varying complexity. European Journal of Agronomy, 106, 58–66. 10.1016/j.eja.2019.03.008
(View/edit entry)
2019Model application 6
Hammer, Graeme L.; McLean, Greg; Chapman, Scott; Zheng, Bangyou; Doherty, Al; Harrison, Matthew T.; van Oosterom, Erik; Jordan, David; 2014. Crop design for specific adaptation in variable dryland production environments. Crop and Pasture Science, 65, 614. 10.1071/CP14088
(View/edit entry)
2014Model application 87
van Ittersum, M.K.; Howden, S.M.; Asseng, S.; 2003. Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agriculture, Ecosystems & Environment, 97, 255–273. 10.1016/S0167-8809(03)00114-2
(View/edit entry)
2003Model application 133
Jin, Zhenong; Azzari, George; Lobell, David B.; 2017. Improving the accuracy of satellite-based high-resolution yield estimation: A test of multiple scalable approaches. Agricultural and Forest Meteorology, 247, 207–220. 10.1016/j.agrformet.2017.08.001
(View/edit entry)
2017Model application 57
Battisti, Rafael; Sentelhas, Paulo C.; Boote, Kenneth J.; 2017. Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crops Research, 200, 28–37. 10.1016/j.fcr.2016.10.004
(View/edit entry)
2017Model application 54
Basche, Andrea D.; Archontoulis, Sotirios V.; Kaspar, Thomas C.; Jaynes, Dan B.; Parkin, Timothy B.; Miguez, Fernando E.; 2016. Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States. Agriculture, Ecosystems & Environment, 218, 95–106. 10.1016/j.agee.2015.11.011
(View/edit entry)
2016Model application 98
Corbeels, Marc; Berre, David; Rusinamhodzi, Leonard; Lopez-Ridaura, Santiago; 2018. Can we use crop modelling for identifying climate change adaptation options?. Agricultural and Forest Meteorology, 256, 46–52. 10.1016/j.agrformet.2018.02.026
(View/edit entry)
2018Model application 32
Kahinda, Jean-marc Mwenge; Rockström, Johan; Taigbenu, Akpofure E.; Dimes, John; 2007. Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 32, 1068–1073. 10.1016/j.pce.2007.07.011
(View/edit entry)
2007Model application 72
Ahmed, Mukhtar; Stöckle, Claudio O.; Nelson, Roger; Higgins, Stewart; 2017. Assessment of Climate Change and Atmospheric CO2 Impact on Winter Wheat in the Pacific Northwest Using a Multimodel Ensemble. Frontiers in Ecology and Evolution, 5, 51. 10.3389/fevo.2017.00051
(View/edit entry)
2017Model application 14
Chenu, Karine; Chapman, Scott C.; Hammer, Graeme L.; Mclean, Greg; Salah, Halim Ben Haj; Tardieu, François; 2008. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant, Cell & Environment, 31, 378–391. 10.1111/j.1365-3040.2007.01772.x
(View/edit entry)
2008Model application 112
Humphreys, E.; Gaydon, D.S.; Eberbach, P.L.; 2016. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. Field Crops Research, 197, 83–96. 10.1016/j.fcr.2016.08.016
(View/edit entry)
2016Model application 44
Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios; 2016. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis. Global Change Biology, 22, 666–681. 10.1111/gcb.13101
(View/edit entry)
2016Model application 52
Li, Kenan; Yang, Xiaoguang; Liu, Zhijuan; Zhang, Tianyi; Lu, Shuo; Liu, Yuan; 2014. Low yield gap of winter wheat in the North China Plain. European Journal of Agronomy, 59, 1–12. 10.1016/j.eja.2014.04.007
(View/edit entry)
2014Model application 63
Sadras, Víctor O.; Monzon, Juan P.; 2006. Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina. Field Crops Research, 99, 136–146. 10.1016/j.fcr.2006.04.003
(View/edit entry)
2006Model application 130
Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine; Wu, Rongling; 2016. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis. PLOS ONE, 11, e0146385. 10.1371/journal.pone.0146385
(View/edit entry)
2016Model application 48
Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J.; Moore, Kenneth J.; Thorburn, Peter; Archontoulis, Sotirios V.; 2016. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation. Frontiers in Plant Science, 7, . 10.3389/fpls.2016.01630
(View/edit entry)
2016Model application 56
Thorburn, P.J.; Biggs, J.S.; Attard, S.J.; Kemei, J.; 2011. Environmental impacts of irrigated sugarcane production: Nitrogen lost through runoff and leaching. Agriculture, Ecosystems & Environment, 144, 1–12. 10.1016/j.agee.2011.08.003
(View/edit entry)
2011Model application 83
Everingham, Yvette; Sexton, Justin; Skocaj, Danielle; Inman-Bamber, Geoff; 2016. Accurate prediction of sugarcane yield using a random forest algorithm. Agronomy for Sustainable Development, 36, 27. 10.1007/s13593-016-0364-z
(View/edit entry)
2016Model application 101
Luo, Qunying; Bellotti, William; Williams, Martin; Wang, Enli; 2009. Adaptation to climate change of wheat growing in South Australia: Analysis of management and breeding strategies. Agriculture, Ecosystems & Environment, 129, 261–267. 10.1016/j.agee.2008.09.010
(View/edit entry)
2009Model application 79
Surendran Nair, Sujithkumar; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando E.; Izaurralde, R. Cesar; Post, Wilfred M.; Dietze, Michael C.; Lynd, Lee R.; Wullschleger, Stan D.; 2012. Bioenergy crop models: descriptions, data requirements, and future challenges. GCB Bioenergy, 4, 620–633. 10.1111/j.1757-1707.2012.01166.x
(View/edit entry)
2012Model application 74
Wong, M. T. F.; Asseng, S.; 2006. Determining the Causes of Spatial and Temporal Variability of Wheat Yields at Sub-field Scale Using a New Method of Upscaling a Crop Model. Plant and Soil, 283, 203–215. 10.1007/s11104-006-0012-5
(View/edit entry)
2006Model application 94
Probert, M.E.; Delve, R.J.; Kimani, S.K.; Dimes, J.P.; 2005. Modelling nitrogen mineralization from manures: representing quality aspects by varying C:N ratio of sub-pools. Soil Biology and Biochemistry, 37, 279–287. 10.1016/j.soilbio.2004.07.040
(View/edit entry)
2005Model application 98
Ludwig, Fulco; Asseng, Senthold; 2010. Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. Agricultural Systems, 103, 127–136. 10.1016/j.agsy.2009.11.001
(View/edit entry)
2010Model application 90
Nuttall, J.G.; O'Leary, G.J.; Panozzo, J.F.; Walker, C.K.; Barlow, K.M.; Fitzgerald, G.J.; 2017. Models of grain quality in wheat—A review. Field Crops Research, 202, 136–145. 10.1016/j.fcr.2015.12.011
(View/edit entry)
2017Model application 110
Luo, Zhongkui; Wang, Enli; Sun, Osbert J.; Smith, Chris J.; Probert, Mervyn E.; 2011. Modeling long-term soil carbon dynamics and sequestration potential in semi-arid agro-ecosystems. Agricultural and Forest Meteorology, 151, 1529–1544. 10.1016/j.agrformet.2011.06.011
(View/edit entry)
2011Model application 74
Asseng, S.; van Herwaarden, A. F.; 2003. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments *. Plant and Soil, 256, 217–229. 10.1023/A:1026231904221
(View/edit entry)
2003Model application 138
Bell, Lindsay W.; Kirkegaard, John A.; Swan, Antony; Hunt, James R.; Huth, Neil I.; Fettell, Neil A.; 2011. Impacts of soil damage by grazing livestock on crop productivity. Soil and Tillage Research, 113, 19–29. 10.1016/j.still.2011.02.003
(View/edit entry)
2011Model application 92
Sun, Hongyong; Zhang, Xiying; Wang, Enli; Chen, Suying; Shao, Liwei; 2015. Quantifying the impact of irrigation on groundwater reserve and crop production – A case study in the North China Plain. European Journal of Agronomy, 70, 48–56. 10.1016/j.eja.2015.07.001
(View/edit entry)
2015Model application 59
Li, Fy; Snow, Vo; Holzworth, Dp; 2011. Modelling the seasonal and geographical pattern of pasture production in New Zealand. New Zealand Journal of Agricultural Research, 54, 331–352. 10.1080/00288233.2011.613403
(View/edit entry)
2011Model application 71
Martinez-Feria, Rafael A.; Dietzel, Ranae; Liebman, Matt; Helmers, Matthew J.; Archontoulis, Sotirios V.; 2016. Rye cover crop effects on maize: A system-level analysis. Field Crops Research, 196, 145–159. 10.1016/j.fcr.2016.06.016
(View/edit entry)
2016Model application 56
Tao, Fulu; Rötter, Reimund P.; Palosuo, Taru; Díaz-Ambrona, C.G.H.; Mínguez, M. Inés; Semenov, Mikhail A.; Kersebaum, Kurt Christian; Nendel, Claas; Cammarano, Davide; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodríguez, Lucía; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G.; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Schulman, Alan H.; 2017. Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 82, 144–162. 10.1016/j.eja.2016.10.012
(View/edit entry)
2017Model application 56
Stuermer, A.; Yin, Jianping; 2012. Installation impact on pusher CROR engine low speed performance and noise emission characteristics. International Journal of Engineering Systems Modelling and Simulation, 4, 59. 10.1504/IJESMS.2012.044844
(View/edit entry)
2012Model application 19
Asseng, S.; Turner, N. C.; Keating, B. A.; 2001. Analysis of water- and nitrogen-use efficiency of wheat in a Mediterranean climate. Plant and Soil, 233, 127–143. 10.1023/A:1010381602223
(View/edit entry)
2001Model application 163
Traore, Bouba; Descheemaeker, Katrien; van Wijk, Mark T.; Corbeels, Marc; Supit, Iwan; Giller, Ken E.; 2017. Modelling cereal crops to assess future climate risk for family food self-sufficiency in southern Mali. Field Crops Research, 201, 133–145. 10.1016/j.fcr.2016.11.002
(View/edit entry)
2017Model application 33
Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan; 2016. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Global Change Biology, 22, 1890–1903. 10.1111/gcb.13212
(View/edit entry)
2016Model application 65
Chen, Chao; Wang, Enli; Yu, Qiang; 2010. Modeling Wheat and Maize Productivity as Affected by Climate Variation and Irrigation Supply in North China Plain. Agronomy Journal, 102, 1037–1049. 10.2134/agronj2009.0505
(View/edit entry)
2010Model application 73
Power, B.; Rodriguez, D.; deVoil, P.; Harris, G.; Payero, J.; 2011. A multi-field bio-economic model of irrigated grain–cotton farming systems. Field Crops Research, 124, 171–179. 10.1016/j.fcr.2011.03.018
(View/edit entry)
2011Model application 34
Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.; 2015. What aspects of future rainfall changes matter for crop yields in West Africa?. Geophysical Research Letters, 42, 8001–8010. 10.1002/2015GL063877
(View/edit entry)
2015Model application 32
Brown, Peter D.; Cochrane, Thomas A.; Krom, Thomas D.; 2010. Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing. Agricultural Water Management, 97, 892–900. 10.1016/j.agwat.2010.01.020
(View/edit entry)
2010Model application 48
Palmer, Jeda; Thorburn, Peter J.; Biggs, Jody S.; Dominati, Estelle J.; Probert, Merv E.; Meier, Elizabeth A.; Huth, Neil I.; Dodd, Mike; Snow, Val; Larsen, Joshua R.; Parton, William J.; 2017. Nitrogen Cycling from Increased Soil Organic Carbon Contributes Both Positively and Negatively to Ecosystem Services in Wheat Agro-Ecosystems. Frontiers in Plant Science, 8, 731. 10.3389/fpls.2017.00731
(View/edit entry)
2017Model application 22
Xiao, Dengpan; Shen, Yanjun; Qi, Yongqing; Moiwo, Juana P.; Min, Leilei; Zhang, Yucui; Guo, Ying; Pei, Hongwei; 2017. Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region. Agricultural Systems, 153, 109–117. 10.1016/j.agsy.2017.01.018
(View/edit entry)
2017Model application 43
Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.; Suriadi, A.; Dobermann, A.; 2012. Rice in cropping systems—Modelling transitions between flooded and non-flooded soil environments. European Journal of Agronomy, 39, 9–24. 10.1016/j.eja.2012.01.003
(View/edit entry)
2012Model application 75
Dreccer, M. Fernanda; Fainges, Justin; Whish, Jeremy; Ogbonnaya, Francis C.; Sadras, Victor O.; 2018. Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agricultural and Forest Meteorology, 248, 275–294. 10.1016/j.agrformet.2017.10.006
(View/edit entry)
2018Model application 58
Robertson, M. J.; Holland, J. F.; 2004. Production risk of canola in the semi-arid subtropics of Australia. Australian Journal of Agricultural Research, 55, 525. 10.1071/AR03219
(View/edit entry)
2004Model application 76
Bassu, Simona; Asseng, Senthold; Motzo, Rosella; Giunta, Francesco; 2009. Optimising sowing date of durum wheat in a variable Mediterranean environment. Field Crops Research, 111, 109–118. 10.1016/j.fcr.2008.11.002
(View/edit entry)
2009Model application 97
Chen, Chao; Baethgen, Walter E.; Robertson, Andrew; 2013. Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003. Climatic Change, 116, 767–788. 10.1007/s10584-012-0509-2
(View/edit entry)
2013Model application 57
Wang, Jing; Wang, Enli; Feng, Liping; Yin, Hong; Yu, Weidong; 2013. Phenological trends of winter wheat in response to varietal and temperature changes in the North China Plain. Field Crops Research, 144, 135–144. 10.1016/j.fcr.2012.12.020
(View/edit entry)
2013Model application 70
Wang, Jing; Wang, Enli; Yin, Hong; Feng, Liping; Zhang, Jianping; 2014. Declining yield potential and shrinking yield gaps of maize in the North China Plain. Agricultural and Forest Meteorology, 195, 89–101. 10.1016/j.agrformet.2014.05.004
(View/edit entry)
2014Model application 48
Shelia, Vakhtang; Hansen, James; Sharda, Vaishali; Porter, Cheryl; Aggarwal, Pramod; Wilkerson, Carol J.; Hoogenboom, Gerrit; 2019. A multi-scale and multi-model gridded framework for forecasting crop production, risk analysis, and climate change impact studies. Environmental Modelling & Software, 115, 144–154. 10.1016/j.envsoft.2019.02.006
(View/edit entry)
2019Model application 24
Xiao, Dengpan; Qi, Yongqing; Shen, Yanjun; Tao, Fulu; Moiwo, Juana P.; Liu, Jianfeng; Wang, Rede; Zhang, He; Liu, Fengshan; 2016. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theoretical and Applied Climatology, 124, 653–661. 10.1007/s00704-015-1450-x
(View/edit entry)
2016Model application 42
Ahuja, Lajpat R.; Ma, Liwang; Howell, Terry A; 2016. Agricultural System Models in Field Research and Technology Transfer. In: (eds.).. .
(View/edit entry)
2016Model application 94
Parsons, David; Nicholson, Charles F.; Blake, Robert W.; Ketterings, Quirine M.; Ramírez-Aviles, Luis; Fox, Danny G.; Tedeschi, Luis O.; Cherney, Jerome H.; 2011. Development and evaluation of an integrated simulation model for assessing smallholder crop–livestock production in Yucatán, Mexico. Agricultural Systems, 104, 1–12. 10.1016/j.agsy.2010.07.006
(View/edit entry)
2011Model application 37
Asseng, S.; Fillery, I. R. P.; Dunin, F. X.; Keating, B. A.; Meinke, H.; 2001. Potential deep drainage under wheat crops in a Mediterranean climate. I. Temporal and spatial variability. Australian Journal of Agricultural Research, 52, 45. 10.1071/AR99186
(View/edit entry)
2001Model application 109
van Oort, P.A.J.; Wang, G.; Vos, J.; Meinke, H.; Li, B.G.; Huang, J.K.; van der Werf, W.; 2016. Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain. Agricultural Water Management, 165, 131–140. 10.1016/j.agwat.2015.11.005
(View/edit entry)
2016Model application 40
Luo, Qunying; Bellotti, William; Williams, Martin; Bryan, Brett; 2005. Potential impact of climate change on wheat yield in South Australia. Agricultural and Forest Meteorology, 132, 273–285. 10.1016/j.agrformet.2005.08.003
(View/edit entry)
2005Model application 113
Huth, N.I.; Thorburn, P.J.; Radford, B.J.; Thornton, C.M.; 2010. Impacts of fertilisers and legumes on N2O and CO2 emissions from soils in subtropical agricultural systems: A simulation study. Agriculture, Ecosystems & Environment, 136, 351–357. 10.1016/j.agee.2009.12.016
(View/edit entry)
2010Model application 78
Luo, Zhongkui; Wang, Enli; Bryan, Brett A.; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike; 2013. Meta-modeling soil organic carbon sequestration potential and its application at regional scale. Ecological Applications, 23, 408–420. 10.1890/12-0672.1
(View/edit entry)
2013Model application 38
Vogeler, Iris; Cichota, Rogerio; Beautrais, Josef; 2016. Linking Land Use Capability classes and APSIM to estimate pasture growth for regional land use planning. Soil Research, 54, 94. 10.1071/SR15018
(View/edit entry)
2016Model application 7
Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V.; Zobel, Zachary; Kotamarthi, Veerabhadra R.; 2017. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO 2. Global Change Biology, 23, 2687–2704. 10.1111/gcb.13617
(View/edit entry)
2017Model application 68
Whitbread, A.M.; Robertson, M.J.; Carberry, P.S.; Dimes, J.P.; 2010. How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. European Journal of Agronomy, 32, 51–58. 10.1016/j.eja.2009.05.004
(View/edit entry)
2010Model application 81
Yu, Qiang; Li, Longhui; Luo, Qunying; Eamus, Derek; Xu, Shouhua; Chen, Chao; Wang, Enli; Liu, Jiandong; Nielsen, David C.; 2014. Year patterns of climate impact on wheat yields: YEAR PATTERNS OF CLIMATE IMPACT ON WHEAT YIELDS. International Journal of Climatology, 34, 518–528. 10.1002/joc.3704
(View/edit entry)
2014Model application 51
Jin, Zhenong; Zhuang, Qianlai; Tan, Zeli; Dukes, Jeffrey S.; Zheng, Bangyou; Melillo, Jerry M.; 2016. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biology, 22, 3112–3126. 10.1111/gcb.13376
(View/edit entry)
2016Model application 36
Marin, Fábio R.; Thorburn, Peter J.; Nassif, Daniel S.P.; Costa, Leandro G.; 2015. Sugarcane model intercomparison: Structural differences and uncertainties under current and potential future climates. Environmental Modelling & Software, 72, 372–386. 10.1016/j.envsoft.2015.02.019
(View/edit entry)
2015Model application 43
Dias, Henrique Boriolo; Sentelhas, Paulo Cesar; 2017. Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields. Field Crops Research, 213, 174–185. 10.1016/j.fcr.2017.07.022
(View/edit entry)
2017Model application 36
Meier, Elizabeth A.; Thorburn, Peter J.; 2016. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments. Frontiers in Plant Science, 7, . 10.3389/fpls.2016.01017
(View/edit entry)
2016Model application 24
Kim, Soo-Hyung; Yang, Yang; Timlin, Dennis J.; Fleisher, David H.; Dathe, Annette; Reddy, Vangimalla R.; Staver, Kenneth; 2012. Modeling Temperature Responses of Leaf Growth, Development, and Biomass in Maize with MAIZSIM. Agronomy Journal, 104, 1523–1537. 10.2134/agronj2011.0321
(View/edit entry)
2012Model application 38
Moore, A.D.; Robertson, M.J.; Routley, R.; 2011. Evaluation of the water use efficiency of alternative farm practices at a range of spatial and temporal scales: A conceptual framework and a modelling approach. Agricultural Systems, 104, 162–174. 10.1016/j.agsy.2010.05.007
(View/edit entry)
2011Model application 38
Holzworth, Dean P.; Huth, Neil I.; de Voil, Peter G.; 2010. Simplifying environmental model reuse. Environmental Modelling & Software, 25, 269–275. 10.1016/j.envsoft.2008.10.018
(View/edit entry)
2010Model application 50
Robertson, Michael; Bathgate, Andrew; Moore, Andrew; Lawes, Roger; Lilley, Julianne; 2009. Seeking simultaneous improvements in farm profit and natural resource indicators: a modelling analysis. Animal Production Science, 49, 826. 10.1071/AN09008
(View/edit entry)
2009Model application 43
Brown, Peter R.; Huth, Neil I.; Banks, Peter B.; Singleton, Grant R.; 2007. Relationship between abundance of rodents and damage to agricultural crops. Agriculture, Ecosystems & Environment, 120, 405–415. 10.1016/j.agee.2006.10.016
(View/edit entry)
2007Model application 74
Vogeler, I.; Beukes, P.; Burggraaf, V.; 2013. Evaluation of mitigation strategies for nitrate leaching on pasture-based dairy systems. Agricultural Systems, 115, 21–28. 10.1016/j.agsy.2012.09.012
(View/edit entry)
2013Model application 37
Oliver, Y. M.; Robertson, M. J.; Stone, P. J.; Whitbread, A.; 2009. Improving estimates of water-limited yield of wheat by accounting for soil type and within-season rainfall. Crop and Pasture Science, 60, 1137. 10.1071/CP09122
(View/edit entry)
2009Model application 42
Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.; 2017. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments. Frontiers in Plant Science, 8, . 10.3389/fpls.2017.00335
(View/edit entry)
2017Model application 10
Smith, Alex; Snapp, Sieglinde; Dimes, John; Gwenambira, Chiwimbo; Chikowo, Regis; 2016. Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi. Agricultural Systems, 145, 139–149. 10.1016/j.agsy.2016.03.008
(View/edit entry)
2016Model application 60
Sida, Tesfaye Shiferaw; Baudron, Frédéric; Kim, Haekoo; Giller, Ken E.; 2018. Climate-smart agroforestry: Faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agricultural and Forest Meteorology, 248, 339–347. 10.1016/j.agrformet.2017.10.013
(View/edit entry)
2018Model application 46
Xin, Yue; Tao, Fulu; 2019. Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain. Science of The Total Environment, 654, 480–492. 10.1016/j.scitotenv.2018.11.126
(View/edit entry)
2019Model application 17
Schnell, R.; Yin, J.; Voss, C.; Nicke, E.; 2010. Assessment and Optimization of the Aerodynamic and Acoustic Characteristics of a Counter Rotating Open Rotor. . Volume .
(View/edit entry)
2010Model application 6
Mielenz, Henrike; Thorburn, Peter J.; Harris, Robert H.; Grace, Peter R.; Officer, Sally J.; 2017. Mitigating N2O emissions from cropping systems after conversion from pasture − a modelling approach. European Journal of Agronomy, 82, 254–267. 10.1016/j.eja.2016.06.007
(View/edit entry)
2017Model application 10
Biggs, J.S.; Thorburn, P.J.; Crimp, S.; Masters, B.; Attard, S.J.; 2013. Interactions between climate change and sugarcane management systems for improving water quality leaving farms in the Mackay Whitsunday region, Australia. Agriculture, Ecosystems & Environment, 180, 79–89. 10.1016/j.agee.2011.11.005
(View/edit entry)
2013Model application 59
Araya, A.; Hoogenboom, G.; Luedeling, E.; Hadgu, Kiros M.; Kisekka, Isaya; Martorano, Lucieta G.; 2015. Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agricultural and Forest Meteorology, 214, 252–265. 10.1016/j.agrformet.2015.08.259
(View/edit entry)
2015Model application 78
Rurinda, Jairos; van Wijk, Mark T.; Mapfumo, Paul; Descheemaeker, Katrien; Supit, Iwan; Giller, Ken E.; 2015. Climate change and maize yield in southern Africa: what can farm management do?. Global Change Biology, 21, 4588–4601. 10.1111/gcb.13061
(View/edit entry)
2015Model application 50
Robertson, Michael J.; Kirkegaard, John A.; 2005. Water-use efficiency of dryland canola in an equi-seasonal rainfall environment. Australian Journal of Agricultural Research, 56, 1373. 10.1071/AR05030
(View/edit entry)
2005Model application 68
Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.; Timsina, J.; 2012. Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance. European Journal of Agronomy, 39, 35–43. 10.1016/j.eja.2012.01.004
(View/edit entry)
2012Model application 50
Peng, Bin; Guan, Kaiyu; Chen, Min; Lawrence, David M.; Pokhrel, Yadu; Suyker, Andrew; Arkebauer, Timothy; Lu, Yaqiong; 2018. Improving maize growth processes in the community land model: Implementation and evaluation. Agricultural and Forest Meteorology, 250, 64–89. 10.1016/j.agrformet.2017.11.012
(View/edit entry)
2018Model application 43
Kamanga, B. C. G.; Waddington, S. R.; Whitbread, A. M.; Almekinders, C. J. M.; Giller, K. E.; 2014. IMPROVING THE EFFICIENCY OF USE OF SMALL AMOUNTS OF NITROGEN AND PHOSPHORUS FERTILISER ON SMALLHOLDER MAIZE IN CENTRAL MALAWI. Experimental Agriculture, 50, 229–249. 10.1017/S0014479713000513
(View/edit entry)
2014Model application 36
Moeller, Carina; Sauerborn, Joachim; de Voil, Peter; Manschadi, Ahmad M.; Pala, Mustafa; Meinke, Holger; 2014. Assessing the sustainability of wheat-based cropping systems using simulation modelling: sustainability = 42?. Sustainability Science, 9, 1–16. 10.1007/s11625-013-0228-2
(View/edit entry)
2014Model application 29
Dias, Henrique Boriolo; Sentelhas, Paulo Cesar; 2018. Sugarcane yield gap analysis in Brazil – A multi-model approach for determining magnitudes and causes. Science of The Total Environment, 637, 1127–1136. 10.1016/j.scitotenv.2018.05.017
(View/edit entry)
2018Model application 34
Dalgliesh, N. P.; Foale, M. A.; McCown, R. L.; 2009. Re-inventing model-based decision support with Australian dryland farmers. 2. Pragmatic provision of soil information for paddock-specific simulation and farmer decision making. Crop and Pasture Science, 60, 1031. 10.1071/CP08459
(View/edit entry)
2009Model application 43
Heng, L.K.; Asseng, S.; Mejahed, K.; Rusan, M.; 2007. Optimizing wheat productivity in two rain-fed environments of the West Asia–North Africa region using a simulation model. European Journal of Agronomy, 26, 121–129. 10.1016/j.eja.2006.09.001
(View/edit entry)
2007Model application 65
Zhang, Yue; Zhang, Lizhen; Yang, Ning; Huth, Neil; Wang, Enli; van der Werf, Wopke; Evers, Jochem B.; Wang, Qi; Zhang, Dongsheng; Wang, Ruonan; Gao, Hui; Anten, Niels P.R.; 2019. Optimized sowing time windows mitigate climate risks for oats production under cool semi-arid growing conditions. Agricultural and Forest Meteorology, 266, 184–197. 10.1016/j.agrformet.2018.12.019
(View/edit entry)
2019Model application 5
Soufizadeh, S.; Munaro, E.; McLean, G.; Massignam, A.; van Oosterom, E.J.; Chapman, S.C.; Messina, C.; Cooper, M.; Hammer, G.L.; 2018. Modelling the nitrogen dynamics of maize crops – Enhancing the APSIM maize model. European Journal of Agronomy, 100, 118–131. 10.1016/j.eja.2017.12.007
(View/edit entry)
2018Model application 40
Bai, Huizi; Tao, Fulu; Xiao, Dengpan; Liu, Fengshan; Zhang, He; 2016. Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Climatic Change, 135, 539–553. 10.1007/s10584-015-1579-8
(View/edit entry)
2016Model application 39
Kloss, Sebastian; Pushpalatha, Raji; Kamoyo, Kefasi J.; Schütze, Niels; 2012. Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability. Water Resources Management, 26, 997–1014. 10.1007/s11269-011-9906-y
(View/edit entry)
2012Model application 45
Sennhenn, Anne; Njarui, Donald M. G.; Maass, Brigitte L.; Whitbread, Anthony M.; 2017. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya — Coping with the Impacts of Climate Variability. Frontiers in Plant Science, 8, 699. 10.3389/fpls.2017.00699
(View/edit entry)
2017Model application 11
Cheeroo-Nayamuth, F.C; Robertson, M.J; Wegener, M.K; Nayamuth, A.R.H; 2000. Using a simulation model to assess potential and attainable sugar cane yield in Mauritius. Field Crops Research, 66, 225–243. 10.1016/S0378-4290(00)00069-1
(View/edit entry)
2000Model application 61
van Rees, Harm; McClelland, Tim; Hochman, Zvi; Carberry, Peter; Hunt, James; Huth, Neil; Holzworth, Dean; 2014. Leading farmers in South East Australia have closed the exploitable wheat yield gap: Prospects for further improvement. Field Crops Research, 164, 1–11. 10.1016/j.fcr.2014.04.018
(View/edit entry)
2014Model application 56
Sun, Hongyong; Zhang, Xiying; Liu, Xiujing; Liu, Xiuwei; Shao, Liwei; Chen, Suying; Wang, Jintao; Dong, Xinliang; 2019. Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain. Agricultural Water Management, 211, 202–209. 10.1016/j.agwat.2018.09.046
(View/edit entry)
2019Model application 28
Luo, Jianmei; Shen, Yanjun; Qi, Yongqing; Zhang, Yucui; Xiao, Dengpan; 2018. Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China. Agricultural Systems, 159, 32–41. 10.1016/j.agsy.2017.10.002
(View/edit entry)
2018Model application 29
Whish, Jeremy; Butler, Giles; Castor, Michael; Cawthray, Shayne; Broad, Ian; Carberry, Peter; Hammer, Graeme; McLean, Greg; Routley, Richard; Yeates, Steven; 2005. Modelling the effects of row configuration on sorghum yield reliability in north-eastern Australia. Australian Journal of Agricultural Research, 56, 11. 10.1071/AR04128
(View/edit entry)
2005Model application 60
Lyon, Drew J.; Hammer, Graeme L.; McLean, Greg B.; Blumenthal, Jürg M.; 2003. Simulation Supplements Field Studies to Determine No-Till Dryland Corn Population Recommendations for Semiarid Western Nebraska. Agronomy Journal, 95, 884–891. 10.2134/agronj2003.8840
(View/edit entry)
2003Model application 58
Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; Zuo, Heping; Yang, Yonghui; 2014. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment. Theoretical and Applied Climatology, 115, 391–410. 10.1007/s00704-013-0895-z
(View/edit entry)
2014Model application 57
Rodriguez, D.; de Voil, P.; Hudson, D.; Brown, J. N.; Hayman, P.; Marrou, H.; Meinke, H.; 2018. Predicting optimum crop designs using crop models and seasonal climate forecasts. Scientific Reports, 8, 2231. 10.1038/s41598-018-20628-2
(View/edit entry)
2018Model application 39
He, Liang; Cleverly, James; Chen, Chao; Yang, Xiaoya; Li, Jun; Liu, Wenzhao; Yu, Qiang; 2014. Diverse Responses of Winter Wheat Yield and Water Use to Climate Change and Variability on the Semiarid Loess Plateau in China. Agronomy Journal, 106, 1169–1178. 10.2134/agronj13.0321
(View/edit entry)
2014Model application 28
Inman-Bamber, N.G; Muchow, R.C; Robertson, M.J; 2002. Dry matter partitioning of sugarcane in Australia and South Africa. Field Crops Research, 76, 71–84. 10.1016/S0378-4290(02)00044-8
(View/edit entry)
2002Model application 69
George, Nicholas; Thompson, Sally E.; Hollingsworth, Joy; Orloff, Steven; Kaffka, Stephen; 2018. Measurement and simulation of water-use by canola and camelina under cool-season conditions in California. Agricultural Water Management, 196, 15–23. 10.1016/j.agwat.2017.09.015
(View/edit entry)
2018Model application 13
