Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Extended model description" with value "Program for backwater calculations in open channel flow". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:PHREEQC  + (PHREEQC implements several types of aqueouPHREEQC implements several types of aqueous models: two ion-association aqueous models (the Lawrence Livermore National Laboratory model and WATEQ4F), a Pitzer specific-ion-interaction aqueous model, and the SIT (Specific ion Interaction Theory) aqueous model. Using any of these aqueous models, PHREEQC has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with reversible and irreversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and pressure and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters within specified compositional uncertainty limits.pecified compositional uncertainty limits.)
  • Model:PIHM  + (PIHM is a multiprocess, multi-scale hydrolPIHM is a multiprocess, multi-scale hydrologic model where the major hydrological processes are fully coupled using the semi-discrete finite volume method. PIHM is a physical model for surface and groundwater, “tightly-coupled” to a GIS interface. PIHMgis which is open source, platform independent and extensible. The tight coupling between GIS and the model is achieved by developing a shared data-model and hydrologic-model data structure.model and hydrologic-model data structure.)
  • Model:PISM  + (PISM is a hybrid shallow ice, shallow shelPISM is a hybrid shallow ice, shallow shelf model. PISM is designed to scale with increasing problem size</br>by harnessing the computational power of supercomputing systems and by leveraging the scalable software libraries that have been developed by the high-performance computing research community. The model combines two shallow (small depth-to-width ratio) stress balances, namely the shallow-ice approximation (SIA) and the shallow-shelf approximation (SSA), which are computationally efficient schemes to simulate ice flow by internal deformation and ice-stream flow, respectively. In PISM, deformational velocities from the SIA and sliding velocities from the SSA are weighted and averaged to achieve a smooth transition from shearing flow to sliding flow.sition from shearing flow to sliding flow.)
  • Model:PRMS  + (PRMS is a modular-design modeling system that has been developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff, sediment yields, and general basin hydrology)
  • Model:PSTSWM  + (PSTSWM is a message-passing benchmark codePSTSWM is a message-passing benchmark code and parallel algorithm testbed that solves the nonlinear shallow water equations on a rotating sphere using the spectral transform method. It is a parallel implementation of STSWM to generate reference solutions for the shallow water test cases.olutions for the shallow water test cases.)
  • Model:ParFlow  + (ParFlow is an open-source, object-orientedParFlow is an open-source, object-oriented, parallel watershed flow model. It includes fully-integrated overland flow, the ability to simulate complex topography, geology and heterogeneity and coupled land-surface processes including the land-energy budget, biogeochemistry and snow (via CLM). It is multi-platform and runs with a common I/O structure from laptop to supercomputer. ParFlow is the result of a long, multi-institutional development history and is now a collaborative effort between CSM, LLNL, UniBonn and UCB. ParFlow has been coupled to the mesoscale, meteorological code ARPS and the NCAR code WRF.rological code ARPS and the NCAR code WRF.)
  • Model:PIHMgis  + (Physically-based fully-distributed hydroloPhysically-based fully-distributed hydrologic models try to simulate hydrologic state variables in space and time while using information regarding heterogeneity in climate, land use, topography and hydrogeology. However incorporating a large number of physical data layers in the hydrologic model requires intensive data development and topology definitions.data development and topology definitions.)
  • Model:TreeThrow  + (Plot scale, spatially implicit model of tree throw on hillslopes. We couple an existing forest growth model with a couple simple equations for the transport of sediment caused by tree fall.)
  • Model:PotentialEvapotranspiration  + (Potential Evapotranspiration Component calPotential Evapotranspiration Component calculates spatially distributed potential evapotranspiration based on input radiation factor (spatial distribution of incoming radiation) using chosen method such as constant or Priestley Taylor. Ref: Xiaochi et. al. 2013 for 'Cosine' method and ASCE-EWRI Task Committee Report Jan 2005 for 'PriestleyTaylor' method.</br>Note: Calling 'PriestleyTaylor' method would generate/overwrite shortwave & longwave radiation fields.ite shortwave & longwave radiation fields.)
  • Model:STVENANT  + (Predicts 1D, unsteady, nonlinear, gradually varied flow)
  • Model:FlowAccumulator  + (Provides the FlowAccumulator component whiProvides the FlowAccumulator component which accumulates flow and calculates drainage area. FlowAccumulator supports multiple methods for calculating flow direction. Optionally a depression finding component can be specified and flow directing, depression finding, and flow routing can all be accomplished together. routing can all be accomplished together.)
  • Model:QDSSM  + (QDSSM is a 3D cellular, forward numerical QDSSM is a 3D cellular, forward numerical model coded in Fortran90 that simulates landscape evolution and stratigraphy as controlled by changes in sea-level, subsidence, discharge and bedload flux. The model includes perfect and imperfect sorting modules of grain size and allows stratigraphy to be build over time spans of 1000 to million of years.er time spans of 1000 to million of years.)
  • Model:QTCM  + (QTCMs are models of intermediate complexity suitable for the modeling of tropical climate and its variability. It occupies a niche among climate models between complex general circulation models and simple models.)
  • Model:QUAL2K  + (QUAL2K (or Q2K) is a river and stream wateQUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987). Q2K is similar to Q2E in the following respects:</br>One dimensional. The channel is well-mixed vertically and laterally.</br>* Steady state hydraulics. Non-uniform, steady flow is simulated.</br>* Diurnal heat budget. The heat budget and temperature are simulated as a function of meteorology on a diurnal time scale.</br>* Diurnal water-quality kinetics. All water quality variables are simulated on a diurnal time scale.</br>* Heat and mass inputs. Point and non-point loads and abstractions are simulated.oint loads and abstractions are simulated.)
  • Model:StreamProfilerApp  + (QuickChi enables the rapid analysis of stream profiles at the global scale from SRTM data.)
  • Model:GSFLOW-GRASS  + (Quickly generates input files for and runs GSFLOW, the USGS integrated groundwater--surface-water model, and can be used to visualize the outputs of GSFLOW.)
  • Model:RCPWAVE  + (RCPWAVE is a 2D steady state monocromatic short wave model for simulating wave propagation over arbitrary bahymetry.)
  • Model:REF-DIF  + (REF/DIF is a phase-resolving parabolic refREF/DIF is a phase-resolving parabolic refraction-diffraction model for ocean surface wave propagation. It was originally developed by Jim Kirby and Tony Dalrymple starting in 1982, based on Kirby's dissertation work. This work led to the development of REF/DIF 1, a monochromatic wave model. of REF/DIF 1, a monochromatic wave model.)
  • Model:River Erosion Model  + (REM mechanistically simulates channel bed REM mechanistically simulates channel bed aggradation/degradation and channel widening in river networks. It has successfully been applied to alluvial river systems to simulate channel change over annual and decadal time scales. REM is also capable of running Monte Carlo simulations (in parallel to reduce computational time) to quantify uncertainty in model predictions.quantify uncertainty in model predictions.)
  • Model:RHESSys  + (RHESSys is a GIS-based, hydro-ecological mRHESSys is a GIS-based, hydro-ecological modelling framework designed to simulate carbon, water, and nutrient fluxes. By combining a set of physically-based process models and a methodology for partitioning and parameterizing the landscape, RHESSys is capable of modelling the spatial distribution and spatio-temporal interactions between different processes at the watershed scale.ifferent processes at the watershed scale.)