Property:Extended model description
From CSDMS
This is a property of type Text.
C
The model tracks both surface CRN concentration and concentration eroded off hillslopes into fluvial network in a simplified landscape undergoing both landslide erosion and more steady 'diffusive-like' erosion. Sediment mixing is allowed in the fluvial network. Code can be used to help successfully develop CRN sampling procedures in terrains where landslides are important. +
T
The model uses the vertically continuous (not active layer-based), morphodynamic framework proposed by Parker, Paola an Leclair in 2000 to model the streamwise and vertical dispersal of a patch of tracers installed in a equilibrium gravel bed. The model was validated at laboratory and field scales on the mountainous Halfmoon Creek, USA, and on the braided Buech River, France.
Different versions of the model are uploaded in the github folder because the formulaiton for the calculation of the formative bed shear stress varied depending on the available data.
REFERENCE
Parker, G., Paola, C. & Leclair, S. (2000). Probabilistic Exner sediment continuity equation for mixtures with no active layer. Journal of Hydraulic Engineering, 126 (11), 818-826. +
C
The module is designed to calculate morphological changes and water discharge outflow of a crevasse splay that is triggered by a preset flood event and evolves afterwards. The inputs for "mainCS.m" should be daily water discharge and sediment flux series of the trunk channel upstream the crevasse splay. The outputs will be daily series for the cross-sectional parameters of the crevasse splay, and daily water discharge series of the trunk channel downstream the crevasse splay. One limitation of the present version is it only calculates the expanding and healing of a crevasse splay, while ignores the possible morphological change (demise or revival) of the trunk channel downstream the crevasse splay. Another limitation is the codes are originally written for the Lower Yellow River(a suspended load dominated river) for the purpose of calculating sediment budget in the Lower Yellow over a long timescale, say as long as hundreds years, so the present module can not be applied to other alluvial rivers without modifying those lines related to channel geometry, bankfull discharge and bank erosion(deposition). +
F
The numerical model solves the two-dimensional shallow water equations with different modes of sediment transport (bed-load and suspended load) (Canestrelli et al. 2009, Canestrelli et al, 2010). The scheme solves the system of partial differential equations cast in a non-conservative form, but it has the important characteristic of reducing automatically to a conservative scheme if the underlying system of equations is a conservation law. The scheme thus belongs to the so-called category of “shock-capturing” schemes. At the present I am adding a new module for the computation of mud flows, and I want to apply the model to the Fly River (Papua New Guinea) system. +
R
The river water temperature model is designed to be applied in Arctic rivers. Heat energy transfers considered include surface net solar radiation, net longwave radiation, latent heat due to evaporation and condensation, convective heat and the riverbed heat flux. The model is explicitly designed to interact with a permafrost channelbed and frozen conditions through seasonal cycles. In addition to the heat budget, river discharge, or stage, drives the model. +
T
The tRIBS model in this release (version 5.3.0 of September 8, 2025) under the MIT license includes:
Hydrologic Processes:
Soil moisture infiltration fronts and their vertical redistribution.
Coupled dynamics of the vadose and saturated zones with a dynamic water table.
Topography-driven lateral fluxes in the vadose and saturated zones.
Radiation and energy balance components on complex terrain.
Single layer snowpack accumulation, ablation and melt on complex terrain.
Rainfall and snow interception on vegetation canopies.
Evaporation of intercepted rainfall, soil evaporation and plant transpiration.
Hydrologic hillslope routing, hydraulic routing in channels, level-pool reservoir routing.
Computational Processes:
Multi-resolution domain generated with channel network and watershed boundary.
Computationally-efficient methods for infiltration, snow dynamics and flow routing.
Serial operation for point-scale simulations and small watershed domains.
Parallelized operation for large domains optimized through subbasin partitioning methods.
Ingestion of time-varying meteorological forcing from stations or raster-based products.
Ingestion of soil and vegetation parameters from tabular data or raster-based products.