Kholová, Jana; McLean, Greg; Vadez, Vincent; Craufurd, Peter; Hammer, Graeme L.; 2013. Drought stress characterization of post-rainy season (rabi) sorghum in India. Field Crops Research, 141, 38–46. 10.1016/j.fcr.2012.10.020
(View/edit entry)
2013Model application 43
Sadras, Victor; Baldock, Jeff; Roget, David; Rodriguez, Daniel; 2003. Measuring and modelling yield and water budget components of wheat crops in coarse-textured soils with chemical constraints. Field Crops Research, 84, 241–260. 10.1016/S0378-4290(03)00093-5
(View/edit entry)
2003Model application 58
Rigolot, C.; de Voil, P.; Douxchamps, S.; Prestwidge, D.; Van Wijk, M.; Thornton, P.K.; Rodriguez, D.; Henderson, B.; Medina, D.; Herrero, M.; 2017. Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso. Agricultural Systems, 151, 217–224. 10.1016/j.agsy.2015.12.017
(View/edit entry)
2017Model application 29
Innes, P.J.; Tan, D.K.Y.; Van Ogtrop, F.; Amthor, J.S.; 2015. Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agricultural and Forest Meteorology, 208, 95–107. 10.1016/j.agrformet.2015.03.018
(View/edit entry)
2015Model application 38
Sun, Hongyong; Zhang, Xiying; Wang, Enli; Chen, Suying; Shao, Liwei; Qin, Wenli; 2016. Assessing the contribution of weather and management to the annual yield variation of summer maize using APSIM in the North China Plain. Field Crops Research, 194, 94–102. 10.1016/j.fcr.2016.05.007
(View/edit entry)
2016Model application 36
Bassu, Simona; Asseng, Senthold; Richards, Richard; 2011. Yield benefits of triticale traits for wheat under current and future climates. Field Crops Research, 124, 14–24. 10.1016/j.fcr.2011.05.020
(View/edit entry)
2011Model application 35
Ahmed, Mukhtar; Akram, Mustazhar Nasib; Asim, Muhammad; Aslam, Muhammad; Hassan, Fayyaz-ul; Higgins, Stewart; Stöckle, Claudio O.; Hoogenboom, Gerrit; 2016. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application. Computers and Electronics in Agriculture, 123, 384–401. 10.1016/j.compag.2016.03.015
(View/edit entry)
2016Model application 58
Godde, Cécile M.; Thorburn, Peter J.; Biggs, Jody S.; Meier, Elizabeth A.; 2016. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia. Frontiers in Plant Science, 7, . 10.3389/fpls.2016.00661
(View/edit entry)
2016Model application 21
Reyenga, P.J.; Howden, S.M.; Meinke, H.; McKeon, G.M.; 1999. Modelling global change impacts on wheat cropping in south-east Queensland, Australia. Environmental Modelling & Software, 14, 297–306. 10.1016/S1364-8152(98)00081-4
(View/edit entry)
1999Model application 115
Lilley, J. M.; Kirkegaard, J. A.; 2007. Seasonal variation in the value of subsoil water to wheat: simulation studies in southern New South Wales. Australian Journal of Agricultural Research, 58, 1115. 10.1071/AR07046
(View/edit entry)
2007Model application 67
Sadras, V.O.; Rodriguez, D.; 2010. Modelling the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency of wheat in eastern Australia. Field Crops Research, 118, 297–305. 10.1016/j.fcr.2010.06.010
(View/edit entry)
2010Model application 63
Bai, Huizi; Tao, Fulu; 2017. Sustainable intensification options to improve yield potential and eco-efficiency for rice-wheat rotation system in China. Field Crops Research, 211, 89–105. 10.1016/j.fcr.2017.06.010
(View/edit entry)
2017Model application 25
Liu, De Li; Zeleke, Ketema Tilahun; Wang, Bin; Macadam, Ian; Scott, Fiona; Martin, Robert John; 2017. Crop residue incorporation can mitigate negative climate change impacts on crop yield and improve water use efficiency in a semiarid environment. European Journal of Agronomy, 85, 51–68. 10.1016/j.eja.2017.02.004
(View/edit entry)
2017Model application 37
Wang, Bin; Feng, Puyu; Liu, De Li; Waters, Cathy; 2020. Modelling biophysical vulnerability of wheat to future climate change: A case study in the eastern Australian wheat belt. Ecological Indicators, 114, 106290. 10.1016/j.ecolind.2020.106290
(View/edit entry)
2020Model application 6
Luo, Q; Jones, Rn; Williams, M; Bryan, B; Bellotti, W; 2005. Probabilistic distributions of regional climate change and their application in risk analysis of wheat production. Climate Research, 29, 41–52. 10.3354/cr029041
(View/edit entry)
2005Model application 41
Montgomery, Stephanie C.; Martin, Robert J.; Guppy, Chris; Wright, Graeme C.; Flavel, Richard J.; Phan, Sophanara; Im, Sophoeun; Touch, Van; Andersson, Karl; Tighe, Matthew K.; 2016. Crop choice and planting time for upland crops in Northwest Cambodia. Field Crops Research, 198, 290–302. 10.1016/j.fcr.2016.07.002
(View/edit entry)
2016Model application 7
Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying; Hui, Dafeng; 2016. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain. PLOS ONE, 11, e0162655. 10.1371/journal.pone.0162655
(View/edit entry)
2016Model application 8
Bryan, B A; King, D; Zhao, G; 2014. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps. Environmental Research Letters, 9, 044005. 10.1088/1748-9326/9/4/044005
(View/edit entry)
2014Model application 27
Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel; 2016. Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling. Science of The Total Environment, 565, 564–575. 10.1016/j.scitotenv.2016.05.006
(View/edit entry)
2016Model application 9
Stuermer, Arne; Yin, Jianping; 2010. Aerodynamic and Aeroacoustic Installation Effects for Pusher-Configuration CROR Propulsion Systems. . Volume .
(View/edit entry)
2010Model application 18
Probert, Me; Keating, Ba; Thompson, Jp; Parton, Wj; 1995. Modelling water, nitrogen, and crop yield for a long-term fallow management experiment. Australian Journal of Experimental Agriculture, 35, 941. 10.1071/EA9950941
(View/edit entry)
1995Model application 107
Akkermans, Rinie; Delfs, Jan; Lummer, Markus; Siefert, Malte; Caruelle, Bastien; Tiedemann, Christian; 2012. Handling of Non-Periodic Contra Rotating Open Rotor Data. . Volume .
(View/edit entry)
2012Model application 11
Huth, N.I.; Bristow, K.L.; Verburg, K.; 2012. SWIM3: Model Use, Calibration, and Validation. Transactions of the ASABE, 55, 1303–1313. 10.13031/2013.42243
(View/edit entry)
2012Model application 66
Salo, T. J.; Palosuo, T.; Kersebaum, K. C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; Ferrise, R.; Olesen, J. E.; Patil, R. H.; Ruget, F.; Takáč, J.; Hlavinka, P.; Trnka, M.; Rötter, R. P.; 2016. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. The Journal of Agricultural Science, 154, 1218–1240. 10.1017/S0021859615001124
(View/edit entry)
2016Model application 51
Huth, Neil I.; Banabas, Murom; Nelson, Paul N.; Webb, Michael; 2014. Development of an oil palm cropping systems model: Lessons learned and future directions. Environmental Modelling & Software, 62, 411–419. 10.1016/j.envsoft.2014.06.021
(View/edit entry)
2014Model application 35
Yin, Jianping; Stuermer, Arne; Aversano, Marco; 2009. Coupled uRANS and FW-H Analysis of Installed Pusher Propeller Aircraft Configurations. . Volume .
(View/edit entry)
2009Model application 15
Moore, Andrew D.; 2009. Opportunities and trade-offs in dual-purpose cereals across the southern Australian mixed-farming zone: a modelling study. Animal Production Science, 49, 759. 10.1071/AN09006
(View/edit entry)
2009Model application 46
Lisson, S.N; Robertson, M.J; Keating, B.A; Muchow, R.C; 2000. Modelling sugarcane production systems. Field Crops Research, 68, 31–48. 10.1016/S0378-4290(00)00108-8
(View/edit entry)
2000Model application 59
Feng, Puyu; Wang, Bin; Liu, De Li; Waters, Cathy; Yu, Qiang; 2019. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agricultural and Forest Meteorology, 275, 100–113. 10.1016/j.agrformet.2019.05.018
(View/edit entry)
2019Model application 47
Peake, A. S.; Robertson, M. J.; Bidstrup, R. J.; 2008. Optimising maize plant population and irrigation strategies on the Darling Downs using the APSIM crop simulation model. Australian Journal of Experimental Agriculture, 48, 313. 10.1071/EA06108
(View/edit entry)
2008Model application 20
Akkermans, R. A. D.; Stuermer, A.; Delfs, J. W.; 2016. Active Flow Control for Interaction Noise Reduction of Contra-Rotating Open Rotors. AIAA Journal, 54, 1413–1423. 10.2514/1.J053756
(View/edit entry)
2016Model application 20
Gobbett, D. L.; Hochman, Z.; Horan, H.; Navarro Garcia, J.; Grassini, P.; Cassman, K. G.; 2017. Yield gap analysis of rainfed wheat demonstrates local to global relevance. The Journal of Agricultural Science, 155, 282–299. 10.1017/S0021859616000381
(View/edit entry)
2017Model application 23
Robertson, M. J.; Lilley, J. M.; 2016. Simulation of growth, development and yield of canola (Brassica napus) in APSIM. Crop and Pasture Science, 67, 332. 10.1071/CP15267
(View/edit entry)
2016Model application 32
Tang, Jianzhao; Wang, Jing; Fang, Quanxiao; Dayananda, Buddhi; Yu, Qiang; Zhao, Peiyi; Yin, Hong; Pan, Xuebiao; 2019. Identifying agronomic options for better potato production and conserving water resources in the agro-pastoral ecotone in North China. Agricultural and Forest Meteorology, 272, 91–101. 10.1016/j.agrformet.2019.04.001
(View/edit entry)
2019Model application 10
Akinseye, F.M; Adam, M.; Agele, S.O; Hoffmann, M.P.; Traore, P.C.S; Whitbread, A.M.; 2017. Assessing crop model improvements through comparison of sorghum ( sorghum bicolor L. moench) simulation models: A case study of West African varieties. Field Crops Research, 201, 19–31. 10.1016/j.fcr.2016.10.015
(View/edit entry)
2017Model application 27
Fosu-Mensah, B. Y.; MacCarthy, D. S.; Vlek, P. L. G.; Safo, E. Y.; 2012. Simulating impact of seasonal climatic variation on the response of maize (Zea mays L.) to inorganic fertilizer in sub-humid Ghana. Nutrient Cycling in Agroecosystems, 94, 255–271. 10.1007/s10705-012-9539-4
(View/edit entry)
2012Model application 25
Teixeira, Edmar I.; Zhao, Gang; Ruiter, John de; Brown, Hamish; Ausseil, Anne-Gaelle; Meenken, Esther; Ewert, Frank; 2017. The interactions between genotype, management and environment in regional crop modelling. European Journal of Agronomy, 88, 106–115. 10.1016/j.eja.2016.05.005
(View/edit entry)
2017Model application 25
Chauhan, Yashvir S.; Wright, Graeme C.; Holzworth, Dean; Rachaputi, Rao C. N.; Payero, José O.; 2013. AQUAMAN: a web-based decision support system for irrigation scheduling in peanuts. Irrigation Science, 31, 271–283. 10.1007/s00271-011-0296-y
(View/edit entry)
2013Model application 27
Lawes, R.A.; Oliver, Y.M.; Robertson, M.J.; 2009. Integrating the effects of climate and plant available soil water holding capacity on wheat yield. Field Crops Research, 113, 297–305. 10.1016/j.fcr.2009.06.008
(View/edit entry)
2009Model application 44
Wang, Sha; Wang, Enli; Wang, Fei; Tang, Liang; 2012. Phenological development and grain yield of canola as affected by sowing date and climate variation in the Yangtze River Basin of China. Crop and Pasture Science, 63, 478. 10.1071/CP11332
(View/edit entry)
2012Model application 30
O’Leary, Garry J; 2000. A review of three sugarcane simulation models with respect to their prediction of sucrose yield. Field Crops Research, 68, 97–111. 10.1016/S0378-4290(00)00112-X
(View/edit entry)
2000Model application 73
Islam, M. R.; Garcia, S. C.; Clark, C. E. F.; Kerrisk, K. L.; 2015. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options. Asian-Australasian Journal of Animal Sciences, 28, 703–715. 10.5713/ajas.14.0384
(View/edit entry)
2015Model application 3
Keating, B.A; Gaydon, D; Huth, N.I; Probert, M.E; Verburg, K; Smith, C.J; Bond, W; 2002. Use of modelling to explore the water balance of dryland farming systems in the Murray-Darling Basin, Australia. European Journal of Agronomy, 18, 159–169. 10.1016/S1161-0301(02)00102-8
(View/edit entry)
2002Model application 70
Inman-Bamber, N.G.; Lakshmanan, P.; Park, S.; 2012. Sugarcane for water-limited environments: Theoretical assessment of suitable traits. Field Crops Research, 134, 95–104. 10.1016/j.fcr.2012.05.004
(View/edit entry)
2012Model application 54
Zhu, XinGuang; Zhang, GuiLian; Tholen, Danny; Wang, Yu; Xin, ChangPeng; Song, QingFeng; 2011. The next generation models for crops and agro-ecosystems. Science China Information Sciences, 54, 589–597. 10.1007/s11432-011-4197-8
(View/edit entry)
2011Model application 17
Wang, Jing; Wang, Enli; Luo, Qunying; Kirby, Mac; 2009. Modelling the sensitivity of wheat growth and water balance to climate change in Southeast Australia. Climatic Change, 96, 79–96. 10.1007/s10584-009-9599-x
(View/edit entry)
2009Model application 52
Marin, Fábio R.; Thorburn, Peter J.; da Costa, Leandro G.; Otto, Rafael; 2014. Simulating Long-Term Effects of Trash Management on Sugarcane Yield for Brazilian Cropping Systems. Sugar Tech, 16, 164–173. 10.1007/s12355-013-0265-2
(View/edit entry)
2014Model application 22
Radanielson, A.M.; Gaydon, D.S.; Li, T.; Angeles, O.; Roth, C.H.; 2018. Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. European Journal of Agronomy, 100, 44–55. 10.1016/j.eja.2018.01.015
(View/edit entry)
2018Model application 43
Zingore, S.; González-Estrada, E.; Delve, R.J.; Herrero, M.; Dimes, J.P.; Giller, K.E.; 2009. An integrated evaluation of strategies for enhancing productivity and profitability of resource-constrained smallholder farms in Zimbabwe. Agricultural Systems, 101, 57–68. 10.1016/j.agsy.2009.03.003
(View/edit entry)
2009Model application 32
Hochman, Zvi; Horan, Heidi; Reddy, D. Raji; Sreenivas, G.; Tallapragada, Chiranjeevi; Adusumilli, Ravindra; Gaydon, Donald S.; Laing, Alison; Kokic, Philip; Singh, Kamalesh K.; Roth, Christian H.; 2017. Smallholder farmers managing climate risk in India: 2. Is it climate-smart?. Agricultural Systems, 151, 61–72. 10.1016/j.agsy.2016.11.007
(View/edit entry)
2017Model application 19
Moeller, Carina; Smith, Ian; Asseng, Senthold; Ludwig, Fulco; Telcik, Nicola; 2008. The potential value of seasonal forecasts of rainfall categories—Case studies from the wheatbelt in Western Australia's Mediterranean region. Agricultural and Forest Meteorology, 148, 606–618. 10.1016/j.agrformet.2007.11.004
(View/edit entry)
2008Model application 49
Wong, M. T. F.; Asseng, S.; Zhang, H.; 2006. A flexible approach to managing variability in grain yield and nitrate leaching at within-field to farm scales. Precision Agriculture, 7, 405–417. 10.1007/s11119-006-9023-8
(View/edit entry)
2006Model application 31
Kirkegaard, J. A.; Lilley, J. M.; Brill, R. D.; Sprague, S. J.; Fettell, N. A.; Pengilley, G. C.; 2016. Re-evaluating sowing time of spring canola (Brassica napus L.) in south-eastern Australia—how early is too early?. Crop and Pasture Science, 67, 381. 10.1071/CP15282
(View/edit entry)
2016Model application 35
Birch, C. J.; Stephen, K.; McLean, G.; Doherty, A.; Hammer, G. L.; Robertson, M. J.; 2008. Reliability of production of quick to medium maturity maize in areas of variable rainfall in north-east Australia. Australian Journal of Experimental Agriculture, 48, 326. 10.1071/EA06104
(View/edit entry)
2008Model application 21
Ojeda, Jonathan J.; Volenec, Jeffrey J.; Brouder, Sylvie M.; Caviglia, Octavio P.; Agnusdei, Mónica G.; 2017. Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments. GCB Bioenergy, 9, 796–816. 10.1111/gcbb.12384
(View/edit entry)
2017Model application 27
Bai, Huizi; Xiao, Dengpan; Zhang, He; Tao, Fulu; Hu, Yuhun; 2019. Impact of warming climate, sowing date, and cultivar shift on rice phenology across China during 1981–2010. International Journal of Biometeorology, 63, 1077–1089. 10.1007/s00484-019-01723-z
(View/edit entry)
2019Model application 4
Holzworth, Dean; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.; Zheng, B.; Snow, V.; 2018. APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environmental Modelling & Software, 103, 43–51. 10.1016/j.envsoft.2018.02.002
(View/edit entry)
2018Model application 74
Kandulu, John M.; Bryan, Brett A.; King, Darran; Connor, Jeffery D.; 2012. Mitigating economic risk from climate variability in rain-fed agriculture through enterprise mix diversification. Ecological Economics, 79, 105–112. 10.1016/j.ecolecon.2012.04.025
(View/edit entry)
2012Model application 49
Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; O’Leary, Garry; Macadam, Ian; Yang, Yonghui; 2016. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type. Theoretical and Applied Climatology, 123, 565–579. 10.1007/s00704-015-1376-3
(View/edit entry)
2016Model application 33
Vanuytrecht, Eline; Thorburn, Peter J.; 2017. Responses to atmospheric CO 2 concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development. Global Change Biology, 23, 1806–1820. 10.1111/gcb.13600
(View/edit entry)
2017Model application 26
Rodriguez, D.; Nuttall, J.; Sadras, V. O.; van Rees, H.; Armstrong, R.; 2006. Impact of subsoil constraints on wheat yield and gross margin on fine-textured soils of the southern Victorian Mallee. Australian Journal of Agricultural Research, 57, 355. 10.1071/AR04133
(View/edit entry)
2006Model application 39
Xin, Yue; Tao, Fulu; 2020. Developing climate-smart agricultural systems in the North China Plain. Agriculture, Ecosystems & Environment, 291, 106791. 10.1016/j.agee.2019.106791
(View/edit entry)
2020Model application 10
Feng, Puyu; Wang, Bin; Liu, De Li; Waters, Cathy; Xiao, Dengpan; Shi, Lijie; Yu, Qiang; 2020. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agricultural and Forest Meteorology, 285, 107922. 10.1016/j.agrformet.2020.107922
(View/edit entry)
2020Model application 22
Yan, Zongzheng; Zhang, Xiying; Rashid, Muhammad Adil; Li, Hongjun; Jing, Haichun; Hochman, Zvi; 2020. Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change. Agricultural Systems, 178, 102745. 10.1016/j.agsy.2019.102745
(View/edit entry)
2020Model application 12
Lv, Shuo; Yang, Xiaoguang; Lin, Xiaomao; Liu, Zhijuan; Zhao, Jin; Li, Kenan; Mu, Chenying; Chen, Xiaochao; Chen, Fanjun; Mi, Guohua; 2015. Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades. Agricultural and Forest Meteorology, 205, 1–10. 10.1016/j.agrformet.2015.02.008
(View/edit entry)
2015Model application 34
Meinke, H.; Hammer, G.L.; van Keulen, H.; Rabbinge, R.; 1998. Improving wheat simulation capabilities in Australia from a cropping systems perspective III. The integrated wheat model (I_WHEAT). European Journal of Agronomy, 8, 101–116. 10.1016/S1161-0301(97)00015-4
(View/edit entry)
1998Model application 69
Everingham, Y.L.; Smyth, C.W.; Inman-Bamber, N.G.; 2009. Ensemble data mining approaches to forecast regional sugarcane crop production. Agricultural and Forest Meteorology, 149, 689–696. 10.1016/j.agrformet.2008.10.018
(View/edit entry)
2009Model application 30
Li, Ting-Ting; Zhang, Wei; Wang, Jun; Zhang, Wen; Wang, Guo-Cheng; Xu, Jing-Jing; Zhang, Qing; 2016. Parameterizing an agricultural production model for simulating nitrous oxide emissions in a wheat–maize system in the North China Plain. Atmospheric and Oceanic Science Letters, 9, 403–410. 10.1080/16742834.2016.1230002
(View/edit entry)
2016Model application 4
Houshmandfar, Alireza; Fitzgerald, Glenn J.; O'Leary, Garry; Tausz-Posch, Sabine; Fletcher, Andrew; Tausz, Michael; 2018. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO 2. Physiologia Plantarum, 163, 516–529. 10.1111/ppl.12676
(View/edit entry)
2018Model application 29
Yang, X.; Chen, Ch.; Luo, Q.; Li, L.; Yu, Q.; 2011. Climate change effects on wheat yield and water use in oasis cropland. International Journal of Plant Production, 5, . 10.22069/ijpp.2012.722
(View/edit entry)
2011Model application 19
Masjedi, Ali; Zhao, Jieqiong; Thompson, Addie M.; Yang, Kai-Wei; Flatt, John E.; Crawford, Melba M.; Ebert, David S.; Tuinstra, Mitchell R.; Hammer, Graeme; Chapman, Scott; 2018. Sorghum Biomass Prediction Using Uav-Based Remote Sensing Data and Crop Model Simulation. . Volume .
(View/edit entry)
2018Model application 14
Xiao, Dengpan; Tao, Fulu; Shen, Yanjun; Qi, Yongqing; 2016. Combined impact of climate change, cultivar shift, and sowing date on spring wheat phenology in Northern China. Journal of Meteorological Research, 30, 820–831. 10.1007/s13351-016-5108-0
(View/edit entry)
2016Model application 13
Manschadi, A. M.; Christopher, J. T.; Hammer, G. L.; Devoil, P.; 2010. Experimental and modelling studies of drought‐adaptive root architectural traits in wheat ( Triticum aestivum L.). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 144, 458–462. 10.1080/11263501003731805
(View/edit entry)
2010Model application 58
Moore, Andrew D.; Eckard, Richard J.; Thorburn, Peter J.; Grace, Peter R.; Wang, Enli; Chen, Deli; 2014. Mathematical modeling for improved greenhouse gas balances, agro-ecosystems, and policy development: lessons from the Australian experience: Mathematical modeling for improved GHG balances, agro-ecosystems, and policy development. Wiley Interdisciplinary Reviews: Climate Change, 5, 735–752. 10.1002/wcc.304
(View/edit entry)
2014Model application 14
Zhao, Jin; Yang, Xiaoguang; Liu, Zhijuan; Pullens, Johannes W.M.; Chen, Ji; Marek, Gary W.; Chen, Yong; Lv, Shuo; Sun, Shuang; 2020. Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China. Agricultural Water Management, 232, 106018. 10.1016/j.agwat.2020.106018
(View/edit entry)
2020Model application 2
Robertson, M.J.; Sakala, W.; Benson, T.; Shamudzarira, Z.; 2005. Simulating response of maize to previous velvet bean (Mucuna pruriens) crop and nitrogen fertiliser in Malawi. Field Crops Research, 91, 91–105. 10.1016/j.fcr.2004.06.009
(View/edit entry)
2005Model application 50
Kassie, Belay T.; Asseng, Senthold; Porter, Cheryl H.; Royce, Frederick S.; 2016. Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. European Journal of Agronomy, 81, 27–36. 10.1016/j.eja.2016.08.012
(View/edit entry)
2016Model application 32
Peake, A.S.; Huth, N.I.; Carberry, P.S.; Raine, S.R.; Smith, R.J.; 2014. Quantifying potential yield and lodging-related yield gaps for irrigated spring wheat in sub-tropical Australia. Field Crops Research, 158, 1–14. 10.1016/j.fcr.2013.12.001
(View/edit entry)
2014Model application 26
Dixit, P. N.; Cooper, P. J. M.; Dimes, J.; Rao, K. P.; 2011. ADDING VALUE TO FIELD-BASED AGRONOMIC RESEARCH THROUGH CLIMATE RISK ASSESSMENT: A CASE STUDY OF MAIZE PRODUCTION IN KITALE, KENYA. Experimental Agriculture, 47, 317–338. 10.1017/S0014479710000773
(View/edit entry)
2011Model application 31
Dillmann, Andreas; Heller, Gerd; Kreplin, Hans-Peter; Nitsche, Wolfgang; Peltzer, Inken; Stuermer, Arne; Yin, Jianping; 2013. Pylon Trailing Edge Blowing for the Control of CROR Unsteady Blade Loads. In: (eds.)New Results in Numerical and Experimental Fluid Mechanics VIII.. 715–722.
(View/edit entry)
2013Model application 11
Liu, Leilei; Zhu, Yan; Tang, Liang; Cao, Weixing; Wang, Enli; 2013. Impacts of climate changes, soil nutrients, variety types and management practices on rice yield in East China: A case study in the Taihu region. Field Crops Research, 149, 40–48. 10.1016/j.fcr.2013.04.022
(View/edit entry)
2013Model application 34
Teixeira, Edmar I.; Brown, Hamish E.; Sharp, Joanna; Meenken, Esther D.; Ewert, Frank; 2015. Evaluating methods to simulate crop rotations for climate impact assessments – A case study on the Canterbury plains of New Zealand. Environmental Modelling & Software, 72, 304–313. 10.1016/j.envsoft.2015.05.012
(View/edit entry)
2015Model application 28
Asseng, Senthold; Milroy, Stephen P.; 2006. Simulation of environmental and genetic effects on grain protein concentration in wheat. European Journal of Agronomy, 25, 119–128. 10.1016/j.eja.2006.04.005
(View/edit entry)
2006Model application 52
Bell, Lindsay W.; Hargreaves, John N. G.; Lawes, Roger A.; Robertson, Michael J.; 2009. Sacrificial grazing of wheat crops: identifying tactics and opportunities in Western Australia's grainbelt using simulation approaches. Animal Production Science, 49, 797. 10.1071/AN09014
(View/edit entry)
2009Model application 25
Sun, Shuang; Yang, Xiaoguang; Lin, Xiaomao; Zhao, Jin; Liu, Zhijuan; Zhang, Tianyi; Xie, Wenjuan; 2019. Seasonal variability in potential and actual yields of winter wheat in China. Field Crops Research, 240, 1–11. 10.1016/j.fcr.2019.05.016
(View/edit entry)
2019Model application 8
Snapp, Sieglinde S.; Grabowski, Philip; Chikowo, Regis; Smith, Alex; Anders, Erin; Sirrine, Dorothy; Chimonyo, Vimbayi; Bekunda, Mateete; 2018. Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible?. Agricultural Systems, 162, 77–88. 10.1016/j.agsy.2018.01.012
(View/edit entry)
2018Model application 44
Soltani, Afshin; Sinclair, Thomas R.; 2015. A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crops Research, 175, 37–46. 10.1016/j.fcr.2014.10.019
(View/edit entry)
2015Model application 32
Tang, Jianzhao; Wang, Jing; Fang, Quanxiao; Wang, Enli; Yin, Hong; Pan, Xuebiao; 2018. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 98, 82–94. 10.1016/j.eja.2018.05.008
(View/edit entry)
2018Model application 16
Perry, Eileen M.; Fitzgerald, Glenn J.; Nuttall, James G.; O’Leary, Garry J.; Schulthess, Urs; Whitlock, Andrew; 2012. Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a Canopy Chlorophyll Content Index. Field Crops Research, 134, 158–164. 10.1016/j.fcr.2012.06.003
(View/edit entry)
2012Model application 30
Cichota, Rogerio; Vogeler, Iris; Snow, Val O.; Webb, Trevor H.; 2013. Ensemble pedotransfer functions to derive hydraulic properties for New Zealand soils. Soil Research, 51, 94. 10.1071/SR12338
(View/edit entry)
2013Model application 38
O'Leary, Garry J.; Liu, De Li; Ma, Yuchun; Li, Frank Yonghong; McCaskill, Malcolm; Conyers, Mark; Dalal, Ram; Reeves, Steven; Page, Kathryn; Dang, Yash P.; Robertson, Fiona; 2016. Modelling soil organic carbon 1. Performance of APSIM crop and pasture modules against long-term experimental data. Geoderma, 264, 227–237. 10.1016/j.geoderma.2015.11.004
(View/edit entry)
2016Model application 28
Luo, Q; Bellotti, W; Hayman, P; Williams, M; Devoil, P; 2010. Effects of changes in climatic variability on agricultural production. Climate Research, 42, 111–117. 10.3354/cr00868
(View/edit entry)
2010Model application 26
Bai, Huiqing; Wang, Jing; Fang, Quanxiao; Yin, Hong; 2019. Modeling the sensitivity of wheat yield and yield gap to temperature change with two contrasting methods in the North China Plain. Climatic Change, 156, 589–607. 10.1007/s10584-019-02526-2
(View/edit entry)
2019Model application 1
Zhao, Zhigan; Wang, Enli; Wang, Zhimin; Zang, Hecang; Liu, Yunpeng; Angus, John F.; 2014. A reappraisal of the critical nitrogen concentration of wheat and its implications on crop modeling. Field Crops Research, 164, 65–73. 10.1016/j.fcr.2014.05.004
(View/edit entry)
2014Model application 34
He, Di; Wang, Enli; Wang, Jing; Robertson, Michael J.; 2017. Data requirement for effective calibration of process-based crop models. Agricultural and Forest Meteorology, 234, 136–148. 10.1016/j.agrformet.2016.12.015
(View/edit entry)
2017Model application 41
Akponikpè, P.B.I.; Minet, J.; Gérard, B.; Defourny, P.; Bielders, C.L.; 2011. Spatial fields’ dispersion as a farmer strategy to reduce agro-climatic risk at the household level in pearl millet-based systems in the Sahel: A modeling perspective. Agricultural and Forest Meteorology, 151, 215–227. 10.1016/j.agrformet.2010.10.007
(View/edit entry)
2011Model application 27
Zeleke, K.T.; Luckett, D.J.; Cowley, R.B.; 2014. The influence of soil water conditions on canola yields and production in Southern Australia. Agricultural Water Management, 144, 20–32. 10.1016/j.agwat.2014.05.016
(View/edit entry)
2014Model application 21
Yang, Xiaoya; Li, Jun; Yu, Qiang; Ma, Yuchun; Tong, Xiaojuan; Feng, Yan; Tong, Yingxiang; 2019. Impacts of diffuse radiation fraction on light use efficiency and gross primary production of winter wheat in the North China Plain. Agricultural and Forest Meteorology, 275, 233–242. 10.1016/j.agrformet.2019.05.028
(View/edit entry)
2019Model application 10
Cichota, R.; Snow, V.O.; Vogeler, I.; 2013. Modelling nitrogen leaching from overlapping urine patches. Environmental Modelling & Software, 41, 15–26. 10.1016/j.envsoft.2012.10.011
(View/edit entry)
2013Model application 26
Humphreys, E.; Gaydon, D.S.; 2015. Options for increasing the productivity of the rice–wheat system of north-west India while reducing groundwater depletion. Part 1. Rice variety duration, sowing date and inclusion of mungbean. Field Crops Research, 173, 68–80. 10.1016/j.fcr.2014.11.018
(View/edit entry)
2015Model application 32
Robertson, M. J.; Carberry, P. S.; Lucy, M.; 2000. Evaluation of a new cropping option using a participatory approach with on-farm monitoring and simulation: a case study of spring-sown mungbeans. Australian Journal of Agricultural Research, 51, 1. 10.1071/AR99082
(View/edit entry)
2000Model application 38
Chauhan, Y. S.; Wright, G. C.; Rachaputi, R. C. N.; Holzworth, D.; Broome, A.; Krosch, S.; Robertson, M. J.; 2010. Application of a model to assess aflatoxin risk in peanuts. The Journal of Agricultural Science, 148, 341–351. 10.1017/S002185961000002X
(View/edit entry)
2010Model application 32
deVoil, P.; 2006. Exploring profit – Sustainability trade-offs in cropping systems using evolutionary algorithms. Environmental Modelling & Software, 21, 1368–1374. 10.1016/j.envsoft.2005.04.016
(View/edit entry)
2006Model application 45
Nuttall, J. G.; O'Leary, G. J.; Khimashia, N.; Asseng, S.; Fitzgerald, G.; Norton, R.; 2012. ‘Haying-off' in wheat is predicted to increase under a future climate in south-eastern Australia. Crop and Pasture Science, 63, 593. 10.1071/CP12062
