Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Extended model description" with value "Landlab component that implements a 1 and 2D lithospheric flexure model.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:WOFOST  + (It is a mechanistic model that explains crIt is a mechanistic model that explains crop growth on the basis of the underlying processes, such as photosynthesis, respiration and how these processes are influenced by environmental conditions. </br></br>With WOFOST, you can calculate attainable crop production, biomass, water use, etc. for a location given knowledge about soil type, crop type, weather data and crop management factors (e.g. sowing date). WOFOST has been used by many researchers over the World and has been applied for many crops over a large range of climatic and management conditions. WOFOST is one of the key components of the European MARS crop yield forecasting system. In the Global Yield Gap Atlas (GYGA) WOFOST is used to estimate the untapped crop production potential on existing farmland based on current climate and available soil and water resources.te and available soil and water resources.)
  • Model:FUNDY  + (It solves the linearized shallow water equations forced by tidal or other barotropic boundary conditions, wind or a density gradient using linear finite elements.)
  • Model:ACADIA  + (It tracks any number of different depth-averaged transport variables and is usually used in conjunction with QUODDY simulations.)
  • Model:LEMming  + (LEMming tracks regolith and sediment fluxeLEMming tracks regolith and sediment fluxes, including bedrock erosion by streams and rockfall from steep slopes. Initial landscape form and stratigraphic structure are prescribed. Model grid cells with slope angles above a threshold, and which correspond to the appropriate rock type, are designated as candidate sources for rockfall. Rockfall erosion of the cliffband is simulated by instantaneously reducing the height of a randomly chosen grid cell that is susceptible to failure to that of its nearest downhill neighbor among the eight cells bordering it. This volume of rockfall debris is distributed across the landscape below this cell according to rules that weight the likelihood of each downhill cell to retain rockfall debris. The weighting is based on local conditions such as slope angle, topographic curvature, and distance and direction from the rockfall source. Rockfall debris and the bedrock types are each differentiated by the rate at which they weather to regolith and by their fluvial erodibility. Regolith is moved according to transport rules mimicking hillslope processes (dependent on local slope angle), and bedload and suspended load transport (based on stream power). Regolith and sediment transport are limited by available material; bedrock incision occurs (also based on stream power) where bare rock is exposed. stream power) where bare rock is exposed.)
  • Model:LEMming2  + (LEMming2 is a 2D, finite-difference landscLEMming2 is a 2D, finite-difference landscape evolution model that simulates the retreat of hard-capped cliffs. It implements common unit-stream-power and linear/nonlinear-diffusion erosion equations on a 2D regular grid. Arbitrary stratigraphy may be defined. Cliff retreat is facilitated by a cellular algorithm, and rockfall debris is distributed and redistributed to the angle of repose. It is a standalone model written in Matlab with some C components.</br></br>This repo contains the code used and described by Ward (2019) Lithosphere: "Dip, layer spacing, and incision rate controls on the formation of strike valleys, cuestas, and cliffbands in heterogeneous stratigraphy". Given the inputs in that paper it should generate the same results.paper it should generate the same results.)
  • Model:LISFLOOD  + (LISFLOOD is a spatially distributed, semi-LISFLOOD is a spatially distributed, semi-physical hydrological rainfall-runoff model that has been developed by the Joint Research Centre (JRC) of the European Commission in late 90ies. Since then LISFLOOD has been applied to a wide range of applications such as all kind of water resources assessments looking at e.g. the effects of climate and land-use change as well as river regulation measures. Its most prominent application is probably within the European Flood Awareness System (EFAS) operated under Copernicus Emergency Management System (EMS).ernicus Emergency Management System (EMS).)
  • Model:LOADEST  + (LOAD ESTimator (LOADEST) is a FORTRAN progLOAD ESTimator (LOADEST) is a FORTRAN program for estimating constituent loads in streams and rivers. Given a time series of streamflow, additional data variables, and constituent concentration, LOADEST assists the user in developing a regression model for the estimation of constituent load (calibration). Explanatory variables within the regression model include various functions of streamflow, decimal time, and additional user-specified data variables. The formulated regression model then is used to estimate loads over a user-specified time interval (estimation). Mean load estimates, standard errors, and 95 percent confidence intervals are developed on a monthly and(or) seasonal basis.</br></br>The calibration and estimation procedures within LOADEST are based on three statistical estimation methods. The first two methods, Adjusted Maximum Likelihood Estimation (AMLE) and Maximum Likelihood Estimation (MLE), are appropriate when the calibration model errors (residuals) are normally distributed. Of the two, AMLE is the method of choice when the calibration data set (time series of streamflow, additional data variables, and concentration) contains censored data. The third method, Least Absolute Deviation (LAD), is an alternative to maximum likelihood estimation when the residuals are not normally distributed. LOADEST output includes diagnostic tests and warnings to assist the user in determining the appropriate estimation method and in interpreting the estimated loads.</br></br>The LOADEST software and related materials (data and documentation) are made available by the U.S. Geological Survey (USGS) to be used in the public interest and the advancement of science. You may, without any fee or cost, use, copy, modify, or distribute this software, and any derivative works thereof, and its supporting documentation, subject to the USGS software User's Rights Notice.to the USGS software User's Rights Notice.)