Pre- and post-processing workflows for time series and spatial analysis using Python. +
G
The term "extended GST model" indicates the combination of an analytical GST migration model combined with closure relations (for slope and surface texture) based on the assumption of quasi-equilibrium conditions. The extended model is described in Blom et al, 2017 "Advance, retreat, and halt of abrupt gravel-sand transitions in alluvial rivers", http://dx.doi.org/10.1002/2017GL074231. +
1
The term “breaching” refers to the slow, retrogressive failure of a steep subaqueous slope, so forming a nearly vertical turbidity current directed down the face. This mechanism, first identified by the dredging industry, has remained largely unexplored, and yet evidence exists to link breaching to the formation of sustained turbidity currents in the deep sea. The model can simulate a breach-generated turbidity current with a layer-averaged formulation that has at its basis the governing equations for the conservation of momentum, water, suspended sediment and turbulent kinetic energy. In particular, the equations of suspended sediment conservation are solved for a mixture of sediment particles differing in grain size. In the model the turbidity current is divided into two regions joined at a migrating boundary: the breach face, treated as vertical, and a quasi-horizontal region sloping downdip. In this downstream region, the bed slope is much lower (but still nonzero), and is constructed by deposition from a quasi-horizontal turbidity current. The model is applied to establish the feasibility of a breach-generated turbidity current in a field setting, using a generic example based on the Monterey Submarine Canyon, offshore California, USA. +
W
Third generation random phase spectral wave model, including shallow water physcis. +
P
This class implements Voller, Hobley, and Paola’s experimental matrix solutions for flow routing. The method works by solving for a potential field at all nodes on the grid, which enforces both mass conservation and flow downhill along topographic gradients. It is order n and highly efficient, but does not return any information about flow connectivity.
Options are permitted to allow “abstract” routing (flow enforced downslope, but no particular assumptions are made about the governing equations), or routing according to the Chezy or Manning equations. This routine assumes that water is distributed evenly over the surface of the cell in deriving the depth, and does not assume channelization. You will need to back- calculate channel depths for yourself using known widths at each node if that is what you want. +
F
This class uses the Braun-Willett Fastscape approach to calculate the amount of erosion at each node in a grid, following a stream power framework. This should allow it to be stable against larger timesteps than an explicit stream power scheme. +
A
This code creates the channel centerline (i.e., the line equidistant between two banks) for a single thread-channel, using a second-order autoregressive model. The code implements a model for random centerlines proposed by Ferguson, R. I. (1976) Disturbed periodic model for river meanders, Earth Surface Processes 1(4), 337-347, doi:10.1002/esp.3290010403. This implementation also includes (1) controls for the node spacing and extent of channels, (2) removal of self-intersecting (cutoff) loops from modeled centerlines, and (3) a wrapper script to sweep model parameter space and generate alternate realizations using different random disturbance series. +
V
This code is based on Cellular Automata Tree Grass Shrub Simulator (CATGraSS). It simulates spatial competition of multiple plant functional types through establishment and mortality. In the current code, tree, grass and shrubs are used. +
H
This component calculates Hack’s law parameters for drainage basins.
Hacks law is given as
L = C * A**h
Where L is the distance to the drainage divide along the channel, A is the drainage area, and C are parameters.
The HackCalculator uses a ChannelProfiler to determine the nodes on which to calculate the parameter fit. +
C
This component calculates chi indices, sensu Perron & Royden, 2013, for a Landlab landscape. +
S
This component calculates steepness indices, sensu Wobus et al. 2006, for a Landlab landscape. Follows broadly the approach used in GeomorphTools, geomorphtools.org. +
F
This component generates random numbers using the Weibull distribution
(Weibull, 1951). No particular units must be used, but it was written with
the fire recurrence units in time (yrs).
Using the Weibull Distribution assumes two things: All elements within the study area have the same fire regime. Each element must have (on average) a constant fire regime during the time span of the study.<br>
As of Sept. 2013, fires are considered instantaneous events independent of
other fire events in the time series. +
D
This component identifies depressions in a topographic surface, finds an outlet for each depression. If directed to do so (default True), and the component is able to find existing routing fields output from the 'route_flow_dn' component, it will then modify the drainage directions and accumulations already stored in the grid to route flow across these depressions. +
This component implements a depth and slope dependent linear diffusion rule in the style of Johnstone and Hilley (2014). Soil moves with a prescribed exponential vertical velocity profile. Soil flux is dictated by a diffusivity, K, and increases linearly with topographic slope. +
E
This component implements exponential weathering of bedrock on hillslopes. Uses exponential soil production function in the style of Ahnert (1976).
Consider that w_0 is the maximum soil production rate and that d* is the characteristic soil production depth. The soil production rate w is given as a function of the soil depth d,
w = w_0^(-d/d*)
The ExponentialWeatherer only calculates soil production at core nodes. +