(View/edit entry)
2012Model application 19
Iocola, Ileana; Bassu, Simona; Farina, Roberta; Antichi, Daniele; Basso, Bruno; Bindi, Marco; Dalla Marta, Anna; Danuso, Francesco; Doro, Luca; Ferrise, Roberto; Giglio, Luisa; Ginaldi, Fabrizio; Mazzoncini, Marco; Mula, Laura; Orsini, Roberto; Corti, Giuseppe; Pasqui, Massimiliano; Seddaiu, Giovanna; Tomozeiu, Rodica; Ventrella, Domenico; Villani, Giulia; Roggero, Pier Paolo; 2017. Can conservation tillage mitigate climate change impacts in Mediterranean cereal systems? A soil organic carbon assessment using long term experiments. European Journal of Agronomy, 90, 96–107. 10.1016/j.eja.2017.07.011
(View/edit entry)
2017Model application 27
Masikati, P.; Manschadi, A.; van Rooyen, A.; Hargreaves, J.; 2014. Maize–mucuna rotation: An alternative technology to improve water productivity in smallholder farming systems. Agricultural Systems, 123, 62–70. 10.1016/j.agsy.2013.09.003
(View/edit entry)
2014Model application 27
Xing, Hongtao; Liu, De Li; Li, Guangdi; Wang, Bin; Anwar, Muhuddin Rajin; Crean, Jason; Lines-Kelly, Rebecca; Yu, Qiang; 2017. Incorporating grain legumes in cereal-based cropping systems to improve profitability in southern New South Wales, Australia. Agricultural Systems, 154, 112–123. 10.1016/j.agsy.2017.03.010
(View/edit entry)
2017Model application 6
Battisti, R.; Sentelhas, P. C.; Boote, K. J.; 2018. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil. International Journal of Biometeorology, 62, 823–832. 10.1007/s00484-017-1483-1
(View/edit entry)
2018Model application 8
Chapman, D.F.; Dassanayake, K.; Hill, J.O.; Cullen, B.R.; Lane, N.; 2012. Forage-based dairying in a water-limited future: Use of models to investigate farming system adaptation in southern Australia. Journal of Dairy Science, 95, 4153–4175. 10.3168/jds.2011-5110
(View/edit entry)
2012Model application 11
Hochman, Zvi; Horan, Heidi; Reddy, D. Raji; Sreenivas, Gade; Tallapragada, Chiranjeevi; Adusumilli, Ravindra; Gaydon, Don; Singh, Kamalesh K.; Roth, Christian H.; 2017. Smallholder farmers managing climate risk in India: 1. Adapting to a variable climate. Agricultural Systems, 150, 54–66. 10.1016/j.agsy.2016.10.001
(View/edit entry)
2017Model application 15
Ren, Xinmao; Sun, Dongbao; Wang, Qingsuo; 2016. Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agricultural Water Management, 171, 40–48. 10.1016/j.agwat.2016.03.014
(View/edit entry)
2016Model application 31
Brown, Jaclyn N.; Hochman, Zvi; Holzworth, Dean; Horan, Heidi; 2018. Seasonal climate forecasts provide more definitive and accurate crop yield predictions. Agricultural and Forest Meteorology, 260, 247–254. 10.1016/j.agrformet.2018.06.001
(View/edit entry)
2018Model application 31
Wessolek, Gerd; Asseng, Senthold; 2006. Trade-off between wheat yield and drainage under current and climate change conditions in northeast Germany. European Journal of Agronomy, 24, 333–342. 10.1016/j.eja.2005.11.001
(View/edit entry)
2006Model application 45
Mushtaq, Shahbaz; An-Vo, Duc-Anh; Christopher, Mandy; Zheng, Bangyou; Chenu, Karine; Chapman, Scott C.; Christopher, Jack T.; Stone, Roger C.; Frederiks, Troy M.; Alam, G.M. Monirul; 2017. Economic assessment of wheat breeding options for potential improved levels of post head-emergence frost tolerance. Field Crops Research, 213, 75–88. 10.1016/j.fcr.2017.07.021
(View/edit entry)
2017Model application 7
Xing, Hongtao; Wang, Enli; Smith, Chris J.; Rolston, Denis; Yu, Qiang; 2011. Modelling nitrous oxide and carbon dioxide emission from soil in an incubation experiment. Geoderma, 167, 328–339. 10.1016/j.geoderma.2011.07.003
(View/edit entry)
2011Model application 22
Ruan, Hongyan; Feng, Puyu; Wang, Bin; Xing, Hongtao; O’Leary, Garry J.; Huang, Zhigang; Guo, Hao; Liu, De Li; 2018. Future climate change projects positive impacts on sugarcane productivity in southern China. European Journal of Agronomy, 96, 108–119. 10.1016/j.eja.2018.03.007
(View/edit entry)
2018Model application 25
McDonald, A.J.; Kumar, Virender; Poonia, S.P.; Srivastava, Amit K.; Malik, R.K.; 2019. Taking the climate risk out of transplanted and direct seeded rice: Insights from dynamic simulation in Eastern India. Field Crops Research, 239, 92–103. 10.1016/j.fcr.2019.05.014
(View/edit entry)
2019Model application 13
Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli; 2015. How model and input uncertainty impact maize yield simulations in West Africa. Environmental Research Letters, 10, 024017. 10.1088/1748-9326/10/2/024017
(View/edit entry)
2015Model application 28
Elli, Elvis Felipe; Sentelhas, Paulo Cesar; de Freitas, Cleverson Henrique; Carneiro, Rafaela Lorenzato; Alvares, Clayton Alcarde; 2019. Intercomparison of structural features and performance of Eucalyptus simulation models and their ensemble for yield estimations. Forest Ecology and Management, 450, 117493. 10.1016/j.foreco.2019.117493
(View/edit entry)
2019Model application 15
Liu, De Li; Anwar, Muhuddin R.; O'Leary, Garry; Conyers, Mark K.; 2014. Managing wheat stubble as an effective approach to sequester soil carbon in a semi-arid environment: Spatial modelling. Geoderma, 214, 50–61. 10.1016/j.geoderma.2013.10.003
(View/edit entry)
2014Model application 31
Akkermans, Rinie A.; Stuermer, Arne W.; Delfs, Jan; 2013. Assessment of Front-Rotor Trailing-Edge-Blowing for the Reduction of Open Rotor Noise Emissions. . Volume .
(View/edit entry)
2013Model application 5
Chen, W.; Shen, Y.Y.; Robertson, M.J.; Probert, M.E.; Bellotti, W.D.; 2008. Simulation analysis of lucerne–wheat crop rotation on the Loess Plateau of Northern China. Field Crops Research, 108, 179–187. 10.1016/j.fcr.2008.04.010
(View/edit entry)
2008Model application 27
Holzworth, Dean P.; Huth, Neil I.; deVoil, Peter G.; 2011. Simple software processes and tests improve the reliability and usefulness of a model. Environmental Modelling & Software, 26, 510–516. 10.1016/j.envsoft.2010.10.014
(View/edit entry)
2011Model application 34
Kabir, Jahangir; Cramb, Rob; Gaydon, Donald S.; Roth, Christian H.; 2017. Bio-economic evaluation of cropping systems for saline coastal Bangladesh: II. Economic viability in historical and future environments. Agricultural Systems, 155, 103–115. 10.1016/j.agsy.2017.05.002
(View/edit entry)
2017Model application 13
Shamudzarira, Z.; Robertson, M. J.; 2002. SIMULATING RESPONSE OF MAIZE TO NITROGEN FERTILIZER IN SEMI-ARID ZIMBABWE. Experimental Agriculture, 38, 79–96. 10.1017/S0014479702000170
(View/edit entry)
2002Model application 46
Liu, De Li; O’Leary, Garry J.; Christy, Brendan; Macadam, Ian; Wang, Bin; Anwar, Muhuddin R.; Weeks, Anna; 2017. Effects of different climate downscaling methods on the assessment of climate change impacts on wheat cropping systems. Climatic Change, 144, 687–701. 10.1007/s10584-017-2054-5
(View/edit entry)
2017Model application 25
Bryant, J. R.; Snow, V. O.; 2008. Modelling pastoral farm agro‐ecosystems: A review. New Zealand Journal of Agricultural Research, 51, 349–363. 10.1080/00288230809510466
(View/edit entry)
2008Model application 47
Wang, Na; Wang, Jing; Wang, Enli; Yu, Qiang; Shi, Ying; He, Di; 2015. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming. European Journal of Agronomy, 71, 19–33. 10.1016/j.eja.2015.08.005
(View/edit entry)
2015Model application 23
Costa, Leandro G.; Marin, Fabio R.; Nassif, Daniel S. P.; Pinto, Helena M. S.; Lopes-Assad, Maria L. R. C.; 2014. Simulação do efeito do manejo da palha e do nitrogênio na produtividade da cana-de-açúcar. Revista Brasileira de Engenharia Agrícola e Ambiental, 18, 469–474. 10.1590/S1415-43662014000500001
(View/edit entry)
2014Model application 21
Sheng, Meiling; Liu, Junzhi; Zhu, A-Xing; Rossiter, David G.; Liu, Haoran; Liu, Zhangcong; Zhu, Liming; 2019. Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-maize model. Agricultural and Forest Meteorology, 278, 107659. 10.1016/j.agrformet.2019.107659
(View/edit entry)
2019Model application 11
Yang, Yanmin; Yang, Yonghui; Han, Shumin; Macadam, Ian; Liu, De Li; 2014. Prediction of cotton yield and water demand under climate change and future adaptation measures. Agricultural Water Management, 144, 42–53. 10.1016/j.agwat.2014.06.001
(View/edit entry)
2014Model application 33
Asseng, Senthold; Turner, Neil C.; Botwright, Tina; Condon, Anthony G.; 2003. Evaluating the Impact of a Trait for Increased Specific Leaf Area on Wheat Yields Using a Crop Simulation Model. Agronomy Journal, 95, 10. 10.2134/agronj2003.0010
(View/edit entry)
2003Model application 63
Smethurst, Philip J.; Huth, Neil I.; Masikati, Patricia; Sileshi, Gudeta W.; 2017. Accurate crop yield predictions from modelling tree-crop interactions in gliricidia-maize agroforestry. Agricultural Systems, 155, 70–77. 10.1016/j.agsy.2017.04.008
(View/edit entry)
2017Model application 33
Chauhan, Y. S.; Wright, G. C.; Rachaputi, N. C.; 2008. Modelling climatic risks of aflatoxin contamination in maize. Australian Journal of Experimental Agriculture, 48, 358. 10.1071/EA06101
(View/edit entry)
2008Model application 48
Zhao, Gang; Bryan, Brett A.; King, Darran; Luo, Zhongkui; Wang, Enli; Yu, Qiang; 2015. Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia's agricultural lands. GCB Bioenergy, 7, 479–487. 10.1111/gcbb.12145
(View/edit entry)
2015Model application 30
Hochman, Zvi; Prestwidge, Di; Carberry, Peter S.; 2014. Crop sequences in Australia’s northern grain zone are less agronomically efficient than implied by the sum of their parts. Agricultural Systems, 129, 124–132. 10.1016/j.agsy.2014.06.001
(View/edit entry)
2014Model application 25
Wang, Jing; Wang, Enli; Yin, Hong; Feng, Liping; Zhao, Yanxia; 2015. Differences between observed and calculated solar radiations and their impact on simulated crop yields. Field Crops Research, 176, 1–10. 10.1016/j.fcr.2015.02.014
(View/edit entry)
2015Model application 26
Cleugh, H. A.; Prinsley, R.; Bird, P. R.; Brooks, S. J.; Carberry, P. S.; Crawford, M. C.; Jackson, T. T.; Meinke, H.; Mylius, S. J.; Nuberg, I. K.; Sudmeyer, R. A.; Wright, A. J.; 2002. The Australian National Windbreaks Program: overview and summary of results. Australian Journal of Experimental Agriculture, 42, 649. 10.1071/EA02003
(View/edit entry)
2002Model application 57
Jiang, Rui; Wang, Tong-tong; Shao, Jin; Guo, Sheng; Zhu, Wei; Yu, Ya-jun; Chen, Shao-lin; Hatano, Ryusuke; 2017. Modeling the biomass of energy crops: Descriptions, strengths and prospective. Journal of Integrative Agriculture, 16, 1197–1210. 10.1016/S2095-3119(16)61592-7
(View/edit entry)
2017Model application 14
Turner, Neil C.; Rao, K.P.C.; 2013. Simulation analysis of factors affecting sorghum yield at selected sites in eastern and southern Africa, with emphasis on increasing temperatures. Agricultural Systems, 121, 53–62. 10.1016/j.agsy.2013.06.002
(View/edit entry)
2013Model application 25
Dolling, P. J.; Fillery, I. R. P.; Ward, P. R.; Asseng, S.; Robertson, M. J.; 2006. Consequences of rainfall during summer - autumn fallow on available soil water and subsequent drainage in annual-based cropping systems. Australian Journal of Agricultural Research, 57, 281. 10.1071/AR04103
(View/edit entry)
2006Model application 28
Bell, Lindsay W.; Robertson, Michael J.; Revell, Dean K.; Lilley, Julianne M.; Moore, Andrew D.; 2008. Approaches for assessing some attributes of feed-base systems in mixed farming enterprises. Australian Journal of Experimental Agriculture, 48, 789. 10.1071/EA07421
(View/edit entry)
2008Model application 29
Whish, Jeremy P.M.; Herrmann, Neville I.; White, Neil A.; Moore, Andrew D.; Kriticos, Darren J.; 2015. Integrating pest population models with biophysical crop models to better represent the farming system. Environmental Modelling & Software, 72, 418–425. 10.1016/j.envsoft.2014.10.010
(View/edit entry)
2015Model application 27
Deen, W; Cousens, R; Warringa, J; Bastiaans, L; Carberry, P; Rebel, K; Riha, S; Murphy, C; Benjamin, L R; Cloughley, C; Cussans, J; Forcella, F; Hunt, T.; Jamieson, P; Lindquist, J; Wang, E; 2003. An evaluation of four crop : weed competition models using a common data set. Weed Research, 43, 116–129. 10.1046/j.1365-3180.2003.00323.x
(View/edit entry)
2003Model application 63
Macadam, Ian; Argüeso, Daniel; Evans, Jason P.; Liu, De Li; Pitman, Andy J.; 2016. The effect of bias correction and climate model resolution on wheat simulations forced with a regional climate model ensemble: FORCING WHEAT SIMULATIONS WITH REGIONAL CLIMATE MODEL DATA. International Journal of Climatology, 36, 4577–4591. 10.1002/joc.4653
(View/edit entry)
2016Model application 21
Cichota, R.; Snow, V. O.; Vogeler, I.; Wheeler, D. M.; Shepherd, M. A.; 2012. Describing N leaching from urine patches deposited at different times of the year with a transfer function. Soil Research, 50, 694. 10.1071/SR12208
(View/edit entry)
2012Model application 33
Mupangwa, Walter; Dimes, John; Walker, Sue; Twomlow, Stephen; 2011. Measuring and simulating maize (Zea mays L.) yield responses to reduced tillage and mulching under semi-arid conditions. Agricultural Sciences, 2, 167–174. 10.4236/as.2011.23023
(View/edit entry)
2011Model application 15
Vogeler, I.; Giltrap, D.; Cichota, R.; 2013. Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions. Science of The Total Environment, 465, 147–155. 10.1016/j.scitotenv.2012.09.021
(View/edit entry)
2013Model application 27
Liu, Leilei; Wang, Enli; Zhu, Yan; Tang, Liang; Cao, Weixing; 2013. Quantifying three-decade changes of single rice cultivars in China using crop modeling. Field Crops Research, 149, 84–94. 10.1016/j.fcr.2013.04.025
(View/edit entry)
2013Model application 17
Laing, A.M.; Roth, C.H.; Chialue, L.; Gaydon, D.S.; Grünbühel, C.M.; Inthavong, T.; Phengvichith, V.; Schiller, J.; Thiravong, K.; Williams, L.J.; 2018. Mechanised dry seeding is an adaptation strategy for managing climate risks and reducing labour costs in rainfed rice production in lowland Lao PDR. Field Crops Research, 225, 32–46. 10.1016/j.fcr.2018.05.020
(View/edit entry)
2018Model application 11
Camargo, G.G.T.; Kemanian, A.R.; 2016. Six crop models differ in their simulation of water uptake. Agricultural and Forest Meteorology, 220, 116–129. 10.1016/j.agrformet.2016.01.013
(View/edit entry)
2016Model application 23
Wang, Enli; Xu, Johnny H.; Smith, Chris J.; 2008. Value of historical climate knowledge, SOI-based seasonal climate forecasting and stored soil moisture at sowing in crop nitrogen management in south eastern Australia. Agricultural and Forest Meteorology, 148, 1743–1753. 10.1016/j.agrformet.2008.06.004
(View/edit entry)
2008Model application 27
Sun, Shuang; Yang, Xiaoguang; Lin, Xiaomao; Sassenrath, Gretchen F.; Li, Kenan; 2018. Climate-smart management can further improve winter wheat yield in China. Agricultural Systems, 162, 10–18. 10.1016/j.agsy.2018.01.010
(View/edit entry)
2018Model application 21
Maharjan, Ganga Ram; Prescher, Anne-Katrin; Nendel, Claas; Ewert, Frank; Mboh, Cho Miltin; Gaiser, Thomas; Seidel, Sabine J.; 2018. Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models. Soil and Tillage Research, 180, 210–221. 10.1016/j.still.2018.03.009
(View/edit entry)
2018Model application 23
Asseng, S.; Milroy, S.P.; Poole, M.L.; 2008. Systems analysis of wheat production on low water-holding soils in a Mediterranean-type environment. Field Crops Research, 105, 97–106. 10.1016/j.fcr.2007.08.003
(View/edit entry)
2008Model application 41
Andrade, A. S.; Santos, P. M.; Pezzopane, J. R. M.; de Araujo, L. C.; Pedreira, B. C.; Pedreira, C. G. S.; Marin, F. R.; Lara, M. A. S.; 2016. Simulating tropical forage growth and biomass accumulation: an overview of model development and application. Grass and Forage Science, 71, 54–65. 10.1111/gfs.12177
(View/edit entry)
2016Model application 15
Martinez-Feria, Rafael A.; Castellano, Michael J.; Dietzel, Ranae N.; Helmers, Matt J.; Liebman, Matt; Huber, Isaiah; Archontoulis, Sotirios V.; 2018. Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agriculture, Ecosystems & Environment, 256, 131–143. 10.1016/j.agee.2018.01.002
(View/edit entry)
2018Model application 35
Reyenga, P.J.; Howden, S.M.; Meinke, H.; Hall, W.B.; 2001. Global change impacts on wheat production along an environmental gradient in south Australia. Environment International, 27, 195–200. 10.1016/S0160-4120(01)00082-4
(View/edit entry)
2001Model application 44
Lawes, R. A.; Robertson, M. J.; 2012. Effect of subtropical perennial grass pastures on nutrients and carbon in coarse-textured soils in a Mediterranean climate. Soil Research, 50, 551. 10.1071/SR11320
(View/edit entry)
2012Model application 14
Asseng, S; Turner, Neil C; Ray, J.D; Keating, B.A; 2002. A simulation analysis that predicts the influence of physiological traits on the potential yield of wheat. European Journal of Agronomy, 17, 123–141. 10.1016/S1161-0301(01)00149-6
(View/edit entry)
2002Model application 57
Singh, Vijaya; Nguyen, Chuc T.; McLean, Greg; Chapman, Scott C.; Zheng, Bangyou; van Oosterom, Erik J.; Hammer, Graeme L.; 2017. Quantifying high temperature risks and their potential effects on sorghum production in Australia. Field Crops Research, 211, 77–88. 10.1016/j.fcr.2017.06.012
(View/edit entry)
2017Model application 13
Teixeira, Edmar I.; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank; 2018. Adapting crop rotations to climate change in regional impact modelling assessments. Science of The Total Environment, 616, 785–795. 10.1016/j.scitotenv.2017.10.247
(View/edit entry)
2018Model application 25
Kim, Seung Hee; Kim, Jinwon; Walko, Rovert; Myoung, Boksoon; Stack, David; Kafatos, Menas; 2015. Climate Change Impacts on Maize-yield Potential in the Southwestern United States. Procedia Environmental Sciences, 29, 279–280. 10.1016/j.proenv.2015.07.210
(View/edit entry)
2015Model application 3
Ghahramani, Afshin; Moore, Andrew D.; 2016. Impact of climate changes on existing crop-livestock farming systems. Agricultural Systems, 146, 142–155. 10.1016/j.agsy.2016.05.011
(View/edit entry)
2016Model application 20
Western, Andrew W.; Dassanayake, Kithsiri B.; Perera, Kushan C.; Argent, Robert M.; Alves, Oscar; Young, Griffith; Ryu, Dongryeol; 2018. An evaluation of a methodology for seasonal soil water forecasting for Australian dry land cropping systems. Agricultural and Forest Meteorology, 253, 161–175. 10.1016/j.agrformet.2018.02.012
(View/edit entry)
2018Model application 9
Luo, Zhongkui; Wang, Enli; Fillery, Ian R.P.; Macdonald, Lynne M.; Huth, Neil; Baldock, Jeff; 2014. Modelling soil carbon and nitrogen dynamics using measurable and conceptual soil organic matter pools in APSIM. Agriculture, Ecosystems & Environment, 186, 94–104. 10.1016/j.agee.2014.01.019
(View/edit entry)
2014Model application 29
Myoung, Boksoon; Kim, Seung Hee; Stack, David H.; Kim, Jinwon; Kafatos, Menas C.; 2015. Temperature, Sowing and Harvest Dates, and Yield Potential of Maize in the Southwestern US. Procedia Environmental Sciences, 29, 276. 10.1016/j.proenv.2015.07.207
(View/edit entry)
2015Model application 2
Wang, Guo-Cheng; Wang, En-Li; Huang, Yao; Xu, Jing-Jing; 2014. Soil Carbon Sequestration Potential as Affected by Management Practices in Northern China: A Simulation Study. Pedosphere, 24, 529–543. 10.1016/S1002-0160(14)60039-4
(View/edit entry)
2014Model application 11
Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao; 2016. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions. Frontiers of Earth Science, 10, 444–454. 10.1007/s11707-015-0534-3
(View/edit entry)
2016Model application 4
Meier, E. A.; Thorburn, P. J.; Probert, M. E.; 2006. Occurrence and simulation of nitrification in two contrasting sugarcane soils from the Australian wet tropics. Soil Research, 44, 1. 10.1071/SR05004
(View/edit entry)
2006Model application 24
Shaw, Ruth E.; Meyer, Wayne S.; McNeill, Ann; Tyerman, Stephen D.; 2013. Waterlogging in Australian agricultural landscapes: a review of plant responses and crop models. Crop and Pasture Science, 64, 549. 10.1071/CP13080
(View/edit entry)
2013Model application 35
Nóia Júnior, Rogério de Souza; Sentelhas, Paulo Cesar; 2019. Soybean-maize succession in Brazil: Impacts of sowing dates on climate variability, yields and economic profitability. European Journal of Agronomy, 103, 140–151. 10.1016/j.eja.2018.12.008
(View/edit entry)
2019Model application 22
Song, Youhong; Birch, Colin; Qu, Shanshan; Dohert, Al; Hanan, Jim; 2010. Analysis and Modelling of the Effects of Water Stress on Maize Growth and Yield in Dryland Conditions. Plant Production Science, 13, 199–208. 10.1626/pps.13.199
(View/edit entry)
2010Model application 25
Hammer, Graeme; McLean, Greg; Doherty, Al; van Oosterom, Erik; Chapman, Scott; Ciampitti, Ignacio; Prasad, Vara; 2016. Sorghum Crop Modeling and Its Utility in Agronomy and Breeding. In: (eds.)Agronomy Monographs.. .
(View/edit entry)
2016Model application 7
Pembleton, K. G.; Rawnsley, R. P.; Jacobs, J. L.; Mickan, F. J.; O'Brien, G. N.; Cullen, B. R.; Ramilan, T.; 2013. Evaluating the accuracy of the Agricultural Production Systems Simulator (APSIM) simulating growth, development, and herbage nutritive characteristics of forage crops grown in the south-eastern dairy regions of Australia. Crop and Pasture Science, 64, 147. 10.1071/CP12372
(View/edit entry)
2013Model application 22
Shahhosseini, Mohsen; Martinez-Feria, Rafael A; Hu, Guiping; Archontoulis, Sotirios V; 2019. Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters, 14, 124026. 10.1088/1748-9326/ab5268
(View/edit entry)
2019Model application 48
Smith, C. J.; Macdonald, B. C. T.; Xing, H.; Denmead, O. T.; Wang, E.; McLachlan, G.; Tuomi, S.; Turner, D.; Chen, D.; 2020. Measurements and APSIM modelling of soil C and N dynamics. Soil Research, 58, 41. 10.1071/SR19021
(View/edit entry)
2020Model application 3
Oliver, Yvette M.; Robertson, Michael J.; Weeks, Cameron; 2010. A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions. Agricultural Water Management, 98, 291–300. 10.1016/j.agwat.2010.08.024
(View/edit entry)
2010Model application 34
Amarasingha, R.P.R.K.; Suriyagoda, L.D.B.; Marambe, B.; Gaydon, D.S.; Galagedara, L.W.; Punyawardena, R.; Silva, G.L.L.P.; Nidumolu, U.; Howden, M.; 2015. Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka. Agricultural Water Management, 160, 132–143. 10.1016/j.agwat.2015.07.001
(View/edit entry)
2015Model application 32
Anderson, Edward; Monjardino, Marta; 2019. Contract design in agriculture supply chains with random yield. European Journal of Operational Research, 277, 1072–1082. 10.1016/j.ejor.2019.03.041
(View/edit entry)
2019Model application 21
Xiao, Dengpan; Qi, Yongqing; Li, Zhiqiang; Wang, Rende; Moiwo, Juana P.; Liu, Fengshan; 2017. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China. Frontiers of Earth Science, 11, 148–155. 10.1007/s11707-016-0584-1
(View/edit entry)
2017Model application 4
Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P; 2018. Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes—A review. Field Crops Research, 221, 142–156. 10.1016/j.fcr.2018.02.023
(View/edit entry)
2018Model application 46
Mkoga, Z.J.; Tumbo, S.D.; Kihupi, N.; Semoka, J.; 2010. Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling. Physics and Chemistry of the Earth, Parts A/B/C, 35, 686–698. 10.1016/j.pce.2010.07.036
(View/edit entry)
2010Model application 28
Williams, Allyson; White, Neil; Mushtaq, Shahbaz; Cockfield, Geoff; Power, Brendan; Kouadio, Louis; 2015. Quantifying the response of cotton production in eastern Australia to climate change. Climatic Change, 129, 183–196. 10.1007/s10584-014-1305-y
(View/edit entry)
2015Model application 26
Li, Jianzheng; Wang, Enli; Wang, Yingchun; Xing, Hongtao; Wang, Daolong; Wang, Ligang; Gao, Chunyu; 2016. Reducing greenhouse gas emissions from a wheat–maize rotation system while still maintaining productivity. Agricultural Systems, 145, 90–98. 10.1016/j.agsy.2016.03.007
(View/edit entry)
2016Model application 18
Battisti, Rafael; Sentelhas, Paulo C.; Parker, Phillip S.; Nendel, Claas; Câmara, Gil M. De S.; Farias, José R. B.; Basso, Claudir J.; 2018. Assessment of crop-management strategies to improve soybean resilience to climate change in Southern Brazil. Crop and Pasture Science, 69, 154. 10.1071/CP17293
(View/edit entry)
2018Model application 19
Kabir, Md. Jahangir; Cramb, Rob; Gaydon, Donald S.; Roth, Christian H.; 2018. Bio-economic evaluation of cropping systems for saline coastal Bangladesh: III Benefits of adaptation in current and future environments. Agricultural Systems, 161, 28–41. 10.1016/j.agsy.2017.12.006
(View/edit entry)
2018Model application 10
Ojeda, J.J.; Pembleton, K.G.; Caviglia, O.P.; Islam, M.R.; Agnusdei, M.G.; Garcia, S.C.; 2018. Modelling forage yield and water productivity of continuous crop sequences in the Argentinian Pampas. European Journal of Agronomy, 92, 84–96. 10.1016/j.eja.2017.10.004
(View/edit entry)
2018Model application 12
Roxburgh, Caspar W.; Rodriguez, Daniel; 2016. Ex-ante analysis of opportunities for the sustainable intensification of maize production in Mozambique. Agricultural Systems, 142, 9–22. 10.1016/j.agsy.2015.10.010
(View/edit entry)
2016Model application 14
Amarasingha, R.P.R.K.; Suriyagoda, L.D.B.; Marambe, B.; Galagedara, L.W.; Silva, G.L.L.P; Punyawardena, R.; Wijekoon, R.; Nidumolu, U.; Howden, M.; 2015. Modelling the impact of changes in rainfall distribution on the irrigation water requirement and yield of short and medium duration rice varieties using APSIM during Maha season in the dry zone of Sri Lanka. Tropical Agricultural Research, 26, 274. 10.4038/tar.v26i2.8091
(View/edit entry)
2015Model application 4
Wang, Enli; Brown, Hamish E; Rebetzke, Greg J; Zhao, Zhigan; Zheng, Bangyou; Chapman, Scott C; 2019. Improving process-based crop models to better capture genotype×environment×management interactions. Journal of Experimental Botany, 70, 2389–2401. 10.1093/jxb/erz092
(View/edit entry)
2019Model application 17
Snapp, Sieglinde; Kerr, Rachel Bezner; Smith, Alex; Ollenburger, Mary; Mhango, Wezi; Shumba, Lizzie; Gondwe, Tinkani; Kanyama-Phiri, George; 2013. Modeling and participatory farmer-led approaches to food security in a changing world: A case study from Malawi. Sécheresse, 24, 350–358. 10.1684/sec.2014.0409
(View/edit entry)
2013Model application 12
Ebrahimi-Mollabashi, Elnaz; Huth, Neil I.; Holzwoth, Dean P.; Ordóñez, Raziel A.; Hatfield, Jerry L.; Huber, Isaiah; Castellano, Michael J.; Archontoulis, Sotirios V.; 2019. Enhancing APSIM to simulate excessive moisture effects on root growth. Field Crops Research, 236, 58–67. 10.1016/j.fcr.2019.03.014
(View/edit entry)
2019Model application 32
Florin, M.J.; McBratney, A.B.; Whelan, B.M.; 2009. Quantification and comparison of wheat yield variation across space and time. European Journal of Agronomy, 30, 212–219. 10.1016/j.eja.2008.10.003
(View/edit entry)
2009Model application 22
Zhao, Zhigan; Wang, Enli; Xue, Lihua; Wu, Yongcheng; Zang, Hecang; Qin, Xin; Zhang, Jingting; Wang, Zhimin; 2014. Accuracy of root modelling and its impact on simulated wheat yield and carbon cycling in soil. Field Crops Research, 165, 99–110. 10.1016/j.fcr.2014.03.018
(View/edit entry)
2014Model application 14
Mielenz, Henrike; Thorburn, Peter J.; Scheer, Clemens; De Antoni Migliorati, Massimiliano; Grace, Peter R.; Bell, Mike J.; 2016. Opportunities for mitigating nitrous oxide emissions in subtropical cereal and fiber cropping systems: A simulation study. Agriculture, Ecosystems & Environment, 218, 11–27. 10.1016/j.agee.2015.11.008
(View/edit entry)
2016Model application 11
Dolling, P. J.; Robertson, M. J.; Asseng, S.; Ward, P. R.; Latta, R. A.; 2005. Simulating lucerne growth and water use on diverse soil types in a Mediterranean-type environment. Australian Journal of Agricultural Research, 56, 503. 10.1071/AR04216
(View/edit entry)
2005Model application 33
Vogeler, I.; Lucci, G.; Shepherd, M.; 2016. An assessment of the effects of fertilizer nitrogen management on nitrate leaching risk from grazed dairy pasture. The Journal of Agricultural Science, 154, 407–424. 10.1017/S0021859615000295
(View/edit entry)
2016Model application 17
Zhang, Y.; Feng, L. P.; Wang, J.; Wang, E. L.; Xu, Y. L.; 2013. Using APSIM to explore wheat yield response to climate change in the North China Plain: the predicted adaptation of wheat cultivar types to vernalization. The Journal of Agricultural Science, 151, 836–848. 10.1017/S0021859612000883
(View/edit entry)
2013Model application 22
Asseng, Senthold; Travasso, Maria I.; Ludwig, Fulco; Magrin, Graciela O.; 2013. Has climate change opened new opportunities for wheat cropping in Argentina?. Climatic Change, 117, 181–196. 10.1007/s10584-012-0553-y
(View/edit entry)
2013Model application 14
Heinemann, Alexandre Bryan; van Oort, Pepijn A.J.; Fernandes, Diogo Simões; Maia, Aline de Holanda Nunes; 2012. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation. Bragantia, 71, 572–582. 10.1590/S0006-87052012000400016
(View/edit entry)
2012Model application 28
Nóia Júnior, Rogério de Souza; Sentelhas, Paulo Cesar; 2019. Soybean-maize off-season double crop system in Brazil as affected by El Niño Southern Oscillation phases. Agricultural Systems, 173, 254–267. 10.1016/j.agsy.2019.03.012