  • Model:Radiation  + (Landlab component that computes 1D and 2D total incident shortwave radiation. This code also computes relative incidence shortwave radiation compared to a flat surface.)
  • Model:LateralEroder  + (Landlab component that finds a neighbor node to laterally erode and calculates lateral erosion.)
  • Model:PrecipitationDistribution  + (Landlab component that generates precipitaLandlab component that generates precipitation events using the rectangular Poisson pulse model described in Eagleson (1978, Water Resources Research).</br></br>No particular units must be used, but it was written with the storm units in hours (hr) and depth units in millimeters (mm). (hr) and depth units in millimeters (mm).)
  • Model:Flexure  + (Landlab component that implements a 1 and 2D lithospheric flexure model.)
  • Model:DetachmentLtdErosion  + (Landlab component that simulates detachmenLandlab component that simulates detachment limited sediment transport is more general than the stream power component. Doesn't require the upstream node order, links to flow receiver and flow receiver fields. Instead, takes in the discharge values on NODES calculated by the OverlandFlow class and erodes the landscape in response to the output discharge.</br>As of right now, this component relies on the OverlandFlow component for stability. There are no stability criteria implemented in this class. To ensure model stability, use StreamPowerEroder or FastscapeEroder components instead.der or FastscapeEroder components instead.)
  • Model:Vegetation  + (Landlab component that simulates net primary productivity, biomass and leaf area index at each cell based on inputs of root-zone average soil moisture.)
  • Model:SoilMoisture  + (Landlab component that simulates root-zoneLandlab component that simulates root-zone average soil moisture at each cell using inputs of potential evapotranspiration, live leaf area index, and vegetation cover.</br></br>This component uses a single soil moisture layer and models soil moisture loss through transpiration by plants, evaporation by bare soil, and leakage. The solution of water balance is based on Laio et. al 2001. The component requires fields of initial soil moisture, rainfall input (if any), time to the next storm and potential transpiration.he next storm and potential transpiration.)
  • Model:Landlab  + (Landlab is a Python software package for cLandlab is a Python software package for creating, assembling, and/or running 2D numerical models. Landlab was created to facilitate modeling in earth-surface dynamics, but it is general enough to support a wide range of applications. Landlab provides three different capabilities:</br></br>(1) A DEVELOPER'S TOOLKIT for efficiently building 2D models from scratch. The toolkit includes a powerful GRIDDING ENGINE for creating, managing, and iterative updating data on 2D structured or unstructured grids. The toolkit also includes helpful utilities to handle model input and output.</br></br>(2) A set of pre-built COMPONENTS, each of which models a particular process. Components can be combined together to create coupled models.</br></br>(3) A library of pre-built MODELS that have been created by combining components together.</br></br> To learn more, please visit http://landlab.github.ioore, please visit http://landlab.github.io)
  • Model:GOLEM  + (Landscape evolution model. Computes evolution of topography under the action of rainfall and tectonics.)
  • Model:SpeciesEvolver  + (Life evolves alongside landscapes by biotiLife evolves alongside landscapes by biotic and abiotic processes under complex dynamics at Earth’s surface. Researchers who wish to explore these dynamics can use this component as a tool for them to build landscape-life evolution models. Landlab components, including SpeciesEvolver are designed to work with a shared model grid. Researchers can build novel models using plug-and-play surface process components to evolve the grid’s landscape alongside the life tracked by SpeciesEvolver. The simulated life evolves following customizable processes. evolves following customizable processes.)
  • Model:LinearDiffuser  + (LinearDiffuser is a Landlab component that models soil creep using an explicit finite-volume solution to a 2D diffusion equation.)
  • Model:LITHFLEX2  + (Lithospheric flexure solution for a brokenLithospheric flexure solution for a broken plate. Load is assumed to be represented by equal width loading elements specified distance from broken edge of plate. Inclusion of sediments as part of the restoring force effect is possible by choice of density assigned to density (2).choice of density assigned to density (2).)
  • Model:LITHFLEX1  + (Lithospheric flexure solution for infiniteLithospheric flexure solution for infinite plate. Load is assumed to be convolved with Greens function (unit load) response in order to calculate the net effect of the load. If desired, inclusion of sediments as part of the restoring force effect can be controlled via density assigned to density (2). Each load element can have specified density and several loadings events can be incorporated.veral loadings events can be incorporated.)
  • Model:CoastMorpho2D  + (Long term 2D morphodynamics of coastal areLong term 2D morphodynamics of coastal areas, including tidal currents, wind waves, swell waves, storm surge, sand, mud, marsh vegetation, edge erosion, marsh ponding, and stratigraphy.</br>The CoastMorpho2D model includes the MarshMorpho2D model (which was previously uploaded on CSDMS)l (which was previously uploaded on CSDMS))