Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Describe length scale and resolution" with value "See manual". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:TopoFlow-Evaporation-Priestley Taylor  + (Recommended grid cell size is around 100 meters, but can be parameterized to run with a wide range of grid cell sizes. DEM grid dimensions are typically less than 1000 columns by 1000 rows.)
  • Model:TopoFlow-Infiltration-Richards 1D  + (Recommended grid cell size is around 100 meters, but can be parameterized to run with a wide range of grid cell sizes. DEM grid dimensions are typically less than 1000 columns by 1000 rows.)
  • Model:Hilltop and hillslope morphology extraction  + (Requires high resolution (1 m LiDAR) topographic data.)
  • Model:GEOtop  + (Resolution is limited by RAM. Processes however are parametrized at a few square meter scale.)
  • Model:Bedrock Fault Scarp  + (Resolution on order of one to a few meters. Domain length grows over time, reaching order tens to hundreds of meters long.)
  • Model:SBEACH  + (SBEACH is a beach profile evolution model. The model domain should extend from the landward limit of wave run-up offshore to the depth of closure.)
  • Model:SWAN  + (SWAN can be used on any scale relevant forSWAN can be used on any scale relevant for wind generated surface gravity waves. However, SWAN is specifically designed for coastal applications that should actually not require such flexibility in scale. The reasons for providing SWAN with such flexibility are:</br></br>* to allow SWAN to be used from laboratory conditions to shelf seas and</br>* to nest SWAN in the WAM model or the WAVEWATCH III model which are formulated in terms of spherical coordinates.mulated in terms of spherical coordinates.)
  • Model:OTTER  + (Sediment transport models can become unstable and limit computational efficiency.)
  • Model:PHREEQC  + (See 'Description of Input and Examples for PHREEQC Version 3 - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations'.)
  • Model:WRF-Hydro  + (See WRF-Hydro Technical Description https://ral.ucar.edu/projects/wrf_hydro/technical-description-user-guide)
  • Model:FwDET  + (See: Version 2.0: Cohen et al. (2019), TheSee:</br>Version 2.0: Cohen et al. (2019), The Floodwater Depth Estimation Tool (FwDET v2.0) for Improved Remote Sensing Analysis of Coastal Flooding. Natural Hazards and Earth System Sciences (NHESS)</br> </br>Version 1.0: Cohen, S., G. R. Brakenridge, A. Kettner, B. Bates, J. Nelson, R. McDonald, Y. Huang, D. Munasinghe, and J. Zhang (2017), Estimating Floodwater Depths from Flood Inundation Maps and Topography. Journal of the American Water Resources Association (JAWRA):1–12. Water Resources Association (JAWRA):1–12.)
  • Model:SimClast  + (SimClast can theoretically be used on a leSimClast can theoretically be used on a length scale upwards of 20 kms, the upper limit is dependant on memory and processing restrictions. Typical length scales vary from 25 to 500 km. The highest resolution is mainly dependant on the use of intracellular fluvial deposition, as described in Dalman & Weltje (2008) this restricts the minimum cell size to 4 kms. Recent addition of floodplain process reduces this to 500 m.n of floodplain process reduces this to 500 m.)
  • Model:SISV  + (Since we are doing DNS, we are restricted to low Reynolds numbers. Up to ~50,000 or possibly higher but very slow.)
  • Model:Kudryavtsev Model  + (Solutions are generated for a 1D vertical column. When input data are gridded, maps of 1D vertical columns can be made.)
  • Model:MCPM  + (Spatial resolution 0.1-1 m Cross section generally 100 m wide)
  • Model:CoastMorpho2D  + (Spatial resolution from 1 m to 1 km Spatial extent up to hundreds of km)
  • Model:HydroPy  + (Spatial resolution is determined from the auxiliary data and meteorological forcing)
  • Model:MarshPondModel  + (Spatial resolution of 1 m to simulate small ponds)
  • Model:Shoreline  + (Spatial resolution of coastline is typically 1 to 50 meters.)
  • Model:RiverMUSE  + (Spatial scale is implicit; resolution is n/a.)