(View/edit entry)
2019Model application 17
Duarte, Yury C. N.; Sentelhas, Paulo C.; 2020. Intercomparison and Performance of Maize Crop Models and Their Ensemble for Yield Simulations in Brazil. International Journal of Plant Production, 14, 127–139. 10.1007/s42106-019-00073-5
(View/edit entry)
2020Model application 1
Moot, Dj; Hargreaves, J; Brown, He; Teixeira, Ei; 2015. Calibration of the APSIM-Lucerne model for ‘Grasslands Kaituna’ lucerne crops grown in New Zealand. New Zealand Journal of Agricultural Research, 58, 190–202. 10.1080/00288233.2015.1018392
(View/edit entry)
2015Model application 15
Araujo, Leandro C.; Santos, Patricia M.; Rodriguez, Daniel; Pezzopane, José Ricardo M.; Oliveira, Patricia P.A.; Cruz, Pedro G.; 2013. Simulating Guinea Grass Production: Empirical and Mechanistic Approaches. Agronomy Journal, 105, 61–69. 10.2134/agronj2012.0245
(View/edit entry)
2013Model application 21
Pembleton, K. G.; Cullen, B. R.; Rawnsley, R. P.; Harrison, M. T.; Ramilan, T.; 2016. Modelling the resilience of forage crop production to future climate change in the dairy regions of Southeastern Australia using APSIM. The Journal of Agricultural Science, 154, 1131–1152. 10.1017/S0021859615001185
(View/edit entry)
2016Model application 25
Jones, M.R.; Singels, A.; Chinorumba, S.; Patton, A.; Poser, C.; Singh, M.; Martiné, J.F.; Christina, M.; Shine, J.; Annandale, J.; Hammer, G.; 2019. Exploring process-level genotypic and environmental effects on sugarcane yield using an international experimental dataset. Field Crops Research, 244, 107622. 10.1016/j.fcr.2019.107622
(View/edit entry)
2019Model application 5
Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Thorburn, Peter J.; Castellano, Michael J.; Moore, Kenneth J.; VanLoocke, Andrew; Heaton, Emily A.; Archontoulis, Sotirios V.; 2018. A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate. Frontiers in Plant Science, 9, 436. 10.3389/fpls.2018.00436
(View/edit entry)
2018Model application 24
Seyoum, Solomon; Rachaputi, Rao; Chauhan, Yash; Prasanna, Boddupalli; Fekybelu, Solomon; 2018. Application of the APSIM model to exploit G × E × M interactions for maize improvement in Ethiopia. Field Crops Research, 217, 113–124. 10.1016/j.fcr.2017.12.012
(View/edit entry)
2018Model application 15
Humphreys, E.; Gaydon, D.S.; 2015. Options for increasing the productivity of the rice–wheat system of north west India while reducing groundwater depletion. Part 2. Is conservation agriculture the answer?. Field Crops Research, 173, 81–94. 10.1016/j.fcr.2014.11.019
(View/edit entry)
2015Model application 27
He, Di; Wang, Enli; Wang, Jing; Lilley, Julianne M.; 2017. Genotype × environment × management interactions of canola across China: A simulation study. Agricultural and Forest Meteorology, 247, 424–433. 10.1016/j.agrformet.2017.08.027
(View/edit entry)
2017Model application 20
He, Di; Wang, Enli; Wang, Jing; Lilley, Julianne; Luo, Zhongkui; Pan, Xuebiao; Pan, Zhihua; Yang, Ning; 2017. Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agricultural and Forest Meteorology, 232, 163–175. 10.1016/j.agrformet.2016.08.013
(View/edit entry)
2017Model application 20
Sexton, J.; Everingham, Y.L.; Inman-Bamber, G.; 2017. A global sensitivity analysis of cultivar trait parameters in a sugarcane growth model for contrasting production environments in Queensland, Australia. European Journal of Agronomy, 88, 96–105. 10.1016/j.eja.2015.11.009
(View/edit entry)
2017Model application 22
McCormick, Jeffrey I.; Virgona, Jim M.; Lilley, Julianne M.; Kirkegaard, John A.; 2015. Evaluating the feasibility of dual-purpose canola in a medium-rainfall zone of south-eastern Australia: a simulation approach. Crop and Pasture Science, 66, 318. 10.1071/CP13421
(View/edit entry)
2015Model application 15
Wang, Na; Wang, Enli; Wang, Jing; Zhang, Jianping; Zheng, Bangyou; Huang, Yi; Tan, Meixiu; 2018. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agricultural and Forest Meteorology, 250, 319–329. 10.1016/j.agrformet.2018.01.005
(View/edit entry)
2018Model application 27
Lorençoni, Rogério; Dourado Neto, Durval; Heinemann, Alexandre Bryan; 2010. Calibração e avaliação do modelo ORYZA-APSIM para o arroz de terras altas no Brasil. Revista Ciência Agronômica, 41, 605–613. 10.1590/S1806-66902010000400013
(View/edit entry)
2010Model application 13
Ibrahim, Ahmed; Harrison, Matthew Tom; Meinke, Holger; Zhou, Meixue; 2019. Examining the yield potential of barley near-isogenic lines using a genotype by environment by management analysis. European Journal of Agronomy, 105, 41–51. 10.1016/j.eja.2019.02.003
(View/edit entry)
2019Model application 6
Luo, Zhongkui; Eady, Sandra; Sharma, Bharat; Grant, Timothy; Liu, De Li; Cowie, Annette; Farquharson, Ryan; Simmons, Aaron; Crawford, Debbie; Searle, Ross; Moore, Andrew; 2019. Mapping future soil carbon change and its uncertainty in croplands using simple surrogates of a complex farming system model. Geoderma, 337, 311–321. 10.1016/j.geoderma.2018.09.041
(View/edit entry)
2019Model application 10
Anwar, M. R.; Rodriguez, D.; Liu, D. L.; Power, S.; O'Leary, G. J.; 2008. Quality and potential utility of ENSO-based forecasts of spring rainfall and wheat yield in south-eastern Australia. Australian Journal of Agricultural Research, 59, 112. 10.1071/AR07061
(View/edit entry)
2008Model application 25
Poulton, P.L.; Dalgliesh, N.P.; Vang, S.; Roth, C.H.; 2016. Resilience of Cambodian lowland rice farming systems to future climate uncertainty. Field Crops Research, 198, 160–170. 10.1016/j.fcr.2016.09.008
(View/edit entry)
2016Model application 15
Brown, Hamish; Huth, Neil; Holzworth, Dean; 2018. Crop model improvement in APSIM: Using wheat as a case study. European Journal of Agronomy, 100, 141–150. 10.1016/j.eja.2018.02.002
(View/edit entry)
2018Model application 26
Nelson, R.A.; Dimes, J.P.; Paningbatan, E.P.; Silburn, D.M.; 1998. Erosion/productivity modelling of maize farming in the Philippine uplands. Agricultural Systems, 58, 129–146. 10.1016/S0308-521X(98)00043-2
(View/edit entry)
1998Model application 35
Snow, V. O.; White, T. A.; 2013. Process-based modelling to understand which ryegrass characteristics can increase production and decrease leaching in grazed grass–legume pastures. Crop and Pasture Science, 64, 265. 10.1071/CP13074
(View/edit entry)
2013Model application 19
Zhao, Jin; Yang, Xiaoguang; 2018. Distribution of high-yield and high-yield-stability zones for maize yield potential in the main growing regions in China. Agricultural and Forest Meteorology, 248, 511–517. 10.1016/j.agrformet.2017.10.016
(View/edit entry)
2018Model application 20
Hoffmann, M.P.; Jacobs, A.; Whitbread, A.M.; 2015. Crop modelling based analysis of site-specific production limitations of winter oilseed rape in northern Germany. Field Crops Research, 178, 49–62. 10.1016/j.fcr.2015.03.018
(View/edit entry)
2015Model application 18
Hirschel, Ernst Heinrich; Schröder, Wolfgang; Fujii, Kozo; Haase, Werner; Leer, Bram; Leschziner, Michael A.; Pandolfi, Maurizio; Periaux, Jacques; Rizzi, Arthur; Roux, Bernard; Shokin, Yurii I.; Dillmann, Andreas; Heller, Gerd; Klaas, Michael; Kreplin, Hans-Peter; Nitsche, Wolfgang; Stuermer, Arne; Yin, Jianping; 2010. Aerodynamic and Aeroacoustic Analysis of Contra-Rotating Open Rotor Propulsion Systems at Low-Speed Flight Conditions. In: (eds.)New Results in Numerical and Experimental Fluid Mechanics VII.. 481–488.
(View/edit entry)
2010Model application 9
Hussain, Jamshad; Khaliq, Tasneem; Ahmad, Ashfaq; Akhtar, Javed; Lightfoot, David A.; 2018. Performance of four crop model for simulations of wheat phenology, leaf growth, biomass and yield across planting dates. PLOS ONE, 13, e0197546. 10.1371/journal.pone.0197546
(View/edit entry)
2018Model application 26
Tang, C.; Asseng, S.; Diatloff, E.; Rengel, Z.; 2003. Modelling yield losses of aluminium-resistant and aluminium-sensitive wheat due to subsurface soil acidity: effects of rainfall, liming and nitrogen application. Plant and Soil, 254, 349–360. 10.1023/A:1025597905001
(View/edit entry)
2003Model application 33
Stuermer, Arne; Yin, Jianping; 2012. The Case for Counter-Rotation of Installed Contra-Rotating Open Rotor Propulsion Systems. . Volume .
(View/edit entry)
2012Model application 4
Smith, C. J.; Snow, V. O.; Polglase, P. J.; Probert, M. E.; 1999. Nitrogen dynamics in a eucalypt plantation irrigated with sewage effluent or bore water. Soil Research, 37, 527. 10.1071/S98093
(View/edit entry)
1999Model application 48
Dias, Henrique Boriolo; Inman-Bamber, Geoff; Bermejo, Rodrigo; Sentelhas, Paulo Cesar; Christodoulou, Diomedes; 2019. New APSIM-Sugar features and parameters required to account for high sugarcane yields in tropical environments. Field Crops Research, 235, 38–53. 10.1016/j.fcr.2019.02.002
(View/edit entry)
2019Model application 13
Bourguignon, Marie; Archontoulis, Sotirios; Moore, Kenneth; Lenssen, Andrew; 2017. A model for evaluating production and environmental performance of kenaf in rotation with conventional row crops. Industrial Crops and Products, 100, 218–227. 10.1016/j.indcrop.2017.02.026
(View/edit entry)
2017Model application 2
Tumbo, S. D.; Kahimba, F. C.; Mbilinyi, B. P.; Rwehumbiza, F. B.; Mahoo, H. F.; Mbungu, W. B.; Enfors, E.; 2012. Impact of projected climate change on agricultural production in semi-arid areas of Tanzania: A case of same district. African Crop Science Journal, 20, 453–463.
(View/edit entry)
2012Model application 15
Nissanka, Sarath P.; Karunaratne, Asha S.; Perera, Ruchika; Weerakoon, W.M.W.; Thorburn, Peter J.; Wallach, Daniel; 2015. Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling & Software, 70, 128–137. 10.1016/j.envsoft.2015.04.007
(View/edit entry)
2015Model application 21
Chauhan, Yashvir; Allard, Samantha; Williams, Rex; Williams, Brett; Mundree, Sagadevan; Chenu, Karine; Rachaputi, N.C.; 2017. Characterisation of chickpea cropping systems in Australia for major abiotic production constraints. Field Crops Research, 204, 120–134. 10.1016/j.fcr.2017.01.008
(View/edit entry)
2017Model application 15
Descheemaeker, Katrien; Zijlstra, Mink; Masikati, Patricia; Crespo, Olivier; Homann-Kee Tui, Sabine; 2018. Effects of climate change and adaptation on the livestock component of mixed farming systems: A modelling study from semi-arid Zimbabwe. Agricultural Systems, 159, 282–295. 10.1016/j.agsy.2017.05.004
(View/edit entry)
2018Model application 16
Robertson, M. J.; Gaydon, D.; Hall, D. J. M.; Hills, A.; Penny, S.; 2005. Production risks and water use benefits of summer crop production on the south coast of Western Australia. Australian Journal of Agricultural Research, 56, 597. 10.1071/AR04249
(View/edit entry)
2005Model application 20
Amarasingha, R.P.R.K.; Galagedara, L.W.; Marambe, B.; Silva, G.L.L.P.; Punyawardena, R.; Nidumolu, U.; Howden, M.; Suriyagoda, L.D.B.; 2015. Aligning Sowing Dates with the Onset of Rains to Improve Rice Yields and Water Productivity: Modelling Rice (Oryza sativa L.) Yield of the Maha Season in the Dry Zone of Sri Lanka. Tropical Agricultural Research, 25, 277. 10.4038/tar.v25i3.8038
(View/edit entry)
2015Model application 6
Hoffmann, M. P.; Llewellyn, R. S.; Davoren, C. W.; Whitbread, A. M.; 2017. Assessing the Potential for Zone-Specific Management of Cereals in Low-Rainfall South-Eastern Australia: Combining On-Farm Results and Simulation Analysis. Journal of Agronomy and Crop Science, 203, 14–28. 10.1111/jac.12159
(View/edit entry)
2017Model application 12
De Oliveira, Ana Paula Pessim; Thorburn, Peter J.; Biggs, Jody S.; Lima, Eduardo; Dos Anjos, Lúcia Helena Cunha; Pereira, Marcos Gervasio; Zanotti, Nelson Élio; 2016. THE RESPONSE OF SUGARCANE TO TRASH RETENTION AND NITROGEN IN THE BRAZILIAN COASTAL TABLELANDS: A SIMULATION STUDY. Experimental Agriculture, 52, 69–86. 10.1017/S0014479714000568
(View/edit entry)
2016Model application 15
Elli, Elvis Felipe; Sentelhas, Paulo Cesar; de Freitas, Cleverson Henrique; Carneiro, Rafaela Lorenzato; Alvares, Clayton Alcarde; 2019. Assessing the growth gaps of Eucalyptus plantations in Brazil – Magnitudes, causes and possible mitigation strategies. Forest Ecology and Management, 451, 117464. 10.1016/j.foreco.2019.117464
(View/edit entry)
2019Model application 14
Culman, María; de Farias, Claudio M.; Bayona, Cristihian; Cabrera Cruz, José Daniel; 2019. Using agrometeorological data to assist irrigation management in oil palm crops: A decision support method and results from crop model simulation. Agricultural Water Management, 213, 1047–1062. 10.1016/j.agwat.2018.09.052
(View/edit entry)
2019Model application 10
Khaliq, Tasneem; Gaydon, Donald S.; Ahmad, Mobin-ud-Din; Cheema, M.J.M.; Gull, Umair; 2019. Analyzing crop yield gaps and their causes using cropping systems modelling–A case study of the Punjab rice-wheat system, Pakistan. Field Crops Research, 232, 119–130. 10.1016/j.fcr.2018.12.010
(View/edit entry)
2019Model application 18
Aller, Deborah M.; Archontoulis, Sotirios V.; Zhang, Wendong; Sawadgo, Wendiam; Laird, David A.; Moore, Kenneth; 2018. Long term biochar effects on corn yield, soil quality and profitability in the US Midwest. Field Crops Research, 227, 30–40. 10.1016/j.fcr.2018.07.012
(View/edit entry)
2018Model application 18
Vogeler, Iris; Cichota, Rogerio; Thomsen, Ingrid K.; Bruun, Sander; Jensen, Lars Stoumann; Pullens, Johannes W.M.; 2019. Estimating nitrogen release from Brassicacatch crop residues—Comparison of different approaches within the APSIM model. Soil and Tillage Research, 195, 104358. 10.1016/j.still.2019.104358
(View/edit entry)
2019Model application 5
Ndoli, Alain; Baudron, Frédéric; Schut, Antonius G.T.; Mukuralinda, Athanase; Giller, Ken E; 2017. Disentangling the positive and negative effects of trees on maize performance in smallholdings of Northern Rwanda. Field Crops Research, 213, 1–11. 10.1016/j.fcr.2017.07.020
(View/edit entry)
2017Model application 14
Timms, W. A.; Young, R. R.; Huth, N.; 2012. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia. Hydrology and Earth System Sciences, 16, 1203–1219. 10.5194/hess-16-1203-2012
(View/edit entry)
2012Model application 15
Paydar, Zahra; Huth, Neil; Ringrose-Voase, Anthony; Young, Rick; Bernardi, Tony; Keating, Brian; Cresswell, Hamish; 2005. Deep drainage and land use systems. Model verification and systems comparison. Australian Journal of Agricultural Research, 56, 995. 10.1071/AR04303
(View/edit entry)
2005Model application 24
Inman-Bamber, N.G.; 2016. Sugarcane for water-limited environments: Enhanced capability of the APSIM sugarcane model for assessing traits for transpiration efficiency and root water supply. Field Crops Research, 196, 112–123. 10.1016/j.fcr.2016.06.013
(View/edit entry)
2016Model application 22
Cann, David J.; Hunt, James R.; Malcolm, Bill; 2020. Long fallows can maintain whole-farm profit and reduce risk in semi-arid south-eastern Australia. Agricultural Systems, 178, 102721. 10.1016/j.agsy.2019.102721
(View/edit entry)
2020Model application 8
Keating, B.A.; Meinke, H.; 1998. Assessing exceptional drought with a cropping systems simulator: a case study for grain production in northeast Australia. Agricultural Systems, 57, 315–332. 10.1016/S0308-521X(98)00021-3
(View/edit entry)
1998Model application 39
Patrick Smith, F.; Holzworth, Dean P.; Robertson, Michael J.; 2005. Linking icon-based models to code-based models: a case study with the agricultural production systems simulator. Agricultural Systems, 83, 135–151. 10.1016/j.agsy.2004.03.004
(View/edit entry)
2005Model application 23
Kaloki, Peter; Luo, Qunying; Trethowan, Richard; Tan, Daniel K. Y.; 2019. Can the development of drought tolerant ideotype sustain Australian chickpea yield?. International Journal of Biometeorology, 63, 393–403. 10.1007/s00484-019-01672-7
(View/edit entry)
2019Model application 4
Al-Azri, M.; Leibovici, D.; Karunaratne, A.; Ray, R.V.; 2015. Simulating Eyespot Disease Development and Yield Loss Using APSIM for UK Wheat. Procedia Environmental Sciences, 29, 256–257. 10.1016/j.proenv.2015.07.192
(View/edit entry)
2015Model application 3
Seyoum, Solomon; Chauhan, Yash; Rachaputi, Rao; Fekybelu, Solomon; Prasanna, Boddupalli; 2017. Characterising production environments for maize in eastern and southern Africa using the APSIM Model. Agricultural and Forest Meteorology, 247, 445–453. 10.1016/j.agrformet.2017.08.023
(View/edit entry)
2017Model application 8
Li, Frank Yonghong; Newton, Paul C. D.; Lieffering, Mark; 2014. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO 2 against measurements from an 11-year FACE experiment on grazed pasture. Global Change Biology, 20, 228–239. 10.1111/gcb.12358
(View/edit entry)
2014Model application 22
An-Vo, Duc-Anh; Mushtaq, Shahbaz; Zheng, Bangyou; Christopher, Jack T.; Chapman, Scott C.; Chenu, Karine; 2018. Direct and Indirect Costs of Frost in the Australian Wheatbelt. Ecological Economics, 150, 122–136. 10.1016/j.ecolecon.2018.04.008
(View/edit entry)
2018Model application 9
Snow, V.O.; Bond, W.J.; Myers, B.J.; Theiveyanathan, S.; Smith, C.J.; Benyon, R.G.; 1999. Modelling the water balance of effluent-irrigated trees. Agricultural Water Management, 39, 47–67. 10.1016/S0378-3774(98)00086-9
(View/edit entry)
1999Model application 27
Luo, Qunying; Bryan, Brett; Bellotti, William; Williams, Martin; 2005. Spatial Analysis of Environmental Change Impacts on Wheat Production in Mid-Lower North, South Australia. Climatic Change, 72, 213–228. 10.1007/s10584-005-5361-1
(View/edit entry)
2005Model application 26
Liu, Junzhi; Liu, Zhangcong; Zhu, A-Xing; Shen, Fang; Lei, Qiuliang; Duan, Zheng; 2019. Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Science of The Total Environment, 651, 953–968. 10.1016/j.scitotenv.2018.09.254
(View/edit entry)
2019Model application 11
Elli, Elvis Felipe; Huth, Neil; Sentelhas, Paulo Cesar; Carneiro, Rafaela Lorenzato; Alvares, Clayton Alcarde; 2020. Ability of the APSIM Next Generation Eucalyptus model to simulate complex traits across contrasting environments. Ecological Modelling, 419, 108959. 10.1016/j.ecolmodel.2020.108959
(View/edit entry)
2020Model application 3
Zeng, Wenzhi; Wu, Jingwei; Hoffmann, Munir P.; Xu, Chi; Ma, Tao; Huang, Jiesheng; 2016. Testing the APSIM sunflower model on saline soils of Inner Mongolia, China. Field Crops Research, 192, 42–54. 10.1016/j.fcr.2016.04.013
(View/edit entry)
2016Model application 17
Wang, Enli; Xu, J.; Jiang, Q.; Austin, J.; 2009. Assessing the spatial impact of climate on wheat productivity and the potential value of climate forecasts at a regional level. Theoretical and Applied Climatology, 95, 311–330. 10.1007/s00704-008-0009-5
(View/edit entry)
2009Model application 17
de Souza Nóia Júnior, Rogério; Sentelhas, Paulo Cesar; 2020. Yield gap of the double-crop system of main-season soybean with off-season maize in Brazil. Crop and Pasture Science, 71, 445. 10.1071/CP19372
(View/edit entry)
2020Model application 1
Stanfill, Bryan; Mielenz, Henrike; Clifford, David; Thorburn, Peter; 2015. Simple approach to emulating complex computer models for global sensitivity analysis. Environmental Modelling & Software, 74, 140–155. 10.1016/j.envsoft.2015.09.011
(View/edit entry)
2015Model application 17
Dias, Henrique Boriolo; Inman-Bamber, Geoff; Everingham, Yvette; Sentelhas, Paulo Cesar; Bermejo, Rodrigo; Christodoulou, Diomedes; 2020. Traits for canopy development and light interception by twenty-seven Brazilian sugarcane varieties. Field Crops Research, 249, 107716. 10.1016/j.fcr.2020.107716
(View/edit entry)
2020Model application 7
Ojeda, J.J.; Pembleton, K.G.; Islam, M.R.; Agnusdei, M.G.; Garcia, S.C.; 2016. Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia. Agricultural Systems, 143, 61–75. 10.1016/j.agsy.2015.12.005
(View/edit entry)
2016Model application 14
Chen, Chao; Lawes, Roger; Fletcher, Andrew; Oliver, Yvette; Robertson, Michael; Bell, Mike; Wang, Enli; 2016. How well can APSIM simulate nitrogen uptake and nitrogen fixation of legume crops?. Field Crops Research, 187, 35–48. 10.1016/j.fcr.2015.12.007
(View/edit entry)
2016Model application 18
Togliatti, Kaitlin; Archontoulis, Sotirios V.; Dietzel, Ranae; Puntel, Laila; VanLoocke, Andy; 2017. How does inclusion of weather forecasting impact in-season crop model predictions?. Field Crops Research, 214, 261–272. 10.1016/j.fcr.2017.09.008
(View/edit entry)
2017Model application 24
Smethurst, Philip J.; Valadares, Rafael V.; Huth, Neil I.; Almeida, Auro C.; Elli, Elvis F.; Neves, Júlio C.L.; 2020. Generalized model for plantation production of Eucalyptus grandis and hybrids for genotype-site-management applications. Forest Ecology and Management, 469, 118164. 10.1016/j.foreco.2020.118164
(View/edit entry)
2020Model application 6
Ojeda, Jonathan J.; Volenec, Jeffrey J.; Brouder, Sylvie M.; Caviglia, Octavio P.; Agnusdei, Mónica G.; 2018. Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM. Agricultural Water Management, 195, 154–171. 10.1016/j.agwat.2017.10.010
(View/edit entry)
2018Model application 7
Asseng, S.; Dunin, F. X.; Fillery, I. R. P.; Tennant, D.; Keating, B. A.; 2001. Potential deep drainage under wheat crops in a Mediterranean climate. II. Management opportunities to control drainage. Australian Journal of Agricultural Research, 52, 57. 10.1071/AR99187
(View/edit entry)
2001Model application 42
Anwar, Muhuddin Rajin; Wang, Bin; Liu, De Li; Waters, Cathy; 2020. Late planting has great potential to mitigate the effects of future climate change on Australian rain-fed cotton. Science of The Total Environment, 714, 136806. 10.1016/j.scitotenv.2020.136806
(View/edit entry)
2020Model application 5
Deihimfard, Reza; Eyni-Nargeseh, Hamed; Mokhtassi-Bidgoli, Ali; 2018. Effect of Future Climate Change on Wheat Yield and Water Use Efficiency Under Semi-arid Conditions as Predicted by APSIM-Wheat Model. International Journal of Plant Production, 12, 115–125. 10.1007/s42106-018-0012-4
(View/edit entry)
2018Model application 20
Poulton, P. L.; Vesna, T.; Dalgliesh, N. P.; Seng, V.; 2015. APPLYING SIMULATION TO IMPROVE RICE VARIETIES IN REDUCING THE ON-FARM YIELD GAP IN CAMBODIAN LOWLAND RICE ECOSYSTEMS. Experimental Agriculture, 51, 264–284. 10.1017/S0014479714000271
(View/edit entry)
2015Model application 9
Ridoutt, Bradley G.; Wang, Enli; Sanguansri, Peerasak; Luo, Zhongkui; 2013. Life cycle assessment of phosphorus use efficient wheat grown in Australia. Agricultural Systems, 120, 2–9. 10.1016/j.agsy.2013.04.007
(View/edit entry)
2013Model application 15
Robertson, M. J.; Rebetzke, G. J.; Norton, R. M.; 2015. Assessing the place and role of crop simulation modelling in Australia. Crop and Pasture Science, 66, 877. 10.1071/CP14361
(View/edit entry)
2015Model application 14
Wang, Enli; Bell, Mike; Luo, Zhongkui; Moody, Phil; Probert, Merv E.; 2014. Modelling crop response to phosphorus inputs and phosphorus use efficiency in a crop rotation. Field Crops Research, 155, 120–132. 10.1016/j.fcr.2013.09.015
(View/edit entry)
2014Model application 20
Elli, Elvis Felipe; Sentelhas, Paulo Cesar; Huth, Neil; Carneiro, Rafaela Lorenzato; Alvares, Clayton Alcarde; 2020. Gauging the effects of climate variability on Eucalyptus plantations productivity across Brazil: A process-based modelling approach. Ecological Indicators, 114, 106325. 10.1016/j.ecolind.2020.106325
(View/edit entry)
2020Model application 9
Zhang, Yi; Feng, Liping; Wang, Enli; Wang, Jing; Li, Baoguo; 2012. Evaluation of the APSIM-Wheat model in terms of different cultivars, management regimes and environmental conditions. Canadian Journal of Plant Science, 92, 937–949. 10.4141/cjps2011-266
(View/edit entry)
2012Model application 37
Dokoohaki, Hamze; Miguez, Fernando E.; Archontoulis, Sotirios; Laird, David; 2018. Use of inverse modelling and Bayesian optimization for investigating the effect of biochar on soil hydrological properties. Agricultural Water Management, 208, 268–274. 10.1016/j.agwat.2018.06.034
(View/edit entry)
2018Model application 6
Bustos-Korts, Daniela; Boer, Martin P.; Malosetti, Marcos; Chapman, Scott; Chenu, Karine; Zheng, Bangyou; van Eeuwijk, Fred A.; 2019. Combining Crop Growth Modeling and Statistical Genetic Modeling to Evaluate Phenotyping Strategies. Frontiers in Plant Science, 10, 1491. 10.3389/fpls.2019.01491
(View/edit entry)
2019Model application 23
Ahmed, Mukhtar; Stöckle, Claudio O.; Nelson, Roger; Higgins, Stewart; Ahmad, Shakeel; Raza, Muhammad Ali; 2019. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports, 9, 7813. 10.1038/s41598-019-44251-x
(View/edit entry)
2019Model application 17
Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua; Ma, Wujun; 2017. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China. PLOS ONE, 12, e0185690. 10.1371/journal.pone.0185690
(View/edit entry)
2017Model application 11
Rahimi-Moghaddam, Sajjad; Kambouzia, Jafar; Deihimfard, Reza; 2018. Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology, 253, 1–14. 10.1016/j.agrformet.2018.01.032
(View/edit entry)
2018Model application 23
Okoro, Stanley U.; Schickhoff, U.; Boehner, J.; Schneider, U.A.; Huth, N.I.; 2017. Climate impacts on palm oil yields in the Nigerian Niger Delta. European Journal of Agronomy, 85, 38–50. 10.1016/j.eja.2017.02.002
(View/edit entry)
2017Model application 12
Chauhan, Y.S.; Rachaputi, Rao C.N.; 2014. Defining agro-ecological regions for field crops in variable target production environments: A case study on mungbean in the northern grains region of Australia. Agricultural and Forest Meteorology, 194, 207–217. 10.1016/j.agrformet.2014.04.007
(View/edit entry)
2014Model application 17
Brennan, L. E.; Robertson, M. J.; Dalgliesh, N. P.; Brown, S.; 2007. Pay-offs to zone management in a variable climate: an example of nitrogen fertiliser on wheat. Australian Journal of Agricultural Research, 58, 1046. 10.1071/AR06257
(View/edit entry)
2007Model application 10
Anwar, M. R.; O'Leary, G. J.; Rab, M. A.; Fisher, P. D.; Armstrong, R. D.; 2009. Advances in precision agriculture in south-eastern Australia. V. Effect of seasonal conditions on wheat and barley yield response to applied nitrogen across management zones. Crop and Pasture Science, 60, 901. 10.1071/CP08351
(View/edit entry)
2009Model application 19
SALAPADORU HEWAWASAM, NUWAN PIYASHANTHA DE SILVA; OKADA, KENSUKE; TAKAHASHI, TARO; 2015. Validation of APSIM crop growth model for Japanese wheat varieties across N application rates: Step towards a decision support system for Japanese wheat farmers. , , .
(View/edit entry)
2015Model application 0
Wang, Bin; Liu, De Li; Evans, Jason P.; Ji, Fei; Waters, Cathy; Macadam, Ian; Feng, Puyu; Beyer, Kathleen; 2019. Modelling and evaluating the impacts of climate change on three major crops in south-eastern Australia using regional climate model simulations. Theoretical and Applied Climatology, 138, 509–526. 10.1007/s00704-019-02843-7
(View/edit entry)
2019Model application 4
Hussein, E.; Thomas, D. T.; Bell, L. W.; Blache, D.; 2017. Grazing winter and spring wheat crops improves the profitability of prime lamb production in mixed farming systems of Western Australia. Animal Production Science, 57, 2082. 10.1071/AN15850
(View/edit entry)
2017Model application 6
Whitbread, A. M.; Clem, R. L.; 2006. Graze to grain—measuring and modelling the effects of grazed pasture leys on soil nitrogen and sorghum yield on a Vertosol soil in the Australian subtropics. Australian Journal of Agricultural Research, 57, 489. 10.1071/AR05189
(View/edit entry)
2006Model application 12
Shaw, Ruth E.; Meyer, Wayne S.; 2015. Improved Empirical Representation of Plant Responses to Waterlogging for Simulating Crop Yield. Agronomy Journal, 107, 1711–1723. 10.2134/agronj14.0625
(View/edit entry)
2015Model application 14
Fillery, Ian R. P.; Khimashia, Nirav; 2016. Procedure to estimate ammonia loss after N fertiliser application to moist soil. Soil Research, 54, 1. 10.1071/SR14073
(View/edit entry)
2016Model application 10
Power, Brendan; Cacho, Oscar J; 2014. Identifying risk-efficient strategies using stochastic frontier analysis and simulation: An application to irrigated cropping in Australia. Agricultural Systems, 125, 23–32. 10.1016/j.agsy.2013.11.002
(View/edit entry)
2014Model application 10
García, Guillermo A.; Miralles, Daniel J.; Serrago, Román A.; Alzueta, Ignacio; Huth, Neil; Dreccer, M. Fernanda; 2018. Warm nights in the Argentine Pampas: Modelling its impact on wheat and barley shows yield reductions. Agricultural Systems, 162, 259–268. 10.1016/j.agsy.2017.12.009
(View/edit entry)
2018Model application 15
Chen, Chao; Berger, Jens; Fletcher, Andrew; Lawes, Roger; Robertson, Michael; 2016. Genotype × environment interactions for phenological adaptation in narrow-leafed lupin: A simulation study with a parameter optimized model. Field Crops Research, 197, 28–38. 10.1016/j.fcr.2016.08.002
(View/edit entry)
2016Model application 7
Ahuja, Lajpat R.; Ma, Liwang; Lascano, Robert J.; Ahuja, L.R.; Saseendran, S.A.; Fang, Q.X.; Nielsen, David C.; Wang, Enli; Colaizzi, Paul D.; 2015. Syntheses of the Current Model Applications for Managing Water and Needs for Experimental Data and Model Improvements to Enhance these Applications. In: (eds.)Advances in Agricultural Systems Modeling.. 399–437.
(View/edit entry)
2015

Model application

7
Zeleke, K.T.; Nendel, C.; 2016. Analysis of options for increasing wheat (Triticum aestivum L.) yield in south-eastern Australia: The role of irrigation, cultivar choice and time of sowing. Agricultural Water Management, 166, 139–148. 10.1016/j.agwat.2015.12.016
(View/edit entry)
2016Model application 21
Luo, Qunying; Trethowan, Richard; Tan, Daniel K. Y.; 2018. Managing the risk of extreme climate events in Australian major wheat production systems. International Journal of Biometeorology, 62, 1685–1694. 10.1007/s00484-018-1568-5
(View/edit entry)
2018Model application 3
Whish, J. P. M.; Castor, P.; Carberry, P. S.; 2007. Managing production constraints to the reliability of chickpea (Cicer arietinum L.) within marginal areas of the northern grains region of Australia. Australian Journal of Agricultural Research, 58, 396. 10.1071/AR06179
(View/edit entry)
2007Model application 20
Liu, De Li; O'Leary, Garry J.; Ma, Yuchun; Cowie, Annette; Li, Frank Yonghong; McCaskill, Malcolm; Conyers, Mark; Dalal, Ram; Robertson, Fiona; Dougherty, Warwick; 2016. Modelling soil organic carbon 2. Changes under a range of cropping and grazing farming systems in eastern Australia. Geoderma, 265, 164–175. 10.1016/j.geoderma.2015.11.005
(View/edit entry)
2016Model application 16
Farré, Imma; Robertson, Michael; Asseng, Senthold; 2007. Reliability of canola production in different rainfall zones of Western Australia. Australian Journal of Agricultural Research, 58, 326. 10.1071/AR06176
(View/edit entry)
2007Model application 14
Hayman, P. T.; Whitbread, A. M.; Gobbett, D. L.; 2010. Erratum to: The impact of El Niño Southern Oscillation on seasonal drought in the southern Australian grainbelt. Crop and Pasture Science, 61, 677. 10.1071/CP09221_ER
(View/edit entry)
2010Model application 16
Bustos-Korts, Daniela; Malosetti, Marcos; Chenu, Karine; Chapman, Scott; Boer, Martin P.; Zheng, Bangyou; van Eeuwijk, Fred A.; 2019. From QTLs to Adaptation Landscapes: Using Genotype-To-Phenotype Models to Characterize G×E Over Time. Frontiers in Plant Science, 10, 1540. 10.3389/fpls.2019.01540
(View/edit entry)
2019Model application 21
Kabir, Md. Jahangir; Gaydon, Donald S.; Cramb, Rob; Roth, Christian H.; 2018. Bio-economic evaluation of cropping systems for saline coastal Bangladesh: I. Biophysical simulation in historical and future environments. Agricultural Systems, 162, 107–122. 10.1016/j.agsy.2018.01.027
(View/edit entry)
2018Model application 4
Martinez-Feria, Rafael; Nichols, Virginia; Basso, Bruno; Archontoulis, Sotirios; 2019. Can multi-strategy management stabilize nitrate leaching under increasing rainfall?. Environmental Research Letters, 14, 124079. 10.1088/1748-9326/ab5ca8
(View/edit entry)
2019Model application 7
Moore, Andrew D.; 2014. The case for and against perennial forages in the Australian sheep–wheat zone: modelling livestock production, business risk and environmental interactions. Animal Production Science, 54, 2029. 10.1071/AN14613
(View/edit entry)
2014Model application 8
Zhang, Yi; Zhao, Yanxia; Lin, Wen-Xiong; 2017. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming. PLOS ONE, 12, e0176766. 10.1371/journal.pone.0176766
(View/edit entry)
2017Model application 5
Peake, Allan S.; Huth, Neil I.; Kelly, Alison M.; Bell, Kerry L.; 2013. Variation in water extraction with maize plant density and its impact on model application. Field Crops Research, 146, 31–37. 10.1016/j.fcr.2013.02.012
(View/edit entry)
2013Model application 11
Scanlan, Craig A.; Bell, Richard W.; Brennan, Ross F.; 2015. Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertiliser. Field Crops Research, 178, 125–134. 10.1016/j.fcr.2015.03.019
(View/edit entry)
2015Model application 8
Sexton, J.; Everingham, Y.; Inman-Bamber, G.; 2016. A theoretical and real world evaluation of two Bayesian techniques for the calibration of variety parameters in a sugarcane crop model. Environmental Modelling & Software, 83, 126–142. 10.1016/j.envsoft.2016.05.014
(View/edit entry)
2016Model application 22
Palmer, Jeda; Thorburn, Peter J.; Meier, Elizabeth A.; Biggs, Jody S.; Whelan, Brett; Singh, Kanika; Eyre, David N.; 2017. Can management practices provide greenhouse gas abatement in grain farms in New South Wales, Australia?. Crop and Pasture Science, 68, 390. 10.1071/CP17026
(View/edit entry)
2017Model application 1
Ababaei, Behnam; Chenu, Karine; 2020. Heat shocks increasingly impede grain filling but have little effect on grain setting across the Australian wheatbelt. Agricultural and Forest Meteorology, 284, 107889. 10.1016/j.agrformet.2019.107889
(View/edit entry)
2020Model application 17
Giltrap, Dl; Vogeler, I; Cichota, R; Luo, J; van der Weerden, Tj; de Klein, Cam; 2015. Comparison between APSIM and NZ-DNDC models when describing N-dynamics under urine patches. New Zealand Journal of Agricultural Research, 58, 131–155. 10.1080/00288233.2014.987876
(View/edit entry)
2015Model application 17
Mielenz, Henrike; Thorburn, Peter J.; Harris, Robert H.; Officer, Sally J.; Li, Guangdi; Schwenke, Graeme D.; Grace, Peter R.; 2016. Nitrous oxide emissions from grain production systems across a wide range of environmental conditions in eastern Australia. Soil Research, 54, 659. 10.1071/SR15376
(View/edit entry)
2016Model application 12
Bassu, Simona; Asseng, Senthold; Giunta, Francesco; Motzo, Rosella; 2013. Optimizing triticale sowing densities across the Mediterranean Basin. Field Crops Research, 144, 167–178. 10.1016/j.fcr.2013.01.014
(View/edit entry)
2013Model application 7
Hochman, Z.; Carberry, P.S.; McCown, R.L.; Dalgliesh, N.P.; Foale, M.A.; Brennan, L.E.; 2001. APSIM IN THE MARKETPLACE: A TALE OF KITCHEN TABLES, BOARDROOMS AND COURTROOMS. Acta Horticulturae, , 21–33. 10.17660/ActaHortic.2001.566.1
(View/edit entry)
2001Model application 7
Masvaya, Esther N.; Nyamangara, Justice; Giller, Ken E.; Descheemaeker, Katrien; 2018. Risk management options in maize cropping systems in semi-arid areas of Southern Africa. Field Crops Research, 228, 110–121. 10.1016/j.fcr.2018.09.002
(View/edit entry)
2018Model application 5
Pardon, Lénaïc; Huth, Neil Ian; Nelson, Paul Netelenbos; Banabas, Murom; Gabrielle, Benoît; Bessou, Cécile; 2017. Yield and nitrogen losses in oil palm plantations: Main drivers and management trade-offs determined using simulation. Field Crops Research, 210, 20–32. 10.1016/j.fcr.2017.05.016
(View/edit entry)
2017Model application 11
Uribe, Raul Andres Martinez; Gava, Glauber José de Castro; Kölln, Oriel Tiago; Saad, Joao Carlos Cury; 2018. ESTIMATIVA DO ACÚMULO DE FITOMASSA DA SOQUEIRA DE CANA-DE-AÇÚCAR FERTIRRIGADA COM DOSES DE N-FERTILIZANTE UTILIZANDO MODELO DE SIMULAÇÃO. IRRIGA, 1, 126. 10.15809/irriga.2016v1n1p126-139
(View/edit entry)
2018Model application 0
Birch, C. J.; McLean, G.; Sawers, A.; 2008. Analysis of high yielding maize production - a study based on a commercial crop. Australian Journal of Experimental Agriculture, 48, 296. 10.1071/EA06103
(View/edit entry)
2008Model application 9
Farré, Imma; Robertson, Michael J.; Asseng, Senthold; French, Robert J.; Dracup, Miles; 2004. Simulating lupin development, growth, and yield in a Mediterranean environment. Australian Journal of Agricultural Research, 55, 863. 10.1071/AR04027
(View/edit entry)
2004Model application 24
Lisson, S.N.; Cotching, W.E.; 2011. Modelling the fate of water and nitrogen in the mixed vegetable farming systems of northern Tasmania, Australia. Agricultural Systems, 104, 600–608. 10.1016/j.agsy.2011.06.002
(View/edit entry)
2011Model application 28
Wang, Enli; Ridoutt, Brad G.; Luo, Zhongkui; Probert, Mervyn E.; 2013. Using systems modelling to explore the potential for root exudates to increase phosphorus use efficiency in cereal crops. Environmental Modelling & Software, 46, 50–60. 10.1016/j.envsoft.2013.02.009
(View/edit entry)
2013Model application 13
Probert, M.E; Keating, B.A; 2000. What soil constraints should be included in crop and forest models?. Agriculture, Ecosystems & Environment, 82, 273–281. 10.1016/S0167-8809(00)00231-0
(View/edit entry)
2000Model application 33
Florin, M. J.; McBratney, A. B.; Whelan, B. M.; Minasny, B.; 2011. Inverse meta-modelling to estimate soil available water capacity at high spatial resolution across a farm. Precision Agriculture, 12, 421–438. 10.1007/s11119-010-9184-3
(View/edit entry)
2011Model application 7
Milroy, S.P.; Asseng, S.; Poole, M.L.; 2008. Systems analysis of wheat production on low water-holding soils in a Mediterranean-type environment. Field Crops Research, 107, 211–220. 10.1016/j.fcr.2008.02.008
(View/edit entry)
2008Model application 20
Farquharson, R. J.; Schwenke, G. D.; Mullen, J. D.; 2003. Should we manage soil organic carbon in Vertosols in the northern grains region of Australia?. Australian Journal of Experimental Agriculture, 43, 261. 10.1071/EA00163
(View/edit entry)
2003Model application 31
Watson, James; Zheng, Bangyou; Chapman, Scott C.; Chenu, Karine; 2015. Projected Impact of Future Climate on Drought Patterns in Complex Rainfed Environments. Procedia Environmental Sciences, 29, 190–191. 10.1016/j.proenv.2015.07.255
(View/edit entry)
2015Model application 2
Zhu, Ruirui; Zheng, Hongxing; Wang, Enli; Jakeman, Anthony J.; 2018. A hybrid process based-empirical approach to identify the association between wheat productivity and climate in the North China Plain during the past 50 years. Environmental Modelling & Software, 108, 72–80. 10.1016/j.envsoft.2018.07.017
(View/edit entry)
2018Model application 1
Pasley, Heather R.; Huber, Isaiah; Castellano, Michael J.; Archontoulis, Sotirios V.; 2020. Modeling Flood-Induced Stress in Soybeans. Frontiers in Plant Science, 11, 62. 10.3389/fpls.2020.00062
(View/edit entry)
2020Model application 16
Liu, Zhijuan; Yang, Xiaoguang; Lin, Xiaomao; Hubbard, Kenneth G.; Lv, Shuo; Wang, Jing; 2016. Narrowing the Agronomic Yield Gaps of Maize by Improved Soil, Cultivar, and Agricultural Management Practices in Different Climate Zones of Northeast China. Earth Interactions, 20, 1–18. 10.1175/EI-D-15-0032.1
(View/edit entry)
2016Model application 11
Teixeira, Edmar I.; Brown, Hamish E.; Michel, Alexandre; Meenken, Esther; Hu, Wei; Thomas, Steve; Huth, Neil I.; Holzworth, Dean P.; 2018. Field estimation of water extraction coefficients with APSIM-Slurp for water uptake assessments in perennial forages. Field Crops Research, 222, 26–38. 10.1016/j.fcr.2018.03.011
(View/edit entry)
2018Model application 7
Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T.; 2016. Simulating yield and water use of a sorghum–cowpea intercrop using APSIM. Agricultural Water Management, 177, 317–328. 10.1016/j.agwat.2016.08.021
(View/edit entry)
2016Model application 22
Adam, M.; Corbeels, M.; Leffelaar, P.A.; Van Keulen, H.; Wery, J.; Ewert, F.; 2012. Building crop models within different crop modelling frameworks. Agricultural Systems, 113, 57–63. 10.1016/j.agsy.2012.07.010
(View/edit entry)
2012Model application 10
Hill, J. O.; Robertson, M. J.; Pengelly, B. C.; Whitbread, A. M.; Hall, C. A.; 2006. Simulation modelling of lablab (Lablab purpureus) pastures in northern Australia. Australian Journal of Agricultural Research, 57, 389. 10.1071/AR05263
(View/edit entry)
2006Model application 11
Turpin, J. E.; Robertson, M. J.; Haire, C.; Bellotti, W. D.; Moore, A. D.; Rose, I.; 2003. Simulating fababean development, growth, and yield in Australia. Australian Journal of Agricultural Research, 54, 39. 10.1071/AR02064
(View/edit entry)
2003Model application 30
Mohanty, M.; Sammi Reddy, K.; Probert, M. E.; Dalal, R. C.; Sinha, Nishant K.; Subba Rao, A.; Menzies, N. W.; 2016. Efficient Nitrogen and Water Management for the Soybean–Wheat System of Madhya Pradesh, Central India, Assessed Using APSIM Model. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 86, 217–228. 10.1007/s40011-014-0443-3
(View/edit entry)
2016Model application 3
Cichota, Rogerio; Vogeler, Iris; Snow, Val; Shepherd, Mark; McAuliffe, Russell; Welten, Brendon; 2018. Lateral spread affects nitrogen leaching from urine patches. Science of The Total Environment, 635, 1392–1404. 10.1016/j.scitotenv.2018.04.005
(View/edit entry)
2018Model application 10
Zhao, Jin; Yang, Xiaoguang; Liu, Zhijuan; Lv, Shuo; Wang, Jing; Dai, Shuwei; 2016. Variations in the potential climatic suitability distribution patterns and grain yields for spring maize in Northeast China under climate change. Climatic Change, 137, 29–42. 10.1007/s10584-016-1652-y
(View/edit entry)
2016Model application 16
Chauhan, Yash; Wright, Graeme; Rachaputi, Nageswararao; McCosker, Kevin; 2008. Identifying chickpea homoclimes using the APSIM chickpea model. Australian Journal of Agricultural Research, 59, 260. 10.1071/AR07380
(View/edit entry)
2008Model application 18
Aslam, Muhammad A.; Ahmed, Mukhtar; Stöckle, Claudio O.; Higgins, Stewart S.; Hassan, Fayyaz ul; Hayat, Rifat; 2017. Can Growing Degree Days and Photoperiod Predict Spring Wheat Phenology?. Frontiers in Environmental Science, 5, 57. 10.3389/fenvs.2017.00057
(View/edit entry)
2017Model application 23
Chen, Chao; Smith, Andrew; Ward, Phil; Fletcher, Andrew; Lawes, Roger; Norman, Hayley; 2017. Modelling the comparative growth, water use and productivity of the perennial legumes, tedera (Bituminaria bituminosa var. albomarginata) and lucerne (Medicago sativa) in dryland mixed farming systems. Crop and Pasture Science, 68, 643. 10.1071/CP17131
(View/edit entry)
2017Model application 3
Hoffmann, Munir P.; Odhiambo, Jude J.O.; Koch, Marian; Ayisi, Kingsley K.; Zhao, Gang; Soler, Alejandra S.; Rötter, Reimund P.; 2018. Exploring adaptations of groundnut cropping to prevailing climate variability and extremes in Limpopo Province, South Africa. Field Crops Research, 219, 1–13. 10.1016/j.fcr.2018.01.019
(View/edit entry)
2018Model application 8
Lawes, Roger; Renton, Michael; 2015. Gaining insight into the risks, returns and value of perfect knowledge for crop sequences by comparing optimal sequences with those proposed by agronomists. Crop and Pasture Science, 66, 622. 10.1071/CP14185
(View/edit entry)
2015Model application 11
Xiao, Dengpan; Liu, De Li; Wang, Bin; Feng, Puyu; Waters, Cathy; 2020. Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agricultural Systems, 181, 102805. 10.1016/j.agsy.2020.102805
(View/edit entry)
2020Model application 12
Amarasingha, R.P.R.K.; Suriyagoda, L.D.B.; Marambe, B.; Rathnayake, W.M.U.K.; Gaydon, D.S.; Galagedara, L.W.; Punyawardena, R.; Silva, G.L.L.P.; Nidumolu, U.; Howden, M.; 2017. Improving water productivity in moisture-limited rice-based cropping systems through incorporation of maize and mungbean: A modelling approach. Agricultural Water Management, 189, 111–122. 10.1016/j.agwat.2017.05.002
(View/edit entry)
2017Model application 12
Zhao, Jin; Yang, Xiaoguang; Sun, Shuang; 2018. Constraints on maize yield and yield stability in the main cropping regions in China. European Journal of Agronomy, 99, 106–115. 10.1016/j.eja.2018.07.003
(View/edit entry)
2018Model application 17
Macadam, I; Pitman, Aj; Whetton, Ph; Liu, Dl; Evans, Jp; 2014. The use of uncorrected regional climate model output to force impact models: a case study for wheat simulations. Climate Research, 61, 215–229. 10.3354/cr01258
(View/edit entry)
2014Model application 4
Adu-Gyamfi, J. J.; Carberry, P. S.; Probert, M. E.; Dimes, J. P.; Keating, B. A.; McCown, R. L.; 2002. Role of modelling in improving nutrient efficiency in cropping systems. In: (eds.)Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities.. 319–329.
(View/edit entry)
2002Model application 31
Bacon, Samuel A.; Mau, Raimundo; Neto, Florindo M.; Williams, Robert L.; Turner, Neil C.; 2016. Effect of climate warming on maize production in Timor-Leste: interaction with nitrogen supply. Crop and Pasture Science, 67, 156. 10.1071/CP15078
(View/edit entry)
2016Model application 3
Balboa, G.R.; Archontoulis, S.V.; Salvagiotti, F.; Garcia, F.O.; Stewart, W.M.; Francisco, E.; Prasad, P.V. Vara; Ciampitti, I.A.; 2019. A systems-level yield gap assessment of maize-soybean rotation under high- and low-management inputs in the Western US Corn Belt using APSIM. Agricultural Systems, 174, 145–154. 10.1016/j.agsy.2019.04.008
(View/edit entry)
2019Model application 9
Sprigg, Hayden; Belford, Robert; Milroy, Steve; Bennett, Sarita Jane; Bowran, David; 2014. Adaptations for growing wheat in the drying climate of Western Australia. Crop and Pasture Science, 65, 627. 10.1071/CP13352
(View/edit entry)
2014Model application 12
Whitbread, Anthony M.; Hoffmann, Munir P.; Davoren, C. William; Mowat, Damian; Baldock, Jeffrey A.; 2017. Measuring and Modeling the Water Balance in Low-Rainfall Cropping Systems. Transactions of the ASABE, 60, 2097–2110. 10.13031/trans.12581
(View/edit entry)
2017Model application 10
Zeleke, Ketema Tilahun; Anwar, Muhuddin; Liu, De Li; 2014. Managing crop stubble during fallow period for soil water conservation: field experiment and modelling. Environmental Earth Sciences, 72, 3317–3327. 10.1007/s12665-014-3235-4
(View/edit entry)
2014Model application 9
Bahri, Haithem; Annabi, Mohamed; Cheikh M'Hamed, Hatem; Frija, Aymen; 2019. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Science of The Total Environment, 692, 1223–1233. 10.1016/j.scitotenv.2019.07.307
(View/edit entry)
2019Model application 16
He, Di; Wang, Enli; 2019. On the relation between soil water holding capacity and dryland crop productivity. Geoderma, 353, 11–24. 10.1016/j.geoderma.2019.06.022
(View/edit entry)
2019Model application 9
Chen, Chao; Fletcher, Andrew; Lawes, Roger; Berger, Jens; Robertson, Michael; 2017. Modelling phenological and agronomic adaptation options for narrow-leafed lupins in the southern grainbelt of Western Australia. European Journal of Agronomy, 89, 140–147. 10.1016/j.eja.2017.05.005
(View/edit entry)
2017Model application 6
Thomas, Dean T.; Moore, Andrew D.; Bell, Lindsay W.; Webb, Nicholas P.; 2018. Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program. Agricultural Systems, 162, 123–135. 10.1016/j.agsy.2018.02.001
(View/edit entry)
2018Model application 10
Wu, Yushan; Wang, Enli; He, Di; Liu, Xin; Archontoulis, Sotirios V.; Huth, Neil I.; Zhao, Zhigan; Gong, Wanzhuo; Yang, Wenyu; 2019. Combine observational data and modelling to quantify cultivar differences of soybean. European Journal of Agronomy, 111, 125940. 10.1016/j.eja.2019.125940
(View/edit entry)
2019Model application 4
Sun, Shuang; Yang, Xiaoguang; Lin, Xiaomao; Sassenrath, Gretchen F.; Li, Kenan; 2018. Winter Wheat Yield Gaps and Patterns in China. Agronomy Journal, 110, 319–330. 10.2134/agronj2017.07.0417
(View/edit entry)
2018Model application 12
Vogeler, I.; Cichota, R.; 2016. Deriving seasonally optimal nitrogen fertilization rates for a ryegrass pasture based on agricultural production systems simulator modelling with a refined AgPasture model. Grass and Forage Science, 71, 353–365. 10.1111/gfs.12181
(View/edit entry)
2016Model application 13
Dilla, Aynalem; Smethurst, Philip J.; Barry, Karen; Parsons, David; Denboba, Mekuria; 2018. Potential of the APSIM model to simulate impacts of shading on maize productivity. Agroforestry Systems, 92, 1699–1709. 10.1007/s10457-017-0119-0
(View/edit entry)
2018Model application 15
Zhao, Zhigan; Verburg, Kirsten; Huth, Neil; 2017. Modelling sugarcane nitrogen uptake patterns to inform design of controlled release fertiliser for synchrony of N supply and demand. Field Crops Research, 213, 51–64. 10.1016/j.fcr.2017.08.001
(View/edit entry)
2017Model application 7
Xiao, Dengpan; Liu, De Li; Wang, Bin; Feng, Puyu; Bai, Huizi; Tang, Jianzhao; 2020. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agricultural Water Management, 238, 106238. 10.1016/j.agwat.2020.106238
(View/edit entry)
2020Model application 28
Wu, Renye; Lawes, Roger; Oliver, Yvette; Fletcher, Andrew; Chen, Chao; 2019. How well do we need to estimate plant-available water capacity to simulate water-limited yield potential?. Agricultural Water Management, 212, 441–447. 10.1016/j.agwat.2018.09.029
(View/edit entry)
2019Model application 5
Mupangwa, W.; Jewitt, G.P.W.; 2011. Simulating the impact of no-till systems on field water fluxes and maize productivity under semi-arid conditions. Physics and Chemistry of the Earth, Parts A/B/C, 36, 1004–1011. 10.1016/j.pce.2011.07.069
(View/edit entry)
2011Model application 11
Hoffmann, Munir P.; Isselstein, Johannes; Rötter, Reimund P.; Kayser, Manfred; 2018. Nitrogen management in crop rotations after the break-up of grassland: Insights from modelling. Agriculture, Ecosystems & Environment, 259, 28–44. 10.1016/j.agee.2018.02.009
(View/edit entry)
2018Model application 9
Wunsch, E. M.; Bell, L. W.; Bell, M. J.; 2017. Can legumes provide greater benefits than millet as a spring cover crop in southern Queensland farming systems?. Crop and Pasture Science, 68, 746. 10.1071/CP17223
(View/edit entry)
2017Model application 3
Solomon, K. F.; Chauhan, Y.; Zeppa, A.; 2017. Risks of yield loss due to variation in optimum density for different maize genotypes under variable environmental conditions. Journal of Agronomy and Crop Science, 203, 519–527. 10.1111/jac.12213
(View/edit entry)
2017Model application 12
Meier, Elizabeth A.; Thorburn, Peter J.; Bell, Lindsay W.; Harrison, Matthew T.; Biggs, Jody S.; 2020. Greenhouse Gas Emissions From Cropping and Grazed Pastures Are Similar: A Simulation Analysis in Australia. Frontiers in Sustainable Food Systems, 3, 121. 10.3389/fsufs.2019.00121
(View/edit entry)
2020Model application 4
Connolly, R. D.; Freebairn, D. M.; Bell, M. J.; 1998. Change in soil infiltration associated with leys in south-eastern Queensland. Soil Research, 36, 1057. 10.1071/S98028
(View/edit entry)
1998Model application 23
Herridge, D. F.; Turpin, J. E.; Robertson, M. J.; 2001. Improving nitrogen fixation of crop legumes through breeding and agronomic management: analysis with simulation modelling. Australian Journal of Experimental Agriculture, 41, 391. 10.1071/EA00041
(View/edit entry)
2001Model application 31
Luo, Zhongkui; Wang, Enli; Viscarra Rossel, Raphael A.; 2016. Can the sequestered carbon in agricultural soil be maintained with changes in management, temperature and rainfall? A sensitivity assessment. Geoderma, 268, 22–28. 10.1016/j.geoderma.2016.01.015
(View/edit entry)
2016Model application 5
Ahmed, Mukhtar; Van Ogtrop, F.F.; 2014. Can models help to forecast rainwater dynamics for rainfed ecosystem?. Weather and Climate Extremes, 5, 48–55. 10.1016/j.wace.2014.07.001
(View/edit entry)
2014Model application 7
My Phung, Nguyen Thi; Brown, Peter R.; Leung, Luke K.P.; 2013. Use of computer simulation models to encourage farmers to adopt best rodent management practices in lowland irrigated rice systems in An Giang Province, the Mekong Delta, Vietnam. Agricultural Systems, 116, 69–76. 10.1016/j.agsy.2012.11.003
(View/edit entry)
2013Model application 7
Meier, Elizabeth A.; Thorburn, Peter J.; Kragt, Marit E.; Dumbrell, Nikki P.; Biggs, Jody S.; Hoyle, Frances C.; van Rees, Harm; 2017. Greenhouse gas abatement on southern Australian grains farms: B iophysical potential and financial impacts. Agricultural Systems, 155, 147–157. 10.1016/j.agsy.2017.04.012
(View/edit entry)
2017Model application 6
Nelson, R.A; Dimes, J.P; Silburn, D.M; Paningbatan, E.P; Cramb, R.A; 1998. Erosion/productivity modelling of maize farming in the Philippine uplands. Agricultural Systems, 58, 147–163. 10.1016/S0308-521X(98)00044-4
(View/edit entry)
1998Model application 14
Meinke, Holger; Rabbinge, Rudy; Hammer, Graeme L.; van Keulen, Herman; Jamieson, Peter D.; 1998. Improving wheat simulation capabilities in Australia from a cropping systems perspective II. Testing simulation capabilities of wheat growth. European Journal of Agronomy, 8, 83–99. 10.1016/S1161-0301(97)00016-6
(View/edit entry)
1998Model application 24
Araya, A.; Prasad, P. V. V.; Gowda, P. H.; Djanaguiraman, M.; Kassa, A. H.; 2020. Potential impacts of climate change factors and agronomic adaptation strategies on wheat yields in central highlands of Ethiopia. Climatic Change, 159, 461–479. 10.1007/s10584-019-02627-y
(View/edit entry)
2020Model application 7
Lisson, S. N.; Mendham, N. J.; Carberry, P. S.; 2000. Development of a hemp (Cannabis sativa L.) simulation model 4. Model description and validation. Australian Journal of Experimental Agriculture, 40, 425. 10.1071/EA99061
(View/edit entry)
2000Model application 12
Sheraz Mahdi, Syed; Kalra, Naveen; Kumar, Manoj; 2019. Simulating the Impact of Climate Change and its Variability on Agriculture. In: (eds.)Climate Change and Agriculture in India: Impact and Adaptation.. 21–28.
(View/edit entry)
2019Model application 9
Stuermer, Arne W.; Akkermans, Rinie A.; 2014. Validation of Aerodynamic and Aeroacoustic Simulations of Contra-Rotating Open Rotors at Low-Speed Flight Conditions. . Volume .
(View/edit entry)
2014Model application 9
Paydar, Zahra; Huth, Neil; Snow, Val; 2005. Modelling irrigated Eucalyptus for salinity control on shallow watertables. Soil Research, 43, 587. 10.1071/SR04152
(View/edit entry)
2005Model application 13
Chauhan, Yashvir; Tatnell, Jeff; Krosch, Stephen; Karanja, James; Gnonlonfin, Benoit; Wanjuki, Immaculate; Wainaina, James; Harvey, Jagger; 2015. An improved simulation model to predict pre-harvest aflatoxin risk in maize. Field Crops Research, 178, 91–99. 10.1016/j.fcr.2015.03.024
(View/edit entry)
2015Model application 16
Meier, Elizabeth; Lilley, Julianne; Kirkegaard, John; Whish, Jeremy; McBeath, Therese; 2020. Management practices that maximise gross margins in Australian canola (Brassica napus L.). Field Crops Research, 252, 107803. 10.1016/j.fcr.2020.107803
(View/edit entry)
2020Model application 7
Brown, Peter R.; My Phung, Nguyen Thi; Gaydon, Donald S.; 2011. Rats in rice: linking crop and pest models to explore management strategies. Wildlife Research, 38, 560. 10.1071/WR10194
(View/edit entry)
2011Model application 7
Cleugh, H. A.; 2002. Parameterising the impact of shelter on crop microclimates and evaporation fluxes. Australian Journal of Experimental Agriculture, 42, 859. 10.1071/EA02006
(View/edit entry)
2002Model application 12
Mwambo, Francis Molua; Fürst, Christine; Nyarko, Benjamin K.; Borgemeister, Christian; Martius, Christopher; 2020. Maize production and environmental costs: Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis. Land Use Policy, 95, 104490. 10.1016/j.landusepol.2020.104490
(View/edit entry)
2020Model application 6
van der Weerden, T.J.; Laurenson, S.; Vogeler, I.; Beukes, P.C.; Thomas, S.M.; Rees, R.M.; Topp, C.F.E.; Lanigan, G.; de Klein, C.A.M.; 2017. Mitigating nitrous oxide and manure-derived methane emissions by removing cows in response to wet soil conditions. Agricultural Systems, 156, 126–138. 10.1016/j.agsy.2017.06.010
(View/edit entry)
2017Model application 9
Nascimento, Alexandre Ferreira do; Mendonça, Eduardo de Sá; Leite, Luiz Fernando Carvalho; Neves, Júlio Cesar Lima; 2011. Calibration of the century, apsim and ndicea models of decomposition and n mineralization of plant residues in the humid tropics. Revista Brasileira de Ciência do Solo, 35, 917–928. 10.1590/S0100-06832011000300026
(View/edit entry)
2011Model application 7
Silungwe, Festo; Graef, Frieder; Bellingrath-Kimura, Sonoko; Tumbo, Siza; Kahimba, Frederick; Lana, Marcos; 2018. Crop Upgrading Strategies and Modelling for Rainfed Cereals in a Semi-Arid Climate—A Review. Water, 10, 356. 10.3390/w10040356
(View/edit entry)
2018Model application 9
Carberry, P. S.; Meinke, H.; Poulton, P. L.; Hargreaves, J. N. G.; Snell, A. J.; Sudmeyer, R. A.; 2002. Modelling crop growth and yield under the environmental changes induced by windbreaks. 2. Simulation of potential benefits at selected sites in Australia. Australian Journal of Experimental Agriculture, 42, 887. 10.1071/EA02020
(View/edit entry)
2002Model application 14
Paydar, Zahra; Gaydon, Donald; Chen, Yun; 2009. A methodology for up-scaling irrigation losses. Irrigation Science, 27, 347–356. 10.1007/s00271-009-0151-6
(View/edit entry)
2009Model application 11
Foale, M. A.; Probert, M. E.; Carberry, P. S.; Lack, D.; Yeates, S.; Brimblecombe, D.; Crocker, M.; 2004. Participatory research in dryland cropping systems — monitoring and simulation of soil water and nitrogen in farmers' paddocks in Central Queensland. Australian Journal of Experimental Agriculture, 44, 321. 10.1071/EA02205
(View/edit entry)
2004Model application 13
Marcillo, Guillermo S.; Carlson, Sarah; Filbert, Meghan; Kaspar, Thomas; Plastina, Alejandro; Miguez, Fernando E.; 2019. Maize system impacts of cover crop management decisions: A simulation analysis of rye biomass response to planting populations in Iowa, U.S.A.. Agricultural Systems, 176, 102651. 10.1016/j.agsy.2019.102651
(View/edit entry)
2019Model application 7
Dixit, Prakash N.; Telleria, Roberto; Al Khatib, Amal N.; Allouzi, Siham F.; 2018. Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan. Science of The Total Environment, 610, 219–233. 10.1016/j.scitotenv.2017.07.270
(View/edit entry)
2018Model application 14
Vilvert, Elisa; Lana, Marcos; Zander, Peter; Sieber, Stefan; 2018. Multi-model approach for assessing the sunflower food value chain in Tanzania. Agricultural Systems, 159, 103–110. 10.1016/j.agsy.2017.10.014
(View/edit entry)
2018Model application 7
Yang, Xuan; Zheng, Lina; Yang, Qian; Wang, Zikui; Cui, Song; Shen, Yuying; 2018. Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using APSIM. Agricultural Systems, 166, 111–123. 10.1016/j.agsy.2018.08.005
(View/edit entry)
2018Model application 20
Whish, J. P. M.; Price, L.; Castor, P. A.; 2009. Do spring cover crops rob water and so reduce wheat yields in the northern grain zone of eastern Australia?. Crop and Pasture Science, 60, 517. 10.1071/CP08397
(View/edit entry)
2009Model application 14
Moeller, Carina; Pala, Mustafa; Manschadi, Ahmad M.; Meinke, Holger; Sauerborn, Joachim; 2007. Assessing the sustainability of wheat-based cropping systems using APSIM: model parameterisation and evaluation. Australian Journal of Agricultural Research, 58, 75. 10.1071/AR06186
(View/edit entry)
2007Model application 16
Kandulu, John; Thorburn, Peter; Biggs, Jody; Verburg, Kirsten; 2018. Estimating economic and environmental trade-offs of managing nitrogen in Australian sugarcane systems taking agronomic risk into account. Journal of Environmental Management, 223, 264–274. 10.1016/j.jenvman.2018.06.023
(View/edit entry)
2018Model application 7
Msongaleli, Barnabas; Rwehumbiza, Filbert; Tumbo, Siza D.; Kihupi, Nganga; 2014. Sorghum Yield Response to Changing Climatic Conditions in Semi-Arid Central Tanzania: Evaluating Crop Simulation Model Applicability. Agricultural Sciences, 5, 822–833. 10.4236/as.2014.510087
(View/edit entry)
2014Model application 7
Zheng, Bangyou; Holland, Edward; Chapman, Scott C.; 2016. A standardized workflow to utilise a grid-computing system through advanced message queuing protocols. Environmental Modelling & Software, 84, 304–310. 10.1016/j.envsoft.2016.07.012
(View/edit entry)
2016Model application 2
Subash, N.; Shamim, M.; Singh, V. K.; Gangwar, B.; Singh, B.; Gaydon, D. S.; Roth, C. H.; Poulton, P. L.; Sikka, A. K.; 2015. Applicability of APSIM to capture the effectiveness of irrigation management decisions in rice-based cropping sequence in the Upper-Gangetic Plains of India. Paddy and Water Environment, 13, 325–335. 10.1007/s10333-014-0443-1
(View/edit entry)
2015Model application 8
Tidjani, M. A.; Akponikpe, P. B. I.; 2012. Evaluation des stratégies paysannes d’adaptation aux changements Climatiques : Cas de la production du maïs au Nord-Bénin. African Crop Science Journal, 20, 425–441. 10.4314/ACSJ.V20I2
(View/edit entry)
2012Model application 9
Snow, V. O.; Houlbrooke, D. J.; Huth, N. I.; 2007. Predicting soil water, tile drainage, and runoff in a mole‐tile drained soil. New Zealand Journal of Agricultural Research, 50, 13–24. 10.1080/00288230709510278
(View/edit entry)
2007Model application 12
McNunn, Gabriel; Heaton, Emily; Archontoulis, Sotirios; Licht, Mark; VanLoocke, Andy; 2019. Using a Crop Modeling Framework for Precision Cost-Benefit Analysis of Variable Seeding and Nitrogen Application Rates. Frontiers in Sustainable Food Systems, 3, 108. 10.3389/fsufs.2019.00108
(View/edit entry)
2019Model application 9
Peake, A.S.; Das, B.T.; Bell, K.L.; Gardner, M.; Poole, N.; 2018. Effect of variable crop duration on grain yield of irrigated spring-wheat when flowering is synchronised. Field Crops Research, 228, 183–194. 10.1016/j.fcr.2018.09.004
(View/edit entry)
2018Model application 6
Gao, Jiqing; Yang, Xiaoguang; Zheng, Bangyou; Liu, Zhijuan; Zhao, Jin; Sun, Shuang; Li, Kenan; Dong, Chaoyang; 2019. Effects of climate change on the extension of the potential double cropping region and crop water requirements in Northern China. Agricultural and Forest Meteorology, 268, 146–155. 10.1016/j.agrformet.2019.01.009
(View/edit entry)
2019Model application 16
Muchow, R. C.; Keating, B. A.; 1998. Assessing irrigation requirements in the Ord Sugar Industry using a simulation modelling approach. Australian Journal of Experimental Agriculture, 38, 345. 10.1071/EA98023
(View/edit entry)
1998Model application 16
McMaster, G.S.; Hargreaves, J.N.G.; 2009. CANON in D(esign): Composing scales of plant canopies from phytomers to whole-plants using the composite design pattern. NJAS - Wageningen Journal of Life Sciences, 57, 39–51. 10.1016/j.njas.2009.07.008
(View/edit entry)
2009Model application 9
Fletcher, Andrew L.; Chen, Chao; Ota, Noboru; Lawes, Roger A.; Oliver, Yvette M.; 2020. Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?. Climatic Change, 159, 347–364. 10.1007/s10584-020-02666-w
(View/edit entry)
2020Model application 9
Chauhan, Yashvir S.; 2010. Potential productivity and water requirements of maize–peanut rotations in Australian semi-arid tropical environments—A crop simulation study. Agricultural Water Management, 97, 457–464. 10.1016/j.agwat.2009.11.005
(View/edit entry)
2010Model application 9
Dalal, R. C.; Weston, E. J.; Strong, W. M.; Probert, M. E.; Lehane, K. J.; Cooper, J. E.; King, A. J.; Holmes, C. J.; 2004. Sustaining productivity of a Vertosol at Warra, Queensland, with fertilisers, no-tillage or legumes. 8. Effect of duration of lucerne ley on soil nitrogen and water, wheat yield and protein. Australian Journal of Experimental Agriculture, 44, 1013. 10.1071/EA03166
(View/edit entry)
2004Model application 17
Meinke, H.; Carberry, P. S.; Cleugh, H. A.; Poulton, P. L.; Hargreaves, J. N. G.; 2002. Modelling crop growth and yield under the environmental changes induced by windbreaks 1. Model development and validation. Australian Journal of Experimental Agriculture, 42, 875. 10.1071/EA02019
(View/edit entry)
2002Model application 16
Kisaka, M. Oscar; Mucheru-Muna, M.; Ngetich, F. K.; Mugwe, J. N.; Mugendi, D. N.; Mairura, F.; Muriuki, J.; 2016. USING APSIM-MODEL AS A DECISION-SUPPORT-TOOL FOR LONG-TERM INTEGRATED-NITROGEN-MANAGEMENT AND MAIZE PRODUCTIVITY UNDER SEMI-ARID CONDITIONS IN KENYA. Experimental Agriculture, 52, 279–299. 10.1017/S0014479715000095
(View/edit entry)
2016Model application 13
Zeleke, Ketema Tilahun; 2017. Fallow management increases soil water and nitrogen storage. Agricultural Water Management, 186, 12–20. 10.1016/j.agwat.2017.02.011
(View/edit entry)
2017Model application 8
Acuña, Tina Botwright; Lisson, Shaun; Johnson, Peter; Dean, Geoff; 2015. Yield and water-use efficiency of wheat in a high-rainfall environment. Crop and Pasture Science, 66, 419. 10.1071/CP14308
(View/edit entry)
2015Model application 8
Chauhan, Yashvir S.; Thorburn, Peter; Biggs, Jody S.; Wright, Graeme C.; 2015. Agronomic benefits and risks associated with the irrigated peanut–maize production system under a changing climate in northern Australia. Crop and Pasture Science, 66, 1167. 10.1071/CP15068
(View/edit entry)
2015Model application 3
Chimonyo, Vgp; Modi, At; Mabhaudhi, T; 2016. Assessment of sorghum–cowpea intercrop system under waterlimited conditions using a decision support tool. Water SA, 42, 316. 10.4314/wsa.v42i2.15
(View/edit entry)
2016Model application 8
Grenz, Jan H.; Manschadi, Ahmad M.; DeVoil, Peter; Meinke, Holger; Sauerborn, Joachim; 2005. Assessing Strategies for Orobanche sp. Control Using a Combined Seedbank and Competition Model. Agronomy Journal, 97, 1551–1559. 10.2134/agronj2005.0061
(View/edit entry)
2005Model application 25
Nezomba, Hatirarami; Mtambanengwe, Florence; Rurinda, Jairos; Mapfumo, Paul; 2018. Integrated soil fertility management sequences for reducing climate risk in smallholder crop production systems in southern Africa. Field Crops Research, 224, 102–114. 10.1016/j.fcr.2018.05.003
(View/edit entry)
2018Model application 11
Li, Yan; Xue, Changying; Yang, Xiaoguang; Wang, Jing; Liu, Yuan; Enli, Wang; 2009
(View/edit entry)
2009Model application 3
Kouadio, Louis; Newlands, Nathaniel; Potgieter, Andries; McLean, Greg; Hill, Harvey; 2015. Exploring the Potential Impacts of Climate Variability on Spring Wheat Yield with the APSIM Decision Support Tool. Agricultural Sciences, 6, 686–698. 10.4236/as.2015.67066
(View/edit entry)
2015Model application 5
Yunusa, Isa A M; Manoharan, Veeragathipillai; Harris, Rob; Lawrie, Roy; Pal, Yash; Quiton, Jonathan T; Bell, Richard; Eamus, Derek; 2013. Differential growth and yield by canola ( Brassica napus L.) and wheat ( Triticum aestivum L.) arising from alterations in chemical properties of sandy soils due to additions of fly ash: Differential responses by canola and wheat to coal fly ash addition. Journal of the Science of Food and Agriculture, 93, 995–1002. 10.1002/jsfa.5889
(View/edit entry)
2013Model application 1
Singh, D. K.; Strahan, R.; Christodoulou, N.; Cawley, S.; 2009. Validating economic and environmental sustainability of a short-term summer forage legume in dryland wheat cropping systems in south-west Queensland. Animal Production Science, 49, 816. 10.1071/AN09016
(View/edit entry)
2009Model application 6
Harrison, Matthew Tom; Roggero, Pier Paolo; Zavattaro, Laura; 2019. Simple, efficient and robust techniques for automatic multi-objective function parameterisation: Case studies of local and global optimisation using APSIM. Environmental Modelling & Software, 117, 109–133. 10.1016/j.envsoft.2019.03.010
(View/edit entry)
2019Model application 10
Huth, N.I.; Carberry, P.S.; Cocks, B.; Graham, S.; McGinness, H.M.; O’Connell, D.A.; 2008. Managing drought risk in eucalypt seedling establishment: An analysis using experiment and model. Forest Ecology and Management, 255, 3307–3317. 10.1016/j.foreco.2008.02.024
(View/edit entry)
2008Model application 11
Chauhan, Yash; Wright, Graeme; Rachaputi, Nageswara Rao; Krosch, Stephen; Robertson, Michael; Hargreaves, John; Broome, Alan; 2007. Using APSIM-soiltemp to simulate soil temperature in the podding zone of peanut. Australian Journal of Experimental Agriculture, 47, 992. 10.1071/EA06137
(View/edit entry)
2007Model application 10
Berhe, A.A.; Kisekka, I.; Prasad, P.V.V.; Holman, J.; Foster, A.J.; Lollato, R.; 2017. Assessing Wheat Yield, Biomass, and Water Productivity Responses to Growth Stage Based Irrigation Water Allocation. Transactions of the ASABE, 60, 107–121. 10.13031/trans.11883
(View/edit entry)
2017Model application 8
Anser, Muhammad Khalid; Hina, Tayyaba; Hameed, Shahzad; Nasir, Muhammad Hamid; Ahmad, Ishfaq; Naseer, Muhammad Asad ur Rehman; 2020. Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. International Journal of Environmental Research and Public Health, 17, 2522. 10.3390/ijerph17072522
(View/edit entry)
2020Model application 13
Nelson, R.A; Cramb, R.A; 1998. Economic incentives for farmers in the Philippine uplands to adopt hedgerow intercropping. Journal of Environmental Management, 54, 83–100. 10.1006/jema.1998.0220
(View/edit entry)
1998Model application 22
Viscarra Rossel, Raphael A.; McBratney, Alex B.; Minasny, Budiman; Florin, M.J.; McBratney, A.B.; Whelan, B.M.; 2010. Inverse Meta-modelling of Yield-Monitor Data for Estimating Soil-Available Water-Holding Capacities at a Farm Resolution of 10 m. In: (eds.)Proximal Soil Sensing.. 413–421.
(View/edit entry)
2010Model application 0
Connolly, R. D.; Freebairn, D. M.; Bell, M. J.; Thomas, G.; 2001. Effects of rundown in soil hydraulic condition on crop productivity in south-eastern Queensland - a simulation study. Soil Research, 39, 1111. 10.1071/SR00089
(View/edit entry)
2001Model application 18
Machwitz, Miriam; Hass, Erik; Junk, Jürgen; Udelhoven, Thomas; Schlerf, Martin; 2019. CropGIS – A web application for the spatial and temporal visualization of past, present and future crop biomass development. Computers and Electronics in Agriculture, 161, 185–193. 10.1016/j.compag.2018.04.026
(View/edit entry)
2019Model application 8
Young, Rick; Huth, Neil; Harden, Steven; McLeod, Ross; 2014. Impact of rain-fed cropping on the hydrology and fertility of alluvial clays in the more arid areas of the upper Darling Basin, eastern Australia. Soil Research, 52, 388. 10.1071/SR13194
(View/edit entry)
2014Model application 4
Magaia, E.; Famba, S.; Wesström, I.; Brito, R.; Joel, A.; 2017. Modelling maize yield response to plant density and water and nitrogen supply in a semi-arid region. Field Crops Research, 205, 170–181. 10.1016/j.fcr.2016.12.025
(View/edit entry)
2017Model application 12
Ahmed, Mukhtar; Ijaz, Waqas; Ahmad, Shakeel; 2018. Adapting and evaluating APSIM-SoilP-Wheat model for response to phosphorus under rainfed conditions of Pakistan. Journal of Plant Nutrition, 41, 2069–2084. 10.1080/01904167.2018.1485933
(View/edit entry)
2018Model application 13
Vogeler, Iris; Cichota, Rogerio; Snow, Val; 2013. Identification and testing of early indicators for N leaching from urine patches. Journal of Environmental Management, 130, 55–63. 10.1016/j.jenvman.2013.08.047
(View/edit entry)
2013Model application 9
Akinseye, Folorunso M.; Ajeigbe, Hakeem A.; Traore, Pierre C.S.; Agele, Samuel O.; Zemadim, Birhanu; Whitbread, Anthony; 2020. Improving sorghum productivity under changing climatic conditions: A modelling approach. Field Crops Research, 246, 107685. 10.1016/j.fcr.2019.107685
(View/edit entry)
2020Model application 10
Jones, Rk; Probert, Me; Dalgliesh, Np; McCown, Rl; 1996. Nitrogen inputs from a pasture legume in rotations with cereals in the semi-arid tropics of northern Australia: experimentation and modelling on a clay loam soil. Australian Journal of Experimental Agriculture, 36, 985. 10.1071/EA9960985
(View/edit entry)
1996Model application 19
Rosenstock, Todd S.; Nowak, Andreea; Girvetz, Evan; Masikati, Patricia; Descheemaeker, Katrien; Crespo, Olivier; 2019. Understanding the Role of Soils and Management on Crops in the Face of Climate Uncertainty in Zimbabwe: A Sensitivity Analysis. In: (eds.)The Climate-Smart Agriculture Papers.. 49–64.
(View/edit entry)
2019Model application 3
Araya, A.; Kisekka, I.; Girma, A.; Hadgu, K. M.; Tegebu, F. N.; Kassa, A. H.; Ferreira-Filho, H. R.; Beltrão, N. E.; Afewerk, A.; Abadi, B.; Tsehaye, Y.; Martorano, L. G.; Abraha, A. Z.; 2017. The challenges and opportunities for wheat production under future climate in Northern Ethiopia. The Journal of Agricultural Science, 155, 379–393. 10.1017/S0021859616000460
(View/edit entry)
2017Model application 12
Kodur, S.; 2017. Improving the prediction of soil evaporation for different soil types under dryland cropping. Agricultural Water Management, 193, 131–141. 10.1016/j.agwat.2017.07.016
(View/edit entry)
2017Model application 5
Xiao, Dengpan; Bai, Huizi; Liu, De; 2018. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System. Sustainability, 10, 1277. 10.3390/su10041277
(View/edit entry)
2018Model application 29
Ahmed, Mukhtar; Stockle, Claudio O.; Ijaz, Waqas; Asim, Muhammad; Aslam, M.; 2017. Models to Study Phosphorous Dynamics Under Changing Climate. In: (eds.)Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability.. 371–386.
(View/edit entry)
2017Model application 6
Khan, Muhammad Aamir; Tahir, Alishba; Khurshid, Nabila; Husnain, Muhammad Iftikhar ul; Ahmed, Mukhtar; Boughanmi, Houcine; 2020. Economic Effects of Climate Change-Induced Loss of Agricultural Production by 2050: A Case Study of Pakistan. Sustainability, 12, 1216. 10.3390/su12031216
(View/edit entry)
2020Model application 16
MacCarthy, D. S.; Akponikpe, P. B. I.; Narh, S.; Tegbe, R.; 2015. Modeling the effect of seasonal climate variability on the efficiency of mineral fertilization on maize in the coastal savannah of Ghana. Nutrient Cycling in Agroecosystems, 102, 45–64. 10.1007/s10705-015-9701-x
(View/edit entry)
2015Model application 8
Nelson, R.A.; Cramb, R.A.; Mamicpic, M.A.; 1998. Erosion/productivity modelling of maize farming in the Philippine uplands. Agricultural Systems, 58, 165–183. 10.1016/S0308-521X(98)00045-6
(View/edit entry)
1998Model application 12
Yin, Jianping; Stuermer, Arne; Aversano, Marco; 2012. Aerodynamic and Aeroacoustic Analysis of Installed Pusher-Propeller Aircraft Configurations. Journal of Aircraft, 49, 1423–1433. 10.2514/1.C031704
(View/edit entry)
2012Model application 5
Vogeler, Iris; Cichota, Rogerio; Snow, Val; Thomas, Steve; Lloyd-West, Catherine; 2017. Effects of soil heterogeneity on the uncertainty in modelling the fate of urinary nitrogen deposited during winter forage grazing. Soil and Tillage Research, 169, 81–91. 10.1016/j.still.2017.01.014
(View/edit entry)
2017Model application 6
Sennhenn, A.; Njarui, D.M.G.; Maass, B.L.; Whitbread, A.M.; 2015. Can Short-season Grain Legumes Contribute to More Resilient and Productive Farming Systems in Semi-arid Eastern Kenya?. Procedia Environmental Sciences, 29, 81–82. 10.1016/j.proenv.2015.07.169
(View/edit entry)
2015Model application 0
Khaembah, E.N.; Brown, H.E.; Zyskowski, R.; Chakwizira, E.; de Ruiter, J.M.; Teixeira, E.I.; 2017. Development of a fodder beet potential yield model in the next generation APSIM. Agricultural Systems, 158, 23–38. 10.1016/j.agsy.2017.08.005
(View/edit entry)
2017Model application 6
Liu, Ke; Harrison, Matthew Tom; Hunt, James; Angessa, Tefera Tolera; Meinke, Holger; Li, Chengdao; Tian, Xiaohai; Zhou, Meixue; 2020. Identifying optimal sowing and flowering periods for barley in Australia: a modelling approach. Agricultural and Forest Meteorology, 282, 107871. 10.1016/j.agrformet.2019.107871
(View/edit entry)
2020Model application 12
Nash, David; Riffkin, Penny; Harris, Robert; Blackburn, Alan; Nicholson, Cam; McDonald, Mark; 2013. Modelling gross margins and potential N exports from cropland in south-eastern Australia. European Journal of Agronomy, 47, 23–32. 10.1016/j.eja.2013.01.001
(View/edit entry)
2013Model application 10
Phelan, David C.; Harrison, Matthew T.; McLean, Greg; Cox, Howard; Pembleton, Kieth G.; Dean, Geoff J.; Parsons, David; do Amaral Richter, Maria E.; Pengilley, Georgie; Hinton, Sue J.; Mohammed, Caroline L.; 2018. Advancing a farmer decision support tool for agronomic decisions on rainfed and irrigated wheat cropping in Tasmania. Agricultural Systems, 167, 113–124. 10.1016/j.agsy.2018.09.003
(View/edit entry)
2018Model application 8
Shabbir, Ghulam; Khaliq, Tasneem; Ahmad, Ashfaq; Saqib, Muhammad; 2020. Assessing the climate change impacts and adaptation strategies for rice production in Punjab, Pakistan. Environmental Science and Pollution Research, , . 10.1007/s11356-020-08846-6
(View/edit entry)
2020Model application 2
Vogeler, Iris; Carrick, Sam; Cichota, Rogerio; Lilburne, Linda; 2019. Estimation of soil subsurface hydraulic conductivity based on inverse modelling and soil morphology. Journal of Hydrology, 574, 373–382. 10.1016/j.jhydrol.2019.04.002
(View/edit entry)
2019Model application 11
Ramankutty, P; Ryan, M; Lawes, R; Speijers, J; Renton, M; 2013. Statistical emulators of a plant growth simulation model. Climate Research, 55, 253–265. 10.3354/cr01138
(View/edit entry)
2013Model application 6
Leal Filho, Walter; Esilaba, Anthony O.; Rao, Karuturi P.C.; Sridhar, Gummadi; Ngugi, L. W.; Rao, K. P. C.; Oyoo, A.; Kwena, K.; 2015. Opportunities for Coping with Climate Change and Variability Through Adoption of Soil and Water Conservation Technologies in Semi-arid Eastern Kenya. In: (eds.)Adapting African Agriculture to Climate Change.. 149–157.
(View/edit entry)
2015Model application 4
Dumbrell, Nikki P.; Kragt, Marit E.; Biggs, Jody; Meier, Elizabeth; Thorburn, Peter; 2015. Climate change abatement and farm profitability analyses across agricultural environments. In: (eds.).. .
(View/edit entry)
2015Model application 0
Ahmed, Mukhtar; Stockle, Claudio O.; Aslam, Muhammad Aqeel; Hayat, Riffat; 2017. Modeling Nitrogen Use Efficiency Under Changing Climate. In: (eds.)Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability.. 71–90.
(View/edit entry)
2017Model application 4
Cao, Weixing; White, Jeffrey W.; Wang, Enli; Monks, D. P.; Moot, D. J.; Brown, H. E.; Teixeira, E. I.; 2009. APSIM-Lucerne Validation in the Temperate Climate of New Zealand. In: (eds.)Crop Modeling and Decision Support.. 265–270.
(View/edit entry)
2009Model application 2
LIU, Zhi-Juan; YANG, Xiao-Guang; WANG, Jing; LÜ, Shuo; LI, Ke-Nan; XUN, Xin; WANG, En-Li; 2013. Adaptability of APSIM Maize Model in Northeast China. ACTA AGRONOMICA SINICA, 38, 740-746. 10.3724/sp.j.1006.2012.00740
(View/edit entry)
2013Model application 8
An-Vo, Duc-Anh; Mushtaq, Shahbaz; Reardon-Smith, Kathryn; Kouadio, Louis; Attard, Steve; Cobon, David; Stone, Roger; 2019. Value of seasonal forecasting for sugarcane farm irrigation planning. European Journal of Agronomy, 104, 37–48. 10.1016/j.eja.2019.01.005
(View/edit entry)
2019Model application 16
Ahmed, Mukhtar; Stockle, Claudio O.; Aslam, Muhammad Umair; Shehzad, Armghan; Iqbal, Muhammad; Asim, Muhammad; Aslam, M.; 2017. QTL Modelling: An Adaptation Option in Spring Wheat for Drought Stress. In: (eds.)Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability.. 113–136.
(View/edit entry)
2017Model application 3
Li, Jianzheng; Luo, Zhongkui; Wang, Yingchun; Li, Hu; Xing, Hongtao; Wang, Ligang; Wang, Enli; Xu, Hui; Gao, Chunyu; Ren, Tianzhi; 2019. Optimizing Nitrogen and Residue Management to Reduce GHG Emissions while Maintaining Crop Yield: A Case Study in a Mono-Cropping System of Northeast China. Sustainability, 11, 5015. 10.3390/su11185015
(View/edit entry)
2019Model application 3
Reading, L. P.; Bajracharya, K.; Wang, J.; 2019. Simulating deep drainage and nitrate leaching on a regional scale: implications for groundwater management in an intensively irrigated area. Irrigation Science, 37, 561–581. 10.1007/s00271-019-00636-4
(View/edit entry)
2019Model application 7
Vogeler, Iris; Thomas, Steve; van der Weerden, Tony; 2019. Effect of irrigation management on pasture yield and nitrogen losses. Agricultural Water Management, 216, 60–69. 10.1016/j.agwat.2019.01.022
(View/edit entry)
2019Model application 14
Vogeler, Iris; Vibart, Ronaldo; Cichota, Rogerio; 2017. Potential benefits of diverse pasture swards for sheep and beef farming. Agricultural Systems, 154, 78–89. 10.1016/j.agsy.2017.03.015
(View/edit entry)
2017Model application 4
Lal, Rattan; Singh, Bal Ram; Mwaseba, Dismas L.; Kraybill, David; Hansen, David O.; Eik, Lars Olav; Mbungu, Winfred B.; Mahoo, Henry F.; Tumbo, Siza D.; Kahimba, Frederick C.; Rwehumbiza, Filbert B.; Mbilinyi, Boniface P.; 2015. Using Climate and Crop Simulation Models for Assessing Climate Change Impacts on Agronomic Practices and Productivity. In: (eds.)Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa.. 201–219.
(View/edit entry)
2015Model application 3
Cichota, Rogerio; Vogeler, Iris; Werner, Armin; Wigley, Kathryn; Paton, Brittany; 2018. Performance of a fertiliser management algorithm to balance yield and nitrogen losses in dairy systems. Agricultural Systems, 162, 56–65. 10.1016/j.agsy.2018.01.017
(View/edit entry)
2018Model application 5
Yin, Jianping; Stuermer, Arne; 2010. Noise Radiation from Installed Pusher Propeller Using Coupling of Unsteady Panel Method, Actuator Disk and FW-H Methodology. . Volume .
(View/edit entry)
2010Model application 5
Amarasingha, R. K.; Suriyagoda, L. D. B.; Marambe, B.; Galagedara, L. W.; Punyawardena, R.; 2018. Impact of climate change on rice yield in Sri Lanka: a crop modelling approach using Agriculture Production System Simulator (APSIM). Sri Lanka Journal of Food and Agriculture, 4, 21. 10.4038/sljfa.v4i1.54
(View/edit entry)
2018Model application 0
Luo, Q; Bange, M; Devoil, P; 2016. Effects of a wheat rotation on cotton production in a changing climate: a simulation study. Climate Research, 70, 29–38. 10.3354/cr01413
(View/edit entry)
2016Model application 1
G, Gebrekiros; A, Araya; 2015. Modeling Impact of Climate Change and Variability on Sorghum Production in Southern Zone of Tigray, Ethiopia. Journal of Earth Science & Climatic Change, 7, . 10.4172/2157-7617.1000322
(View/edit entry)
2015Model application 6
Luetkemeier, Robert; Stein, Lina; Drees, Lukas; Müller, Hannes; Liehr, Stefan; 2018. Uncertainty of Rainfall Products: Impact on Modelling Household Nutrition from Rain-Fed Agriculture in Southern Africa. Water, 10, 499. 10.3390/w10040499
(View/edit entry)
2018Model application 4
Nascimento, Alexandre Ferreira do; Mendonça, Eduardo de Sá; Leite, Luiz Fernando Carvalho; Scholberg, Johannes; Neves, Julio Cesar Lima; 2012. Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics. Scientia Agricola, 69, 393–401. 10.1590/S0103-90162012000600008
(View/edit entry)
2012Model application 10
Jaradat, Abdullah A.; Boody, George; 2011. Modeling Agroecosystem Services under Simulated Climate and Land-Use Changes. ISRN Ecology, 2011, 1–17. 10.5402/2011/568723
(View/edit entry)
2011Model application 7
Rigobelo, Everlon Cid; Ibrahim, Ahmed; Harrison, Matthew; Meinke, Holger; Zhou, Meixue; 2016. Barley Phenology: Physiological and Molecular Mechanisms for Heading Date and Modelling of Genotype‐Environment‐ Management Interactions. In: (eds.)Plant Growth.. .
(View/edit entry)
2016Model application 2
Borus, D.J.; Mohammed, C.; Parsons, D.; Boersma, M.; Schulte-Geldermann, E.; 2016. Modelling future potato ( Solanum tuberosum L.) production in Tasmania and Kenya. Acta Horticulturae, , 217–224. 10.17660/ActaHortic.2016.1118.32
(View/edit entry)
2016Model application 3
Zeleke, Ketema Tilahun; 2020. Evaluating Dry Matter Production and Grain Yield of Dual-Purpose Winter Wheat Using Field Experiment and Modelling. Agronomy, 10, 338. 10.3390/agronomy10030338
(View/edit entry)
2020Model application 1
Zhao, Junfang; Kong, Xiangna; He, Kejun; Xu, Hui; Mu, Jia; 2020. Assessment of the radiation effect of aerosols on maize production in China. Science of The Total Environment, 720, 137567. 10.1016/j.scitotenv.2020.137567
(View/edit entry)
2020Model application 6
Myoung, B.; Kim, S.H.; Kafatos, M.; Kim, J.; Stack, D.H.; 2015. Temperature, sowing and harvest dates, and yield potential of maize in the southwestern US. . Volume .
(View/edit entry)
2015Model application 0
Yang, Xuan; Li, Zhou; Cui, Song; Cao, Quan; Deng, Jianqiang; Lai, Xingfa; Shen, Yuying; 2020. Cropping system productivity and evapotranspiration in the semiarid Loess Plateau of China under future temperature and precipitation changes: An APSIM-based analysis of rotational vs. continuous systems. Agricultural Water Management, 229, 105959. 10.1016/j.agwat.2019.105959
(View/edit entry)
2020Model application 5
Bationo, Andre; Waswa, Boaz; Kihara, Job; Adolwa, Ivan; Vanlauwe, Bernard; Saidou, Koala; Kihanda, F. M.; Warren, G. P.; 2012. Management of Soil Fertility in a Long-Term Field Trial of Semi-arid Kenya. In: (eds.)Lessons learned from Long-term Soil Fertility Management Experiments in Africa.. 85–103.
(View/edit entry)
2012Model application 3
Zull, A. F.; Owens, J.; Bourgault, M.; Johnson, B.; Peck, G.; Christodoulou, N.; 2017. Mixed farming diversification may be costly: southern Queensland case study. Crop and Pasture Science, 68, 378. 10.1071/CP16193
(View/edit entry)
2017Model application 1
Vogeler, Iris; Cichota, Rogerio; 2018. Effect of variability in soil properties plus model complexity on predicting topsoil water content and nitrous oxide emissions. Soil Research, 56, 810. 10.1071/SR18080
(View/edit entry)
2018Model application 8
Zhao, Gang; Song, Xiaodong; Yan, Changqing; Yu, Qiang; 2012. Porting a process-based crop model to a high-performance computing environment for plant simulation. . Volume .
(View/edit entry)
2012Model application 0
Antille, D.L.; Huth, N.I.; Eberhard, J.; Marinoni, O.; Cocks, B.; Poulton, P.L.; Macdonald, B.C.T.; Schmidt, E.J.; 2016. The Effects of Coal Seam Gas Infrastructure Development on Arable Land in Southern Queensland, Australia: Field Investigations and Modeling. Transactions of the ASABE, 59, 879–901. 10.13031/trans.59.11547
(View/edit entry)
2016Model application 7
Kogo, Benjamin Kipkemboi; Kumar, Lalit; Koech, Richard; Langat, Philip; 2019. Modelling Impacts of Climate Change on Maize (<i>Zea mays</i> L.) Growth and Productivity: A Review of Models, Outputs and Limitations. Journal of Geoscience and Environment Protection, 7, 76–95. 10.4236/gep.2019.78006
(View/edit entry)
2019Model application 3
Cichota, Rogerio; Vogeler, Iris; 2018. Response to ‘Comments on “Linking Land Use Capability classes and APSIM to estimate pasture growth for regional planning” in Soil Research 54, 94–110 (2016)'. Soil Research, 56, 216. 10.1071/SR18023
(View/edit entry)
2018Model application 0
Levitan, Nathaniel; Gross, Barry; 2018. Utilizing Collocated Crop Growth Model Simulations to Train Agronomic Satellite Retrieval Algorithms. Remote Sensing, 10, 1968. 10.3390/rs10121968
(View/edit entry)
2018Model application 3
Zeleke, Ketema; Nendel, Claas; 2019. Growth and yield response of faba bean to soil moisture regimes and sowing dates: Field experiment and modelling study. Agricultural Water Management, 213, 1063–1077. 10.1016/j.agwat.2018.12.023
(View/edit entry)
2019Model application 6
Tong, Dai; 2016. Modelling the impacts of climate change on spring maize yield in Southwest China using the APSIM model. 资源科学, 38, 113–119. 10.18402/resci.2016.01.17
(View/edit entry)
2016Model application 3
Hammer, Graeme L.; Van Oosterom, Erik; McLean, Greg; Chapman, Scott; 2009. Designing the sorghum crop model in APSIM to simulate the physiology and genetics of complex adaptive traits. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 153, S222. 10.1016/j.cbpa.2009.04.550
(View/edit entry)
2009Model application 2
Gunarathna, M.H.J.P.; Sakai, Kazuhito; Nakandakari, Tamotsu; Momii, Kazuro; Kumari, M.K.N.; 2019. Sensitivity Analysis of Plant- and Cultivar-Specific Parameters of APSIM-Sugar Model: Variation between Climates and Management Conditions. Agronomy, 9, 242. 10.3390/agronomy9050242
(View/edit entry)
2019Model application 7
Bai, Huiqing; Wang, Jing; Fang, Quanxiao; Huang, Binxiang; 2020. Does a trade-off between yield and efficiency reduce water and nitrogen inputs of winter wheat in the North China Plain?. Agricultural Water Management, 233, 106095. 10.1016/j.agwat.2020.106095
(View/edit entry)
2020Model application 8
Badgery, Warwick B.; Mwendwa, James M.; Anwar, Muhuddin Rajin; Simmons, Aaron T.; Broadfoot, Kim M.; Rohan, Maheswaran; Singh, Bhupinder Pal; 2020. Unexpected increases in soil carbon eventually fell in low rainfall farming systems. Journal of Environmental Management, 261, 110192. 10.1016/j.jenvman.2020.110192
(View/edit entry)
2020Model application 1
Touch, Van; Liu, De Li; Martin, Robert John; Scott, Jeannette Fiona; Cowie, Annette; Tan, Daniel K. Y.; 2020. Building Farming Resilience to Climate Change: Upland Crop Production in Northwest Cambodia. Proceedings, 36, 157. 10.3390/proceedings2019036157
(View/edit entry)
2020Model application 0
Msongaleli, Barnabas M.; Tumbo, S. D.; Kihupi, N. I.; Rwehumbiza, Filbert B.; 2017. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania. International Scholarly Research Notices, 2017, 1–10. 10.1155/2017/2506946
(View/edit entry)
2017Model application 7
Lynn, Ian H.; 2018. Comments on ‘Linking Land Use Capability classes and APSIM to estimate pasture growth for regional planning' in Soil Research 54, 94–110 (2016). Soil Research, 56, 215. 10.1071/SR17166
(View/edit entry)
2018Model application 0
Zhang, Hong-wei; Neale, Christopher M. U.; Maltese, Antonino; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong; 2010. The review of dynamic monitoring technology for crop growth. . Volume .
(View/edit entry)
2010Model application 3
Vogeler, I.; Cichota, R.; 2017. Development of an algorithm for relating pasture nitrogen status to yield response curves. Grass and Forage Science, 72, 734–742. 10.1111/gfs.12284
(View/edit entry)
2017Model application 1
Akinseye, Folorunso M.; Ajegbe, Hakeem A.; Kamara, Alpha Y.; Adefisan, Elijah A.; Whitbread, Anthony M.; 2020. Understanding the response of sorghum cultivars to nitrogen applications in the semi-arid Nigeria using the agricultural production systems simulator. Journal of Plant Nutrition, 43, 834–850. 10.1080/01904167.2020.1711943
(View/edit entry)
2020Model application 2
Machecourt, J.; Bassand, J.P.; Cassagnes, J.; Anguenot, T.; Lusson, J.R.; Wolf, J.E.; Ducellier, D.; Borrel, E.; Peycelon, P.; 1988. 27 A multicenter double-blind trial of intravenous APSAC versus heparin in acute myocardial infarction. The APSIM study. Fibrinolysis, 2, 14. 10.1016/0268-9499(88)90052-5
(View/edit entry)
1988Model application 2
Zhao, Jin; Yang, Xiaoguang; 2019. Spatial patterns of yield-based cropping suitability and its driving factors in the three main maize-growing regions in China. International Journal of Biometeorology, 63, 1659–1668. 10.1007/s00484-019-01783-1
(View/edit entry)
2019Model application 3
Ahmed, Mukhtar; H. Hirani, Arvind; Asif, Muhammad; Sajad, Muhammad; 2013. Modelling Soil Water Dynamics under Rainfed Agriculture to Mitigate Climate Change. Journal of Agricultural Science, 5, p90. 10.5539/jas.v5n3p90
(View/edit entry)
2013Model application 0
Wang, Yaxu; Lv, Juan; Wang, Yicheng; Sun, Hongquan; Hannaford, Jamie; Su, Zhicheng; Barker, Lucy J.; Qu, Yanping; 2020. Drought risk assessment of spring maize based on APSIM crop model in Liaoning province, China. International Journal of Disaster Risk Reduction, 45, 101483. 10.1016/j.ijdrr.2020.101483
(View/edit entry)
2020Model application 4
Stone, Luís F.; Heinemann, Alexandre B.; 2012. Simulação do manejo do nitrogênio em arroz de terras altas com o modelo ORYZA/APSIM 2000. Revista Brasileira de Engenharia Agrícola e Ambiental, 16, 611–617. 10.1590/S1415-43662012000600004
(View/edit entry)
2012Model application 1
Bassand, Jean-Pierre; Machecourt, Jacques; 1989. Limitation of myocardial infarct size and preservation of left ventricular function by early administration of APSAC in myocardial infarction. The American Journal of Cardiology, 64, A18–A23. 10.1016/0002-9149(89)90924-7
(View/edit entry)
1989Model application 8
Peng, Ting; Fu, Jingying; Jiang, Dong; Du, Jinshuang; 2020. Simulation of the Growth Potential of Sugarcane as an Energy Crop Based on the APSIM Model. Energies, 13, 2173. 10.3390/en13092173
(View/edit entry)
2020Model application 3
Wu, Lu; Feng, Liping; Li, Yizhuo; Wang, Jing; Wu, Lianhai; 2019. A Yield-Related Agricultural Drought Index Reveals Spatio-Temporal Characteristics of Droughts in Southwestern China. Sustainability, 11, 714. 10.3390/su11030714
(View/edit entry)
2019Model application 6
Rahimi-Moghaddam, Sajjad; Kambouzia, Jafar; Deihimfard, Reza; 2019. Optimal genotype × environment × management as a strategy to increase grain maize productivity and water use efficiency in water-limited environments and rising temperature. Ecological Indicators, 107, 105570. 10.1016/j.ecolind.2019.105570
(View/edit entry)
2019Model application 7
Charles, B. Chisanga; Elijah, Phiri; Vernon, R. N. Chinene; 2017. Climate change impact on maize (Zea mays L.) yield using crop simulation and statistical downscaling models: A review. Scientific Research and Essays, 12, 167–187. 10.5897/SRE2017.6521
(View/edit entry)
2017Model application 6
Minshew, Hudson; Selker, John; Hemphill, Delbert; Dick, Richard P.; 2002. NLEAP Computer Model and Multiple Linear Regression Prediction of Nitrate Leaching in Vegetable Systems. HortTechnology, 12, 250–256. 10.21273/HORTTECH.12.2.250
(View/edit entry)
2002Model application 5
Zeleke, Ketema Tilahun; 2018. Effect of summer fallow management on crop yield: Field experiment and simulation analysis. Agricultural Water Management, 203, 405–410. 10.1016/j.agwat.2018.03.032
(View/edit entry)
2018Model application 0
Frija, Aymen; Telleria, Roberto; 2016. Country-Level Bio-Economic Modeling of Agricultural Technologies to Enhance Wheat-Based Systems Productivity in the Dry Areas. Sustainable Agriculture Research, 5, 113. 10.5539/sar.v5n3p113
(View/edit entry)
2016Model application 2
Singh, Anil Kumar; Dagar, Jagdish Chander; Arunachalam, Ayyanadar; R, Gopichandran; Shelat, Kirit Nanubhai; Mohanty, M.; Sinha, Nishant K.; Lenka, Sangeeta; Hati, K. M.; Somasundaram, J.; Saha, R.; Singh, R. K.; Chaudhary, R. S.; Subba Rao, A.; 2015. Climate Change Impacts on Rainfed Soybean Yield of Central India: Management Strategies Through Simulation Modelling. In: (eds.)Climate Change Modelling, Planning and Policy for Agriculture.. 39–44.
(View/edit entry)
2015Model application 4
Stuermer, Arne W.; 2015. Validation of Installation Effect Predictions through Simulations of Contra-Rotating Open Rotors at Low-Speed Flight Conditions. . Volume .
(View/edit entry)
2015Model application 2
Sarkar, Sukamal; Gaydon, Donald S; Brahmachari, Koushik; Nanda, Manoj Kumar; Ghosh, Argha; Mainuddin, Mohammed; 2020. Modelling Yield and Seasonal Soil Salinity Dynamics in Rice-Grasspea Cropping System for the Coastal Saline Zone of West Bengal, India. Proceedings, 36, 146. 10.3390/proceedings2019036146
(View/edit entry)
2020Model application 2
Zhao, Junfang; Kong, Xiangna; Xu, Hui; Zhang, Yanhong; Jiang, Yueqing; 2020. Assessment of biomass and yield loss of maize caused by aerosols in heavily polluted agricultural areas of China based on APSIM model. Physics and Chemistry of the Earth, Parts A/B/C, 115, 102835. 10.1016/j.pce.2019.102835
(View/edit entry)
2020Model application 3
Mthandi, John; 2014. Modification, Calibration and Validation of APSIM to Suit Maize (Zeamays L.) Production System: A Case of Nkango Irrigation Scheme in Malawi. American Journal of Agriculture and Forestry, 2, 1. 10.11648/j.ajaf.s.2014020601.11
(View/edit entry)
2014Model application 2
Fan, Dongliang; Yang, Feiyun; Pan, Zhihua; Su, Xiaoyun; Pan, Yuying; Han, Guolin; Wang, Jialin; Wu, Dong; Dong, Zhiqiang; 2018. Development of an Improved Model to Evaluate Vulnerability in Spring Wheat under Climate Change in Inner Mongolia. Sustainability, 10, 4581. 10.3390/su10124581
(View/edit entry)
2018Model application 0
Carcedo, Ana J.P.; Gambin, Brenda L.; 2019. Sorghum drought and heat stress patterns across the Argentinean temperate central region. Field Crops Research, 241, 107552. 10.1016/j.fcr.2019.06.009
(View/edit entry)
2019Model application 5
Casalino, Damiano; 2010. Aeroacoustics research in Europe: The CEAS-ASC report on 2009 highlights. Journal of Sound and Vibration, 329, 4810–4828. 10.1016/j.jsv.2010.06.001
(View/edit entry)
2010Model application 0
Ndukhu, O. H.; Wahome, G. R.; 2018. Modelling Nutrient Dynamics and Maize Yields under Different Cropping Systems and Organic Amendments Using APSIM in Central Kenya. International Journal of Plant & Soil Science, 24, 1–16. 10.9734/IJPSS/2018/16201
(View/edit entry)
2018Model application 0
Jolly, Ben; Lyons, Paul; Snow, Val; 2010. ADEPT: a visual tool for organising simulations. . Volume .
(View/edit entry)
2010Model application 0
Lorençoni, Rogério; Dourado Neto, Durval; Heinemann, Alexandre Bryan; Soares, Leonardo Cirilo da Silva; Silva, Adilson Nunes da; 2016. CALIBRAÇÃO DO MODELO ORYZA-APSIM PARA O ARROZ DE TERRAS ALTAS NO BRASIL. BRAZILIAN JOURNAL OF AGRICULTURE - Revista de Agricultura, 85, 237. 10.37856/bja.v85i3.2855
(View/edit entry)
2016Model application 0
Bal, Santanu Kumar; Mukherjee, Joydeep; Choudhury, Burhan Uddin; Dhawan, Ashok Kumar; Dhakar, Rajkumar; Sarath Chandran, M. A.; Nagar, Shivani; Visha Kumari, V.; Subbarao, A. V. M.; Vijaya Kumar, P.; 2018. Field Crop Response to Water Deficit Stress: Assessment Through Crop Models. In: (eds.)Advances in Crop Environment Interaction.. 287–315.
(View/edit entry)
2018Model application 4
Gunarathna, M. H. J. P.; Sakai, Kazuhito; Kumari, M. K. N.; Ranagalage, Manjula; 2020. A Functional Analysis of Pedotransfer Functions Developed for Sri Lankan soils: Applicability for Process-Based Crop Models. Agronomy, 10, 285. 10.3390/agronomy10020285
(View/edit entry)
2020Model application 1
Chauhan, Yashvir S.; Ryan, Merrill; 2020. Frost Risk Management in Chickpea Using a Modelling Approach. Agronomy, 10, 460. 10.3390/agronomy10040460
(View/edit entry)
2020Model application 2
Okwach, G. E.; Siambi, M. M.; Simiyu, C.S.; 2003. Assessing the Interaction in Maize Cropping Density, Nitrogen and Soil Moisture with a Systems Simulator in Semi-Arid Machakos District, Kenya. East African Agricultural and Forestry Journal, 69, 157–171. 10.4314/eaafj.v69i2.1817
(View/edit entry)
2003Model application 1
Saddique, Qaisar; Ji, Jianmei; Ajaz, Ali; Jiatun, Xu; Yufeng, Zou; He, Jianqiang; Cai, Huanjie; 2019. <i>Performance Comparison of the APSIM and CERES-Wheat models in Guanzhong Plain, China</i>. . Volume .
(View/edit entry)
2019Model application 0
Li, G.; Huang, G.-B.; 2010. China Science Journal. Chinese Journal of Eco-Agriculture, , 342-347. 10.3724/SP.J.1011.2010.00342
(View/edit entry)
2010

Model application

0
Ning, Li; Xu, Jingwen; Zhao, Junfang; Pu, Feiyu; Xiang, Surong; 2015. The study of the relationship between climate factors and growth period of spring wheat based on APSIM model. . Volume .
(View/edit entry)
2015Model application 0
Tang, Jianzhao; Xiao, Dengpan; Bai, Huizi; Wang, Bin; Liu, De Li; Feng, Puyu; Zhang, Yuan; Zhang, Jun; 2020. Potential Benefits of Potato Yield at Two Sites of Agro-Pastoral Ecotone in North China Under Future Climate Change. International Journal of Plant Production, , . 10.1007/s42106-020-00092-7
(View/edit entry)
2020Model application 2
Tenreiro, Tomás R.; García-Vila, Margarita; Gómez, José A.; Jimenez-Berni, José A.; Fereres, Elías; 2020. Water modelling approaches and opportunities to simulate spatial water variations at crop field level. Agricultural Water Management, 240, 106254. 10.1016/j.agwat.2020.106254
(View/edit entry)
2020Model application 9
Bogard, Matthieu; Biddulph, Ben; Zheng, Bangyou; Hayden, Matthew; Kuchel, Haydn; Mullan, Dan; Allard, Vincent; Gouis, Jacques Le; Chapman, Scott C.; 2020. Linking genetic maps and simulation to optimize breeding for wheat flowering time in current and future climates. Crop Science, 60, 678–699. 10.1002/csc2.20113
(View/edit entry)
2020Model application 10
Kawakita, Satoshi; Takahashi, Hidehiro; Moriya, Kazuyuki; 2020. Prediction and parameter uncertainty for winter wheat phenology models depend on model and parameterization method differences. Agricultural and Forest Meteorology, 290, 107998. 10.1016/j.agrformet.2020.107998
(View/edit entry)
2020Model application 6
Schepen, Andrew; Everingham, Yvette; Wang, Quan J.; 2020. An improved workflow for calibration and downscaling of GCM climate forecasts for agricultural applications – A case study on prediction of sugarcane yield in Australia. Agricultural and Forest Meteorology, 291, 107991. 10.1016/j.agrformet.2020.107991
(View/edit entry)
2020Model application 1
Gomes, Fagner Junior; Bosi, Cristiam; Pedreira, Bruno Carneiro; Santos, Patrícia Menezes; Pedreira, Carlos Guilherme Silveira; 2020. Parameterization of the APSIM model for simulating palisadegrass growth under continuous stocking in monoculture and in a silvopastoral system. Agricultural Systems, 184, 102876. 10.1016/j.agsy.2020.102876
(View/edit entry)
2020Model application 4
Hoffmann, M.P.; Swanepoel, C.M.; Nelson, W.C.D.; Beukes, D.J.; van der Laan, M.; Hargreaves, J.N.G.; Rötter, R.P.; 2020. Simulating medium-term effects of cropping system diversification on soil fertility and crop productivity in southern Africa. European Journal of Agronomy, , 126089. 10.1016/j.eja.2020.126089
(View/edit entry)
2020Model application 4
Zingore, Shamie; Gonzalez-Estrada, E.; Delve, Robert J.; Dimes, J. P.; Herrero, Mario; Murwira, H. K.; Giller, Ken E.; 2006. Evaluation of Resource Management Options for Smallholder Farms Using an Integrated Modelling Approach. In: (eds.).. .
(View/edit entry)
2006Model application 3
Fosu-Mensah, B. Y.; Manchadi, A.; Vlek, P. L. G.; 2019. Impacts of climate change and climate variability on maize yield under rainfed conditions in the sub-humid zone of Ghana: A scenario analysis using APSIM. West African Journal of Applied Ecology, 27, 108 126–108 126. 10.4314/wajae.v27i1.
(View/edit entry)
2019Model application 1
Feldman, David; Thomas, Quenten; Farre Codina, Imma; Plunkett, Brad; Kingwell, Ross; 2015. Is a low-input strategy a sound business defence in a drying climate?. In: (eds.).. .
(View/edit entry)
2015Model application 1
Scanlan, C.A.; Huth, N.I.; Bell, R.W.; 2015. Simulating wheat growth response to potassium availability under field conditions with sandy soils. I. Model development. Field Crops Research, 178, 109–124. 10.1016/j.fcr.2015.03.022
(View/edit entry)
2015

Model application

8
Descheemaeker, k.; Smith, A.P.; Robertson, M.J.; Whitbread, A.M.; Huth, N.I.; Davoren, W.; Emms, J.; Llewellyn, R.; 2014. Simulation of water-limited growth of the forage shrub saltbush (Atriplex nummularia Lindl.) in a low-rainfall environment of southern Australia. Crop and Pasture Science, 65, 1068. 10.1071/CP13452
(View/edit entry)
2014

Model application

8
Osman, R.; Zhu, Y.; Ma, W.; Zhang, D.; Ding, Z.; Liu, L.; Tang, L.; Liu, B.; Cao, W.; 2020. Comparison of wheat simulation models for impacts of extreme temperature stress on grain quality. Agricultural and Forest Meteorology, 288, 107995. 10.1016/j.agrformet.2020.107995
(View/edit entry)
2020

Model application

6
Borus, D.; Parsons, D.; Boersma, M.; Brown, H.; Mohammed, C.; 2018. Improving the prediction of potato productivity: APSIM-Potato model parameterization and evaluation in Tasmania, Australia. Australian Journal of Crop Science, 12, 32–43. 10.21475/ajcs.18.12.01.pne570
(View/edit entry)
2018

Model application

8
Morel, J.; Parsons, D.; Halling, M.A.; Kumar, U.; Peake, A.; Bergkvist, G.; Brown, H.; Hetta, M.; 2020. Challenges for Simulating Growth and Phenology of Silage Maize in a Nordic Climate with APSIM. Agronomy, 10, 645. 10.3390/agronomy10050645
(View/edit entry)
2020

Model application

5
Nie, Zhi-Gang; Li, Guang; Luo, Cui-Ping; Ma, Wei-Wei; Dai, Yong-Qiang; 2018. Parameter Optimization in APSIM-Based Simulation Model for Yield For-mation of Dryland Wheat Using Shuffled Frog Leaping Algorithm. Acta Agronomica Sinica, 44, 1229. 10.3724/SP.J.1006.2018.01229
(View/edit entry)
2018Model application 0
Ahmad, Ashfaq; Ashfaq, Muhammad; Wajid, Aftab; Khaliq, Tasneem; Ahmd, Ishfaq; Hoogenboom, Gerrit; 2019. Development of Climate Change Adaptation Strategies for Rice-wheat Cropping System of Punjab Pakistan. In: (eds.).. .
(View/edit entry)
2019Model application 2
Huda, Abul; 2013. Integrated crop and environmental management for improved productivity and food security. . Volume 2013.
(View/edit entry)
2013Model application 0
Fuchs, Kathrin; Merbold, Lutz; Buchmann, Nina; Bretscher, Daniel; Brilli, Lorenzo; Fitton, Nuala; Topp, Cairistiona F. E.; Klumpp, Katja; Lieffering, Mark; Martin, Raphaël; Newton, Paul C. D.; Rees, Robert M.; Rolinski, Susanne; Smith, Pete; Snow, Val; 2020. Multimodel Evaluation of Nitrous Oxide Emissions From an Intensively Managed Grassland. Journal of Geophysical Research: Biogeosciences, 125, . 10.1029/2019JG005261
(View/edit entry)
2020Model application 9
Giltrap, Donna; Yeluripati, Jagadeesh; Smith, Pete; Fitton, Nuala; Smith, Ward; Grant, Brian; Dorich, Christopher D.; Deng, Jia; Topp, Cairistiona FE; Abdalla, Mohamed; Liáng, Lìyǐn L.; Snow, Val; 2020. Global Research Alliance N 2 O chamber methodology guidelines: Summary of modeling approaches. Journal of Environmental Quality, 49, 1168–1185. 10.1002/jeq2.20119
(View/edit entry)
2020Model application 10
Shahhosseini, Mohsen; Martinez-Feria, Rafael A; Hu, Guiping; Archontoulis, Sotirios V; 2019. Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters, 14, 124026. 10.1088/1748-9326/ab5268
(View/edit entry)
2019Model application 0
Brown, Hamish E.; Huth, Neil I.; Holzworth, Dean P.; Teixeira, Edmar I.; Zyskowski, Rob F.; Hargreaves, John N.G.; Moot, Derrick J.; 2014. Plant Modelling Framework: Software for building and running crop models on the APSIM platform. Environmental Modelling & Software, 62, 385–398. 10.1016/j.envsoft.2014.09.005
(View/edit entry)
2014Model application 41
Vogel, Johannes; Rivoire, Pauline; Deidda, Cristina; Rahimi, Leila; Sauter, Christoph Alexander; Tschumi, Elisabeth; van der Wiel, Karin; Zhang, Tianyi; Zscheischler, Jakob; 2020. Identifying meteorological drivers of extreme impacts: an application to simulated crop yields. .
(View/edit entry)
2020Model application 9
Ye, Zi; Qiu, Xiaolei; Chen, Jian; Cammarano, Davide; Ge, Zhonglei; Ruane, Alex C.; Liu, Leilei; Tang, Liang; Cao, Weixing; Liu, Bing; Zhu, Yan; 2020. Impacts of 1.5 °C and 2.0 °C global warming above pre-industrial on potential winter wheat production of China. European Journal of Agronomy, 120, 126149. 10.1016/j.eja.2020.126149
(View/edit entry)
2020Model application 6
Marin, Fábio R.; Thorburn, Peter J.; Nassif, Daniel S.P.; Costa, Leandro G.; 2015. Sugarcane model intercomparison: Structural differences and uncertainties under current and potential future climates. Environmental Modelling & Software, 72, 372–386. 10.1016/j.envsoft.2015.02.019
(View/edit entry)
2015Model application 25
Hussain, Jamshad; Khaliq, Tasneem; Asseng, Senthold; Saeed, Umer; Ahmad, Ashfaq; Ahmad, Burhan; Ahmad, Ishfaq; Fahad, Muhammad; Awais, Muhammad; Ullah, Asmat; Hoogenboom, Gerrit; 2020. Climate change impacts and adaptations for wheat employing multiple climate and crop modelsin Pakistan. Climatic Change, 163, 253–266. 10.1007/s10584-020-02855-7
(View/edit entry)
2020Model application 2
Mohanty, M.; Sinha, Nishant K.; Somasundaram, J.; McDermid, Sonali S.; Patra, Ashok K.; Singh, Muneshwar; Dwivedi, A.K.; Reddy, K. Sammi; Rao, Ch. Srinivas; Prabhakar, M.; Hati, K.M.; Jha, P.; Singh, R.K.; Chaudhary, R.S.; Kumar, Soora Naresh; Tripathi, Prabhat; Dalal, Ram C.; Gaydon, Donald S.; Chaudhari, S.K.; 2020. Soil carbon sequestration potential in a Vertisol in central India- results from a 43-year long-term experiment and APSIM modeling. Agricultural Systems, 184, 102906. 10.1016/j.agsy.2020.102906
(View/edit entry)
2020Model application 8
Elli, Elvis Felipe; Sentelhas, Paulo Cesar; Bender, Fabiani Denise; 2020. Impacts and uncertainties of climate change projections on Eucalyptus plantations productivity across Brazil. Forest Ecology and Management, 474, 118365. 10.1016/j.foreco.2020.118365
(View/edit entry)
2020Model application 15
Peterson, Caitlin A.; Bell, Lindsay W.; Carvalho, Paulo C. de F.; Gaudin, Amélie C. M.; 2020. Resilience of an Integrated Crop–Livestock System to Climate Change: A Simulation Analysis of Cover Crop Grazing in Southern Brazil. Frontiers in Sustainable Food Systems, 4, 604099. 10.3389/fsufs.2020.604099
(View/edit entry)
2020Model application 3
Cichota, R.; Vogeler, I.; Snow, V.O.; Shepperd, M.; 2010. Modelling the effect of a nitrification inhibiter on N leaching from grazed pastures. Proceedings of the New Zealand Grassland Association, , 43–47. 10.33584/jnzg.2010.72.2815
(View/edit entry)
2010Model application 22
Gummadi, Sridhar; Kadiyala, M. D. M.; Rao, K. P. C.; Athanasiadis, Ioannis; Mulwa, Richard; Kilavi, Mary; Legesse, Gizachew; Amede, Tilahun; Shahid, Shamsuddin; 2020. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. PLOS ONE, 15, e0241147. 10.1371/journal.pone.0241147
(View/edit entry)
2020Model application 0
Pembleton, K. G.; Cullen, B. R.; Rawnsley, R. P.; Ramilan, T.; 2020. Climate change effects on pasture-based dairy systems in south-eastern Australia. Crop and Pasture Science, , . 10.1071/CP20108
(View/edit entry)
2020Model application 0
Bosi, Cristiam; Sentelhas, Paulo Cesar; Huth, Neil Ian; Pezzopane, José Ricardo Macedo; Andreucci, Mariana Pares; Santos, Patricia Menezes; 2020. APSIM-Tropical Pasture: A model for simulating perennial tropical grass growth and its parameterisation for palisade grass (Brachiaria brizantha). Agricultural Systems, 184, 102917. 10.1016/j.agsy.2020.102917
(View/edit entry)
2020Model application 6
Kadigi, Ibrahim L.; Richardson, James W.; Mutabazi, Khamaldin D.; Philip, Damas; Mourice, Sixbert K.; Mbungu, Winfred; Bizimana, Jean-Claude; Sieber, Stefan; 2020. The effect of nitrogen-fertilizer and optimal plant population on the profitability of maize plots in the Wami River sub-basin, Tanzania: A bio-economic simulation approach. Agricultural Systems, 185, 102948. 10.1016/j.agsy.2020.102948
(View/edit entry)
2020Model application 3
Yin, Xiaogang; Kersebaum, Kurt-Christian; Beaudoin, Nicolas; Constantin, Julie; Chen, Fu; Louarn, Gaëtan; Manevski, Kiril; Hoffmann, Munir; Kollas, Chris; Armas-Herrera, Cecilia M.; Baby, Sanmohan; Bindi, Marco; Dibari, Camilla; Ferchaud, Fabien; Ferrise, Roberto; de Cortazar-Atauri, Inaki Garcia; Launay, Marie; Mary, Bruno; Moriondo, Marco; Öztürk, Isik; Ruget, Françoise; Sharif, Behzad; Wachter-Ripoche, Dominique; Olesen, Jørgen E.; 2020. Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models. Field Crops Research, 255, 107863. 10.1016/j.fcr.2020.107863
(View/edit entry)
2020Model application 7
Vogeler, Iris; Hansen, Elly Møller; Nielsen, Svend; Labouriau, Rodrigo; Cichota, Rogerio; Olesen, Jørgen E.; Thomsen, Ingrid Kaag; 2020. Nitrate leaching from suction cup data: Influence of method of drainage calculation and concentration interpolation. Journal of Environmental Quality, 49, 440–449. 10.1002/jeq2.20020
(View/edit entry)
2020Model application 4
Saddique, Qaisar; Liu, De Li; Wang, Bin; Feng, Puyu; He, Jianqiang; Ajaz, Ali; Ji, Jianmei; Xu, Jiatun; Zhang, Chao; Cai, Huanjie; 2020. Modelling future climate change impacts on winter wheat yield and water use: A case study in Guanzhong Plain, northwestern China. European Journal of Agronomy, 119, 126113. 10.1016/j.eja.2020.126113
(View/edit entry)
2020Model application 14
Rotili, Diego Hernán; de Voil, Peter; Eyre, Joseph; Serafin, Loretta; Aisthorpe, Darren; Maddonni, Gustavo Ángel; Rodríguez, Daniel; 2020. Untangling genotype x management interactions in multi-environment on-farm experimentation. Field Crops Research, 255, 107900. 10.1016/j.fcr.2020.107900
(View/edit entry)
2020Model application 6
Saddique, Qaisar; Cai, Huanjie; Xu, Jiatun; Ajaz, Ali; He, Jianqiang; Yu, Qiang; Wang, Yunfei; Chen, Hui; Khan, Muhammad Imran; Liu, De Li; He, Liang; 2020. Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China. Mitigation and Adaptation Strategies for Global Change, 25, 1523–1543. 10.1007/s11027-020-09935-0
(View/edit entry)
2020Model application 6
Ahmed, Mukhtar; Dias, Henrique Boriolo; Inman-Bamber, Geoff; 2020. Sugarcane: Contribution of Process-Based Models for Understanding and Mitigating Impacts of Climate Variability and Change on Production. In: (eds.)Systems Modeling.. 217–260.
(View/edit entry)
2020Model application 2
McCarthy, D. S.; Vlek, P. L. G.; 2012. Impact of climate change on sorghum production under different nutrient and crop residue management in semi-arid region of Ghana: A modeling perspective. African Crop Science Journal, 20, 243–259. 10.4314/acsj.v20i2.
(View/edit entry)
2012Model application 18
He, Di; Oliver, Yvette; Wang, Enli; 2020. Predicting plant available water holding capacity of soils from crop yield. Plant and Soil, , . 10.1007/s11104-020-04757-0
(View/edit entry)
2020Model application 1
Baum, Mitch E.; Licht, Mark A.; Huber, Isaiah; Archontoulis, Sotirios V.; 2020. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. European Journal of Agronomy, 119, 126101. 10.1016/j.eja.2020.126101
(View/edit entry)
2020Model application 16
Zhang, Meng; Gao, Yanmei; Zhang, Yinghua; Fischer, Tony; Zhao, Zhigan; Zhou, Xiaonan; Wang, Zhimin; Wang, Enli; 2020. The contribution of spike photosynthesis to wheat yield needs to be considered in process-based crop models. Field Crops Research, 257, 107931. 10.1016/j.fcr.2020.107931
(View/edit entry)
2020Model application 8
Wimalasiri, Eranga M.; Jahanshiri, Ebrahim; Suhairi, Tengku Adhwa Syaherah Tengku Mohd; Udayangani, Hasika; Mapa, Ranjith B.; Karunaratne, Asha S.; Vidhanarachchi, Lal P.; Azam-Ali, Sayed N.; 2020. Basic Soil Data Requirements for Process-Based Crop Models as a Basis for Crop Diversification. Sustainability, 12, 7781. 10.3390/su12187781
(View/edit entry)
2020Model application 4
MacCarthy, D. S.; Agyare, W. A.; Vlek, P. L. G.; 2018. Evaluation of soil properties of the Sudan Savannah ecological zone of Ghana for crop production. Ghana Journal of Agricultural Science, 52, 95–104. 10.4314/gjas.v52i1.
(View/edit entry)
2018Model application 0
Dayal, Kavina; Brown, Jaclyn N.; Waldner, François; Lawes, Roger; Hochman, Zvi; Donohue, Randall; Horan, Heidi; Chen, Yang; 2020. Climate drivers provide valuable insights into late season prediction of Australian wheat yield. Agricultural and Forest Meteorology, 295, 108202. 10.1016/j.agrformet.2020.108202
(View/edit entry)
2020Model application 0
Nissanka, Sarath P.; Karunaratne, Asha S.; Perera, Ruchika; Weerakoon, W.M.W.; Thorburn, Peter J.; Wallach, Daniel; 2015. Calibration of the phenology sub-model of APSIM-Oryza: Going beyond goodness of fit. Environmental Modelling & Software, 70, 128–137. 10.1016/j.envsoft.2015.04.007
(View/edit entry)
2015Model application 10
Nurulhuda, Khairudin; Zakaria, Mohamad Pauzi; Struik, Paul C.; Keesman, Karel J.; 2020. Equifinality in the modelling of ammonia volatilisation from a flooded rice system. Environmental Modelling & Software, 133, 104752. 10.1016/j.envsoft.2020.104752
(View/edit entry)
2020Model application 0
Dutta, S. K; Laing, Alison M.; Kumar, S.; Gathala, Mahesh K.; Singh, Ajoy K.; Gaydon, D.S.; Poulton, P.; 2020. Improved water management practices improve cropping system profitability and smallholder farmers’ incomes. Agricultural Water Management, 242, 106411. 10.1016/j.agwat.2020.106411
(View/edit entry)
2020Model application 3
Manschadi, A. M.; Eitzinger, J.; Breisch, M.; Fuchs, W.; Neubauer, T.; Soltani, A.; 2020. Full Parameterisation Matters for the Best Performance of Crop Models: Inter-comparison of a Simple and a Detailed Maize Model. International Journal of Plant Production, , . 10.1007/s42106-020-00116-2
(View/edit entry)
2020Model application 1
Chimonyo, Vimbayi G. P.; Wimalasiri, Eranga M.; Kunz, Richard; Modi, Albert T.; Mabhaudhi, Tafadzwanashe; 2020. Optimizing Traditional Cropping Systems Under Climate Change: A Case of Maize Landraces and Bambara Groundnut. Frontiers in Sustainable Food Systems, 4, 562568. 10.3389/fsufs.2020.562568
(View/edit entry)
2020Model application 2
, ; 2016. Sensitivity of Maize Yield Potential to Regional Climate in the Southwestern U.S.. Transactions of the ASABE, 59, 1745–1757. 10.13031/trans.59.11584
(View/edit entry)
2016Model application 2
Ahmed, Mukhtar; Mehmood, Muhammad Zeeshan; Afzal, Obaid; Aslam, Muhammad Aqeel; Riaz, Hasan; Raza, Muhammad Ali; Ahmed, Shakeel; Qadir, Ghulam; Ahmad, Mukhtar; Shaheen, Farid Asif; Shah, Zahid Hussain; 2020. Disease Modeling as a Tool to Assess the Impacts of Climate Variability on Plant Diseases and Health. In: (eds.)Systems Modeling.. 327–351.
(View/edit entry)
2020Model application 2
Hina, Tayyaba; Adil, Sultan Ali; Ashfaq, Muhammad; Ahmad, Ashfaq; 2019. Economic Impact Assessment of Climatic Change Sensitivity in Rice-Wheat Cropping System of Pakistan. Indian Journal of Science and Technology, 12, 1–17. 10.17485/ijst/2019/v12i37/147643
(View/edit entry)
2019Model application 2
Jarolímek, Jan; Pavlík, Jan; Kholova, Jana; Ronanki, Swarna; 2019. Data Pre-processing for Agricultural Simulations. Agris on-line Papers in Economics and Informatics, 11, 49–53. 10.7160/aol.2019.110105
(View/edit entry)
2019Model application 2
MacPherson, Joseph; Paul, Carsten; Helming, Katharina; 2020. Linking Ecosystem Services and the SDGs to Farm-Level Assessment Tools and Models. Sustainability, 12, 6617. 10.3390/su12166617
(View/edit entry)
2020Model application 1
Dilla, Aynalem M.; Smethurst, Philip J.; Huth, Neil I.; Barry, Karen M.; 2020. Plot-Scale Agroforestry Modeling Explores Tree Pruning and Fertilizer Interactions for Maize Production in a Faidherbia Parkland. Forests, 11, 1175. 10.3390/f11111175
(View/edit entry)
2020Model application 4
Saddique, Qaisar; Zou, Yufeng; Ajaz, Ali; Ji, Jianmei; Xu, Jiatun; Azmat, Muhammad; Rahman, Muhammad Habib ur; He, Jianqiang; Cai, Huanjie; 2020. Analyzing the Performance and Application of CERES-Wheat and APSIM in the Guanzhong Plain, China. Transactions of the ASABE, 63, 1879–1893. 10.13031/trans.13631
(View/edit entry)
2020Model application 0
Adam, Myriam; MacCarthy, Dilys Sefakor; Traoré, Pierre C. Sibiry; Nenkam, Andree; Freduah, Bright Salah; Ly, Mouhamed; Adiku, Samuel G.K.; 2020. Which is more important to sorghum production systems in the Sudano-Sahelian zone of West Africa: Climate change or improved management practices?. Agricultural Systems, 185, 102920. 10.1016/j.agsy.2020.102920
(View/edit entry)
2020Model application 3
Kwesiga, Julius; Grotelüschen, Kristina; Senthilkumar, Kalimuthu; Neuhoff, Daniel; Döring, Thomas F.; Becker, Mathias; 2020. Rice Yield Gaps in Smallholder Systems of the Kilombero Floodplain in Tanzania. Agronomy, 10, 1135. 10.3390/agronomy10081135
(View/edit entry)
2020Model application 8
Morvan, Thierry; Lemoine, Charlotte; Gaillard, Florian; Hamelin, Gaelle; Trinkler, Béatrice; Carteaux, Laurence; Petitjean, Patrice; Jaffrezic, Anne; 2020. A comprehensive dataset on nitrate, Nitrite and dissolved organic carbon leaching losses from a 4-year Lysimeter study. Data in Brief, 32, 106029. 10.1016/j.dib.2020.106029
(View/edit entry)
2020Model application 0
Campolo, Jake; Güereña, David; Maharjan, Shashish; Lobell, David B.; 2021. Evaluation of soil-dependent crop yield outcomes in Nepal using ground and satellite-based approaches. Field Crops Research, 260, 107987. 10.1016/j.fcr.2020.107987
(View/edit entry)
2021Model application 1
Xiao, Dengpan; Liu, De Li; Feng, Puyu; Wang, Bin; Waters, Cathy; Shen, Yanjun; Qi, Yongqing; Bai, Huizi; Tang, Jianzhao; 2021. Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain. Agricultural Water Management, 246, 106685. 10.1016/j.agwat.2020.106685
(View/edit entry)
2021Model application 4
Zhang, Yajie; Yu, Qiang; 2021. Does agroecosystem model improvement increase simulation accuracy for agricultural N2O emissions?. Agricultural and Forest Meteorology, 297, 108281. 10.1016/j.agrformet.2020.108281
(View/edit entry)
2021Model application 1
Fuchs, Kathrin; Merbold, Lutz; Buchmann, Nina; Bellocchi, Gianni; Bindi, Marco; Brilli, Lorenzo; Conant, Richard T.; Dorich, Christopher D.; Ehrhardt, Fiona; Fitton, Nuala; Grace, Peter; Klumpp, Katja; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; McAuliffe, Russell; Newton, Paul C. D.; Rees, Robert M.; Recous, Sylvie; Smith, Pete; Soussana, Jean‐François; Topp, Cairistiona F. E.; 2020. Evaluating the Potential of Legumes to Mitigate N 2 O Emissions From Permanent Grassland Using Process‐Based Models. Global Biogeochemical Cycles, 34, e2020GB006561. 10.1029/2020GB006561
(View/edit entry)
2020Model application 9
Xu, Xibao; Liu, Jingping; Tan, Yan; Yang, Guishan; 2021. Quantifying and optimizing agroecosystem services in China's Taihu Lake Basin. Journal of Environmental Management, 277, 111440. 10.1016/j.jenvman.2020.111440
(View/edit entry)
2021Model application 2
Mandrini, German; Bullock, David S.; Martin, Nicolas F.; 2021. Modeling the economic and environmental effects of corn nitrogen management strategies in Illinois. Field Crops Research, 261, 108000. 10.1016/j.fcr.2020.108000
(View/edit entry)
2021Model application 5
Jones, M.R.; Singels, A.; Chinorumba, S.; Poser, C.; Christina, M.; Shine, J.; Annandale, J.; Hammer, G.L.; 2021. Evaluating process-based sugarcane models for simulating genotypic and environmental effects observed in an international dataset. Field Crops Research, 260, 107983. 10.1016/j.fcr.2020.107983
(View/edit entry)
2021Model application 2
Rotili, Diego Hernán; Abeledo, L. Gabriela; deVoil, Peter; Rodríguez, Daniel; Maddonni, Gustavo Ángel; 2021. Exploring the effect of tillers on the water economy, plant growth and kernel set of low-density maize crops. Agricultural Water Management, 243, 106424. 10.1016/j.agwat.2020.106424
(View/edit entry)
2021Model application 3
Gaydon, Donald S.; Khaliq, Tasneem; Ahmad, Mobin-ud-Din; Cheema, M.J.M.; Gull, Umair; 2021. Tweaking Pakistani Punjab rice-wheat management to maximize productivity within nitrate leaching limits. Field Crops Research, 260, 107964. 10.1016/j.fcr.2020.107964
(View/edit entry)
2021Model application 2
Nan, Zhe; Wang, Xiaoyan; Du, Yi; Melching, Charles S.; Shang, Xueshen; 2021. Critical period and pathways of water borne nitrogen loss from a rice paddy in northeast China. Science of The Total Environment, 753, 142116. 10.1016/j.scitotenv.2020.142116
(View/edit entry)
2021Model application 1
Singh, Ajit Pratap; Dhadse, Kunal; 2021. Economic evaluation of crop production in the Ganges region under climate change: A sustainable policy framework. Journal of Cleaner Production, 278, 123413. 10.1016/j.jclepro.2020.123413
(View/edit entry)
2021Model application 8
Roberton, S.D.; Lobsey, C.R.; Bennett, J.McL.; 2021. A Bayesian approach toward the use of qualitative information to inform on-farm decision making: The example of soil compaction. Geoderma, 382, 114705. 10.1016/j.geoderma.2020.114705
(View/edit entry)
2021Model application 1
Rahimi-Moghaddam, Sajjad; Eyni-Nargeseh, Hamed; Ahmadi, Seyed Ahmad Kalantar; Azizi, Khosro; 2021. Towards withholding irrigation regimes and drought-resistant genotypes as strategies to increase canola production in drought-prone environments: A modeling approach. Agricultural Water Management, 243, 106487. 10.1016/j.agwat.2020.106487
(View/edit entry)
2021Model application 5
Beah, Aloysius; Kamara, Alpha Y.; Jibrin, Jibrin M.; Akinseye, Folorunso M.; Tofa, Abdullahi I.; Adam, Adam. M.; 2020. Simulating the Response of Drought–Tolerant Maize Varieties to Nitrogen Application in Contrasting Environments in the Nigeria Savannas Using the APSIM Model. Agronomy, 11, 76. 10.3390/agronomy11010076
(View/edit entry)
2020Model application 0
Luedeling, Eike; Smethurst, Philip J.; Baudron, Frédéric; Bayala, Jules; Huth, Neil I.; van Noordwijk, Meine; Ong, Chin K.; Mulia, Rachmat; Lusiana, Betha; Muthuri, Catherine; Sinclair, Fergus L.; 2016. Field-scale modeling of tree–crop interactions: Challenges and development needs. Agricultural Systems, 142, 51–69. 10.1016/j.agsy.2015.11.005
(View/edit entry)
2016

Model application

75
Kragt, Marit E.; Robertson, Michael J.; 2014. Quantifying ecosystem services trade-offs from agricultural practices. Ecological Economics, 102, 147–157. 10.1016/j.ecolecon.2014.04.001
(View/edit entry)
2014

Model application

86
Mohanty, M.; Reddy, K. Sammi; Probert, M.E.; Dalal, R.C.; Rao, A. Subba; Menzies, N.W.; 2011. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study. Ecological Modelling, 222, 719–726. 10.1016/j.ecolmodel.2010.10.027
(View/edit entry)
2011

Model application

63
Lu, Yang; Wang, Enli; Zhao, Zhigan; Liu, Xiuwei; Tian, Ailing; Zhang, Xiying; 2021. Optimizing irrigation to reduce N leaching and maintain high crop productivity through the manipulation of soil water storage under summer monsoon climate. Field Crops Research, 265, 108110. 10.1016/j.fcr.2021.108110
(View/edit entry)
2021

Model application

3
S.H.N.P., De Silva; Takahashi, Taro; Okada, Kensuke; 2021. Evaluation of APSIM-wheat to simulate the response of yield and grain protein content to nitrogen application on an Andosol in Japan. Plant Production Science, , 1–12. 10.1080/1343943X.2021.1883989
(View/edit entry)
2021Model application 1
Bandara, W. B. M. A. C.; Sakai, Kazuhito; Nakandakari, Tamotsu; Kapetch, Preecha; Rathnappriya, R. H. K.; 2020. A Gaussian-Process-Based Global Sensitivity Analysis of Cultivar Trait Parameters in APSIM-Sugar Model: Special Reference to Environmental and Management Conditions in Thailand. Agronomy, 10, 984. 10.3390/agronomy10070984
(View/edit entry)
2020Model application 2
Bilotto, Franco; Harrison, Matthew Tom; Migliorati, Massimiliano De Antoni; Christie, Karen M.; Rowlings, David W.; Grace, Peter R.; Smith, Andrew P.; Rawnsley, Richard P.; Thorburn, Peter J.; Eckard, Richard J.; 2021. Can seasonal soil N mineralisation trends be leveraged to enhance pasture growth?. Science of The Total Environment, 772, 145031. 10.1016/j.scitotenv.2021.145031
(View/edit entry)
2021

Model application

1
Collins, Brian; Najeeb, Ullah; Luo, Qunying; Tan, Daniel K.Y.; 2021. Contribution of climate models and APSIM phenological parameters to uncertainties in spring wheat simulations: application of SUFI-2 algorithm in northeast Australia. .
(View/edit entry)
2021Model application 1
Collins, Brian; 2021. Limiting transpiration rate in high evaporative demand conditions to improve Australian wheat productivity. in silico Plants, 3, diab006. 10.1093/insilicoplants/diab006
(View/edit entry)
2021Model application 6
Yang, Kai-Wei; Chapman, Scott; Tuinstra, Mitchell; 2020. R Pipeline for Calculation of APSIM Parameters and Generating the XML File. , , . 10.4231/69H7-CV75
(View/edit entry)
2020Model application 1
Shahhosseini, Mohsen; Hu, Guiping; Huber, Isaiah; Archontoulis, Sotirios V.; 2021. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Scientific Reports, 11, 1606. 10.1038/s41598-020-80820-1
(View/edit entry)
2021

Model application

22
Chen, Qiaomin; Zheng, Bangyou; Chen, Tong; Chapman, Scott; 2021. Integration of APSIM and PROSAIL models to develop more precise radiometric estimation of crop traits using deep learning. bioRxiv.
(View/edit entry)
2021Model application 0
Collins, Brian; Chenu, Karine; 2021. Improving productivity of Australian wheat by adapting sowing date and genotype phenology to future climate. Climate Risk Management, 32, 100300. 10.1016/j.crm.2021.100300
(View/edit entry)
2021Model application 11
Gaydon, D.S.; Radanielson, A.M.; Chaki, A.K.; Sarker, M.M.R.; Rahman, M.A.; Rashid, M.H.; Kabir, Md.J.; Khan, A.S.M.M.R.; Gaydon, E.R.; Roth, C.H.; 2021. Options for increasing Boro rice production in the saline coastal zone of Bangladesh. Field Crops Research, 264, 108089. 10.1016/j.fcr.2021.108089
(View/edit entry)
2021

Model application

3
Böldt, Matthias; Taube, Friedhelm; Vogeler, Iris; Reinsch, Thorsten; Kluß, Christof; Loges, Ralf; 2021. Evaluating Different Catch Crop Strategies for Closing the Nitrogen Cycle in Cropping Systems—Field Experiments and Modelling. Sustainability, 13, 394. 10.3390/su13010394
(View/edit entry)
2021Model application 9
Berghuijs, H.N.C.; Weih, M.; van der Werf, W.; Karley, A.J.; Adam, E.; Villegas-Fernandez, A.M.; Kiaer, L.P.; Newton, A.C.; Scherber, C.; Tavoletti, S.; Vico, G.; 2021. Calibrating and testing APSIM for wheat-faba bean pure cultures and intercrops across Europe. Field Crops Research, 264, 108088. 10.1016/j.fcr.2021.108088
(View/edit entry)
2021

Model application

3
Mwambo, Francis Molua; Fürst, Christine; Martius, Christopher; Jimenez-Martinez, Marcos; Nyarko, Benjamin Kofi; Borgemeister, Christian; 2021. Combined application of the EM-DEA and EX-ACT approaches for integrated assessment of resource use efficiency, sustainability and carbon footprint of smallholder maize production practices in sub-Saharan Africa. Journal of Cleaner Production, , 126132. 10.1016/j.jclepro.2021.126132
(View/edit entry)
2021Model application 1
Peake, A.S.; Carberry, P.S.; Raine, S.R.; Gett, V.; Smith, R.J.; 2016. An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia. Agricultural Water Management, 169, 61–76. 10.1016/j.agwat.2016.02.013
(View/edit entry)
2016

Model application

10
Wu, Yushan; He, Di; Wang, Enli; Liu, Xin; Huth, Neil I.; Zhao, Zhigan; Gong, Wanzhuo; Yang, Feng; Wang, Xiaochun; Yong, Taiwen; Liu, Jiang; Liu, Weiguo; Du, Junbo; Pu, Tian; Liu, Chunyan; Yu, Liang; van der Werf, Wopke; Yang, Wenyu; 2021. Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations. Field Crops Research, 265, 108122. 10.1016/j.fcr.2021.108122
(View/edit entry)
2021

Model application

1
Gladish, Daniel W.; He, Di; Wang, Enli; 2021. Pattern analysis of Australia soil profiles for plant available water capacity. Geoderma, 391, 114977. 10.1016/j.geoderma.2021.114977
(View/edit entry)
2021

Model application

0
Teixeira, Edmar; Kersebaum, Kurt Christian; Ausseil, Anne-Gaelle; Cichota, Rogerio; Guo, Jing; Johnstone, Paul; George, Michael; Liu, Jian; Malcolm, Brendon; Khaembah, Edith; Meiyalaghan, Sathiyamoorthy; Richards, Kate; Zyskowski, Robert; Michel, Alexandre; Sood, Abha; Tait, Andrew; Ewert, Frank; 2021. Understanding spatial and temporal variability of N leaching reduction by winter cover crops under climate change. Science of The Total Environment, 771, 144770. 10.1016/j.scitotenv.2020.144770
(View/edit entry)
2021

Model application

3
Bell, L.W.; Moore, A.D.; Thomas, D.T.; 2021. Diversified crop-livestock farms are risk-efficient in the face of price and production variability. Agricultural Systems, 189, 103050. 10.1016/j.agsy.2021.103050
(View/edit entry)
2021Model application 2
Hussein, Mahmood A.; Antille, Diogenes L.; Kodur, Shreevatsa; Chen, Guangnan; Tullberg, Jeff N.; 2021. Controlled traffic farming effects on productivity of grain sorghum, rainfall and fertiliser nitrogen use efficiency. Journal of Agriculture and Food Research, 3, 100111. 10.1016/j.jafr.2021.100111
(View/edit entry)
2021

Model application

4
Tonapi, Vilas A.; Talwar, Harvinder Singh; Are, Ashok Kumar; Bhat, B. Venkatesh; Reddy, Ch. Ravinder; Dalton, Timothy J.; Kholová, J.; Adam, M.; Diancoumba, M.; Hammer, G.; Hajjarpoor, A.; Chenu, K.; Jarolímek, J.; 2020. Sorghum: General Crop-Modelling Tools Guiding Principles and Use of Crop Models in Support of Crop Improvement Programs in Developing Countries. In: (eds.)Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World.. 189–207.
(View/edit entry)
2020Model application 0
Kumar, Uttam; Morel, Julien; Bergkvist, Göran; Palosuo, Taru; Gustavsson, Anne-Maj; Peake, Allan; Brown, Hamish; Ahmed, Mukhtar; Parsons, David; 2021. Comparative Analysis of Phenology Algorithms of the Spring Barley Model in APSIM 7.9 and APSIM Next Generation: A Case Study for High Latitudes. Plants, 10, 443. 10.3390/plants10030443
(View/edit entry)
2021Model application 1
Balakrishna, K.; 2020. WSN-Based Information Dissemination for Optimizing Irrigation Through Prescriptive Farming:. International Journal of Agricultural and Environmental Information Systems, 11, 41–54. 10.4018/IJAEIS.2020100103
(View/edit entry)
2020

Model application

5
Liu, Ke; Harrison, Matthew Tom; Shabala, Sergey; Meinke, Holger; Ahmed, Ibrahim; Zhang, Yunbo; Tian, Xiaohai; Zhou, Meixue; 2020. The State of the Art in Modeling Waterlogging Impacts on Plants: What Do We Know and What Do We Need to Know. Earth's Future, 8, . 10.1029/2020EF001801
(View/edit entry)
2020

Model application

4
Su, Zheng-e; Liu, Zhi-juan; Bai, Fan; Zhang, Zhen-tao; Sun, Shuang; Huang, Qiu-wan; Liu, Tao; Liu, Xiao-qing; Yang, Xiao-guang; 2021. Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in Northeast China. Journal of Integrative Agriculture, 20, 371–382. 10.1016/S2095-3119(20)63359-7
(View/edit entry)
2021

Model application

1
Biswas, Amit; Mailapalli, Damodhara R.; Raghuwanshi, Narendra S.; 2021. Modelling the effect of changing transplanting date on consumptive water footprints for paddy under the system of rice intensification. Journal of the Science of Food and Agriculture, 0, . 10.1002/jsfa.11186
(View/edit entry)
2021

Model application

0
Arshad, Adnan; Raza, Muhammad Ali; Zhang, Yue; Zhang, Lizhen; Wang, Xuejiao; Ahmed, Mukhtar; Habib-ur-Rehman, Muhammad; 2021. Impact of Climate Warming on Cotton Growth and Yields in China and Pakistan: A Regional Perspective. Agriculture, 11, 97. 10.3390/agriculture11020097
(View/edit entry)
2021Model application 4
Khaembah, Edith N.; Cichota, Rogerio; Vogeler, Iris; 2021. Simulation of management strategies to mitigate nitrogen losses from crop rotations in Southland, New Zealand. Journal of the Science of Food and Agriculture, 0, . 10.1002/jsfa.11063
(View/edit entry)
2021

Model application

0
Tomar, Pradeep; Kaur, Gurjit; Wang, Yuchi; 2021. Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture:. In: (eds.).. .
(View/edit entry)
2021Model application 0
Lungu, Olipa N.; Chabala, Lydia M.; Shepande, Chizumba; 2020. Satellite-Based Crop Monitoring and Yield Estimation—A Review. Journal of Agricultural Science, 13, 180. 10.5539/jas.v13n1p180
(View/edit entry)
2020Model application 0
Yang, Kai-Wei; Chapman, Scott; Carpenter, Neal; Hammer, Graeme; McLean, Greg; Zheng, Bangyou; Chen, Yuhao; Delp, Edward; Masjedi, Ali; Crawford, Melba; Ebert, David; Habib, Ayman; Thompson, Addie; Weil, Clifford; Tuinstra, Mitchell R; Yin, Xinyou; Long, Stephen P; 2021. Integrating crop growth models with remote sensing for predicting biomass yield of sorghum. in silico Plants, 3, diab001. 10.1093/insilicoplants/diab001
(View/edit entry)
2021Model application 7
Palosuo, Taru; Hoffmann, Munir P.; Rötter, Reimund P.; Lehtonen, Heikki S.; 2021. Sustainable intensification of crop production under alternative future changes in climate and technology: The case of the North Savo region. Agricultural Systems, 190, 103135. 10.1016/j.agsy.2021.103135
(View/edit entry)
2021

Model application

1
Vogeler, Iris; Carrick, Sam; Lilburne, Linda; Cichota, Rogerio; Pollacco, Joseph; Fernández-Gálvez, Jesús; 2021. How important is the description of soil unsaturated hydraulic conductivity values for simulating soil saturation level, drainage and pasture yield?. Journal of Hydrology, 598, 126257. 10.1016/j.jhydrol.2021.126257
(View/edit entry)
2021

Model application

1
Zhao, Panpan; Zhou, Yang; Li, Fengfeng; Ling, Xiaoxia; Deng, Nanyan; Peng, Shaobing; Man, Jianguo; 2020. The Adaptability of APSIM-Wheat Model in the Middle and Lower Reaches of the Yangtze River Plain of China: A Case Study of Winter Wheat in Hubei Province. Agronomy, 10, 981. 10.3390/agronomy10070981
(View/edit entry)
2020Model application 7
Rötter, Reimund; Scheiter, Simon; Hoffmann, Munir; Pfeiffer, Mirjam; Nelson, William; Ayisi, Kingsley; Taylor, Peter; Feil, Jan-Henning; Bakhsh, Sara Yazdan; Isselstein, J; Linstaedter, Anja; Behn, Kai; Westphal, Catrin; Grass, Ingo; Odhiambo, Jude J. O.; Twine, Wayne; Paolo, Merante; Bracho-Mujica, Gennady; Bringhenti, Thomas; Lamega, Sala; Abdulai, Issaka; Lam, Quang; Anders, Mina; Linden, Valerie; Weier, Sina; Foord, Stefan; Erasmus, Barend; 2021. Letter-to-the-Editor: Modelling the multi-functionality of African savanna landscapes under global change. .
(View/edit entry)
2021Model application 0
Biswas, A.; Mailapalli, D. R.; Raghuwanshi, N. S.; 2021. APSIM-Oryza model for simulating paddy consumptive water footprints under alternate wetting and drying practice for Kharagpur, West Bengal, India. Paddy and Water Environment, , . 10.1007/s10333-021-00849-4
(View/edit entry)
2021Model application 0
Azmat, Muhammad; Ilyas, Fatima; Sarwar, Afia; Huggel, Christain; Vaghefi, Saeid Ashraf; Hui, Tao; Qamar, Muhammad Uzair; Bilal, Muhammad; Ahmed, Zeeshan; 2021. Impacts of climate change on wheat phenology and yield in Indus Basin, Pakistan. Science of The Total Environment, 790, 148221. 10.1016/j.scitotenv.2021.148221
(View/edit entry)
2021Model application 2
Li, Yang; Wang, Jing; Tang, Jianzhao; Wang, Enli; Pan, Zhihua; Pan, Xuebiao; Hu, Qi; 2021. Optimum planting date and cultivar maturity to optimize potato yield and yield stability in North China. Field Crops Research, 269, 108179. 10.1016/j.fcr.2021.108179
(View/edit entry)
2021Model application 3
Tang, Jianzhao; Xiao, Dengpan; Wang, Jing; Fang, Quanxiao; Zhang, Jun; Bai, Huizi; 2021. Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China. Agricultural Water Management, 253, 106945. 10.1016/j.agwat.2021.106945
(View/edit entry)
2021Model application 3
Dias, Henrique Boriolo; Sentelhas, Paulo Cesar; 2021. Assessing the performance of two gridded weather data for sugarcane crop simulations with a process-based model in Center-South Brazil. International Journal of Biometeorology, , . 10.1007/s00484-021-02145-6
(View/edit entry)
2021Model application 0
Pasley, Heather; Nichols, Virginia; Castellano, Michael; Baum, Mitchell; Kladivko, Eileen; Helmers, Matthew; Archontoulis, Sotirios; 2021. Rotating maize reduces the risk and rate of nitrate leaching. Environmental Research Letters, 16, 064063. 10.1088/1748-9326/abef8f
(View/edit entry)
2021Model application 1
Wang, Xiaofang; Li, Yi; Chen, Xinguo; Wang, Haoran; Li, Linchao; Yao, Ning; Liu, De Li; Biswas, Asim; Sun, Shikun; 2021. Projection of the climate change effects on soil water dynamics of summer maize grown in water repellent soils using APSIM and HYDRUS-1D models. Computers and Electronics in Agriculture, 185, 106142. 10.1016/j.compag.2021.106142
(View/edit entry)
2021Model application 0
Akhavizadegan, Faezeh; Ansarifar, Javad; Wang, Lizhi; Huber, Isaiah; Archontoulis, Sotirios V.; 2021. A time-dependent parameter estimation framework for crop modeling. Scientific Reports, 11, 11437. 10.1038/s41598-021-90835-x
(View/edit entry)
2021Model application 1
Raza, Ahsan; Ahrends, Hella; Habib-Ur-Rahman, Muhammad; Gaiser, Thomas; 2021. Modeling Approaches to Assess Soil Erosion by Water at the Field Scale with Special Emphasis on Heterogeneity of Soils and Crops. Land, 10, 422. 10.3390/land10040422
(View/edit entry)
2021Model application 4
Del Bimbo, Alberto; Cucchiara, Rita; Sclaroff, Stan; Farinella, Giovanni Maria; Mei, Tao; Bertini, Marco; Escalante, Hugo Jair; Vezzani, Roberto; Pylianidis, Christos; Snow, Val; Holzworth, Dean; Bryant, Jeremy; Athanasiadis, Ioannis N.; 2021. Location-Specific vs Location-Agnostic Machine Learning Metamodels for Predicting Pasture Nitrogen Response Rate. In: (eds.)Pattern Recognition. ICPR International Workshops and Challenges.. 45–54.
(View/edit entry)
2021Model application 0
Timsina, Jagadish; Dutta, Sudarshan; Devkota, Krishna Prasad; Chakraborty, Somsubhra; Neupane, Ram Krishna; Bishta, Sudarshan; Amgain, Lal Prasad; Singh, Vinod K.; Islam, Saiful; Majumdar, Kaushik; 2021. Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency. Agricultural Systems, 192, 103181. 10.1016/j.agsy.2021.103181
(View/edit entry)
2021Model application 1
Feleke, Hirut Getachew; Savage, Mj; Tesfaye, Kindie; 2021. Calibration and validation of APSIM–Maize, DSSAT CERES–Maize and AquaCrop models for Ethiopian tropical environments. South African Journal of Plant and Soil, 38, 36–51. 10.1080/02571862.2020.1837271
(View/edit entry)
2021Model application 1
Beah, Aloysius; Kamara, Alpha Yaya; Jibrin, Jibrin Mohamed; Akinseye, Folorunso Mathew; Tofa, Abdullahi Ibrahim; Ademulegun, Temitope Damian; 2021. Simulation of the Optimum Planting Windows for Early and Intermediate-Maturing Maize Varieties in the Nigerian Savannas Using the APSIM Model. Frontiers in Sustainable Food Systems, 5, 624886. 10.3389/fsufs.2021.624886
(View/edit entry)
2021Model application 1
Morel, Julien; Kumar, Uttam; Ahmed, Mukhtar; Bergkvist, Göran; Lana, Marcos; Halling, Magnus; Parsons, David; 2021. Quantification of the Impact of Temperature, CO2, and Rainfall Changes on Swedish Annual Crops Production Using the APSIM Model. Frontiers in Sustainable Food Systems, 5, 665025. 10.3389/fsufs.2021.665025
(View/edit entry)
2021Model application 1
Bustos-Korts, Daniela; Boer, Martin P; Chenu, Karine; Zheng, Bangyou; Chapman, Scott; van Eeuwijk, Fred A; Messina, Carlos; Long, Stephen P; 2021. Genotype-specific P-spline response surfaces assist interpretation of regional wheat adaptation to climate change. in silico Plants, 3, diab018. 10.1093/insilicoplants/diab018
(View/edit entry)
2021Model application 1
Ababaei, Behnam; Chenu, Karine; 2019. Recent Trends in Drought, Heat and Frost-Induced Yield Losses Across the Australian Wheatbelt. Proceedings, 36, 5. 10.3390/proceedings2019036005
(View/edit entry)
2019Model application 4
Boote, Kenneth J.; Adam, Myriam; Ahmad, Ishfaq; Ahmad, Shakeel; Cammarano, Davide; Chattha, Ashfaq Ahmad; Claessens, Lieven; Dimes, John; Durand, Wiltrud; Freduah, Bright S.; Gummadi, Sridhar; Hargreaves, John; Hoogenboom, Gerrit; Homann-Kee Tui, Sabine; Jones, James W.; Khaliq, Tasneem; MacCarthy, Dilys S.; Masikati, Patricia; McDermid, Sonali; Kadiyala, Dakshina Murthy; Nenkam, Andree; Porter, Cheryl; Ruane, Alex C.; Subash, Nataraja; Thorburn, Peter; Traore, Pierre S.; Vellingiri, Geethalakshmi; Wajid, Syed Aftab; 2021. Understanding Differences in Climate Sensitivity Simulations of APSIM and DSSAT Crop Models. In: (eds.).. 15–46.
(View/edit entry)
2021Model application 0
Dokoohaki, Hamze; Kivi, Marissa S; Martinez-Feria, Rafael; Miguez, Fernando E; Hoogenboom, Gerrit; 2021. A comprehensive uncertainty quantification of large-scale process-based crop modeling frameworks. Environmental Research Letters, 16, 084010. 10.1088/1748-9326/ac0f26
(View/edit entry)
2021Model application 0
Barton, Madeleine; Parry, Hazel; Ward, Samantha; Hoffmann, Ary A.; Umina, Paul A.; van Helden, Maarten; Macfadyen, Sarina; 2021. Forecasting impacts of biological control under future climates: mechanistic modelling of an aphid pest and a parasitic wasp. Ecological Modelling, 457, 109679. 10.1016/j.ecolmodel.2021.109679
(View/edit entry)
2021Model application 0
Shahhosseini, Mohsen; Hu, Guiping; Huber, Isaiah; Archontoulis, Sotirios V.; 2021. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Scientific Reports, 11, 1606. 10.1038/s41598-020-80820-1
(View/edit entry)
2021Model application 18
Ojeda, Jonathan J.; Rezaei, Ehsan Eyshi; Kamali, Bahareh; McPhee, John; Meinke, Holger; Siebert, Stefan; Webb, Mathew A.; Ara, Iffat; Mulcahy, Frank; Ewert, Frank; 2021. Impact of crop management and environment on the spatio-temporal variance of potato yield at regional scale. Field Crops Research, 270, 108213. 10.1016/j.fcr.2021.108213
(View/edit entry)
2021Model application 1
Nechaev, A. I.; 2021. Structure of the information management system of cereal crops cultivation. Siberian Herald of Agricultural Science, 51, 96–106. 10.26898/0370-8799-2021-2-12
(View/edit entry)
2021Model application 0
Dias, Henrique Boriolo; Sentelhas, Paulo Cesar; Inman-Bamber, Geoff; Everingham, Yvette; 2021. Sugarcane yield future scenarios in Brazil as projected by the APSIM-Sugar model. Industrial Crops and Products, 171, 113918. 10.1016/j.indcrop.2021.113918
(View/edit entry)
2021Model application 0
Ojeda, Jonathan J.; Huth, Neil; Holzworth, Dean; Raymundo, Rubí; Zyskowski, Robert F.; Sinton, Sarah M.; Michel, Alexandre J.; Brown, Hamish E.; 2021. Assessing errors during simulation configuration in crop models – A global case study using APSIM-Potato. Ecological Modelling, 458, 109703. 10.1016/j.ecolmodel.2021.109703
(View/edit entry)
2021Model application 0
Xu, Fang; Wang, Bin; He, Chuan; Liu, De Li; Feng, Puyu; Yao, Ning; Zhang, Renhe; Xu, Shutu; Xue, Jiquan; Feng, Hao; Yu, Qiang; He, Jianqiang; 2021. Optimizing Sowing Date and Planting Density Can Mitigate the Impacts of Future Climate on Maize Yield: A Case Study in the Guanzhong Plain of China. Agronomy, 11, 1452. 10.3390/agronomy11081452
(View/edit entry)
2021Model application 0
Luo, Z; Wang, E.; Bryan, B.; 2011. A meta-model for soil carbon stock in agricultural soils. . Volume .
(View/edit entry)
2011

Model application

0
Yang, Xiumei; Brown, Hamish E.; Teixeira, Edmar I.; Moot, Derrick J.; 2021. Development of a lucerne model in APSIM next generation: 1 phenology and morphology of genotypes with different fall dormancies. European Journal of Agronomy, 130, 126372. 10.1016/j.eja.2021.126372
(View/edit entry)
2021Model application 0
Rahimi-Moghaddam, Sajjad; Deihimfard, Reza; Azizi, Khosro; Roostaei, Mozaffar; 2021. Characterizing spatial and temporal trends in drought patterns of rainfed wheat (Triticum aestivum L.) across various climatic conditions: A modelling approach. European Journal of Agronomy, 129, 126333. 10.1016/j.eja.2021.126333
(View/edit entry)
2021Model application 2
Tahir, Nazia; Li, Jumei; Ma, Yibing; Ullah, Aman; Zhu, Ping; Peng, Chang; Hussain, Babar; Danish, Subhan; 2021. 20 Years nitrogen dynamics study by using APSIM nitrogen model simulation for sustainable management in Jilin China. Scientific Reports, 11, 17505. 10.1038/s41598-021-96386-5
(View/edit entry)
2021Model application 2
Das, Bianca; Huth, Neil; Probert, Merv; Paul, Birthe; Kihara, Job; Bolo, Peter; Rodriguez, Daniel; Herrero, Mario; Schmidt, Susanne; 2019. Drivers of Phosphorus Efficiency in Tropical and Subtropical Cropping Systems. Proceedings, 36, 13. 10.3390/proceedings2019036013
(View/edit entry)
2019Model application 0
Hunt, J. R.; Browne, C.; McBeath, T. M.; Verburg, K.; Craig, S.; Whitbread, A. M.; 2013. Summer fallow weed control and residue management impacts on winter crop yield though soil water and N accumulation in a winter-dominant, low rainfall region of southern Australia. Crop and Pasture Science, 64, 922. 10.1071/CP13237
(View/edit entry)
2013

Model application

52
Li, Jianzheng; Wang, Ligang; Luo, Zhongkui; Wang, Enli; Wang, Guocheng; Zhou, Han; Li, Hu; Xu, Shiwei; 2021. Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM. Agricultural Systems, 194, 103277. 10.1016/j.agsy.2021.103277
(View/edit entry)
2021

Model application

0
Raymond, Nelly; Kopittke, Peter M.; Wang, Enli; Lester, David; Bell, Michael J.; 2021. Does the APSIM model capture soil phosphorus dynamics? A case study with Vertisols. Field Crops Research, 273, 108302. 10.1016/j.fcr.2021.108302
(View/edit entry)
2021

Model application

0
Yasin, Mubashra; Ahmad, Ashfaq; Khaliq, Tasneem; Habib-ur-Rahman, Muhammad; Niaz, Salma; Gaiser, Thomas; Ghafoor, Iqra; Hassan, Hafiz Suboor ul; Qasim, Muhammad; Hoogenboom, Gerrit; 2021. Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models. Environmental Science and Pollution Research, , . 10.1007/s11356-021-17050-z
(View/edit entry)
2021

Model application

0
Dias, Henrique Boriolo; Inman-Bamber, Geoff; Sentelhas, Paulo Cesar; Everingham, Yvette; Bermejo, Rodrigo; Christodoulou, Diomedes; 2021. High-yielding sugarcane in tropical Brazil – Integrating field experimentation and modelling approach for assessing variety performances. Field Crops Research, 274, 108323. 10.1016/j.fcr.2021.108323
(View/edit entry)
2021

Model application

0
Hao, Shirui; Ryu, Dongryeol; Western, Andrew; Perry, Eileen; Bogena, Heye; Franssen, Harrie Jan Hendricks; 2021. Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis. Agricultural Systems, 194, 103278. 10.1016/j.agsy.2021.103278
(View/edit entry)
2021

Model application

0
Grotelüschen, Kristina; Gaydon, Donald S.; Langensiepen, Matthias; Ziegler, Susanne; Kwesiga, Julius; Senthilkumar, Kalimuthu; Whitbread, Anthony M.; Becker, Mathias; 2021. Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches. Agricultural Water Management, 258, 107146. 10.1016/j.agwat.2021.107146
(View/edit entry)
2021

Model application

0
Liu, Ke; Harrison, Matthew Tom; Archontoulis, Sotirios V; Huth, Neil; Yang, Rui; Liu, De Li; Yan, Haoliang; Meinke, Holger; Huber, Isaiah; Feng, Puyu; Ibrahim, Ahmed; Zhang, Yunbo; Tian, Xiaohai; Zhou, Meixue; 2021. Climate change shifts forward flowering and reduces crop waterlogging stress. Environmental Research Letters, 16, 094017. 10.1088/1748-9326/ac1b5a
(View/edit entry)
2021

Model application

0
Afshar, Mehdi H.; Foster, Timothy; Higginbottom, Thomas P.; Parkes, Ben; Hufkens, Koen; Mansabdar, Sanjay; Ceballos, Francisco; Kramer, Berber; 2021. Improving the Performance of Index Insurance Using Crop Models and Phenological Monitoring. Remote Sensing, 13, 924. 10.3390/rs13050924
(View/edit entry)
2021

Model application

1
Nelson, William C. D.; Hoffmann, Munir P.; Vadez, Vincent; Rötter, Reimund P.; Koch, Marian; Whitbread, Anthony M.; 2021. Can intercropping be an adaptation to drought? A model‐based analysis for pearl millet–cowpea. Journal of Agronomy and Crop Science, , jac.12552. 10.1111/jac.12552
(View/edit entry)
2021

Model application

0
Cichota, Rogerio; Vogeler, Iris; Sharp, Joanna; Verburg, Kirsten; Huth, Neil; Holzworth, Dean; Dalgliesh, Neal; Snow, Val; 2021. A protocol to build soil descriptions for APSIM simulations. MethodsX, 8, 101566. 10.1016/j.mex.2021.101566
(View/edit entry)
2021

Model application

0
Zhu, Junqi; Parker, Amber; Gou, Fang; Agnew, Rob; Yang, Linlin; Greven, Marc; Raw, Victoria; Neal, Sue; Martin, Damian; Trought, Michael C T; Huth, Neil; Brown, Hamish Edward; Hammer, Graeme; 2021. Developing perennial fruit crop models in APSIM Next Generation using grapevine as an example. in silico Plants, 3, diab021. 10.1093/insilicoplants/diab021
(View/edit entry)
2021

Model application

0
Wajid, Aftab; Hussain, Khalid; Ilyas, Ayesha; Habib-ur-Rahman, Muhammad; Shakil, Qamar; Hoogenboom, Gerrit; 2021. Crop Models: Important Tools in Decision Support System to Manage Wheat Production under Vulnerable Environments. Agriculture, 11, 1166. 10.3390/agriculture11111166
(View/edit entry)
2021

Model application

0
Kandulu, John; Kandulu, John; 2011. Assessing the potential for beneficial diversification in rain-fed agricultural enterprises. , , . 10.22004/AG.ECON.100568
(View/edit entry)
2011

Model application

3
Owusu Danquah, Eric; Beletse, Yacob; Stirzaker, Richard; Smith, Christopher; Yeboah, Stephen; Oteng-Darko, Patricia; Frimpong, Felix; Ennin, Stella Ama; 2020. Monitoring and Modelling Analysis of Maize (Zea mays L.) Yield Gap in Smallholder Farming in Ghana. Agriculture, 10, 420. 10.3390/agriculture10090420
(View/edit entry)
2020

Model application

3
Chen, Shichao; Parsons, David; Du, Taisheng; Kumar, Uttam; Wang, Sufen; 2021. Simulation of yield and water balance using WHCNS and APSIM combined with geostatistics across a heterogeneous field. Agricultural Water Management, 258, 107174. 10.1016/j.agwat.2021.107174
(View/edit entry)
2021

Model application

1
Deihimfard, Reza; Rahimi-Moghaddam, Sajjad; Collins, Brian; Azizi, Khosro; 2022. Future climate change could reduce irrigated and rainfed wheat water footprint in arid environments. Science of The Total Environment, 807, 150991. 10.1016/j.scitotenv.2021.150991
(View/edit entry)
2022

Model application

0
Iragi, Daniel Muhindo; Mwanjalolo, Jackson Gilbert Majaliwa; Katushabe, Alice Amonding; Masamba, Jean Walangululu; Nkuba, Bossissi; Iragi, Daniel Muhindo; 2017. Projected impact of climate change on rice yield in two agro-ecological zones in South- Kivu, Democratic Republic of Congo. , , . 10.22004/AG.ECON.263431
(View/edit entry)
2017

Model application

2
Schuurs, Mark; Wegener, Malcolm K.; Schuurs, Mark; 1999. FARM DAMS - ARE THEY AN OPTION FOR THE QUEENSLAND SUGAR INDUSTRY. , , . 10.22004/AG.ECON.124549
(View/edit entry)
1999

Model application

1
Brennan, Lisa E.; Carberry, Peter S.; Hochman, Zvi; Brennan, Lisa E.; 2001. Participative research on use of enhanced climate variability information within agribusiness. , , . 10.22004/AG.ECON.125545
(View/edit entry)
2001

Model application

0
Guo, Hao; Huang, Zhigang; Tan, Mengchao; Ruan, Hongyan; Awe, Gabriel Oladele; Are, Kayode Steven; Abegunrin, Toyin Peter; Hussain, Zahid; Kuang, Zhaomin; Liu, Deli; 2021. Crop resilience to climate change: A study of spatio-temporal variability of sugarcane yield in a subtropical region, China. Smart Agricultural Technology, 1, 100014. 10.1016/j.atech.2021.100014
(View/edit entry)
2021

Model application

0
References are automatically added
Our search algorithms might occasionally miss, or accidentally include a reference. If so, feel free add a missing reference by using the buttons below, or notify csdmsweb@colorado.edu

Add references

Citations

View all

Nr. of publications: 882
Total citations: 27273
h-index: 73
m-quotient: 2.09

Publications per year

View all