Property:Extended model description
From CSDMS
This is a property of type Text.
P
PSTSWM is a message-passing benchmark code and parallel algorithm testbed that solves the nonlinear shallow water equations on a rotating sphere using the spectral transform method. It is a parallel implementation of STSWM to generate reference solutions for the shallow water test cases. +
ParFlow is an open-source, object-oriented, parallel watershed flow model. It includes fully-integrated overland flow, the ability to simulate complex topography, geology and heterogeneity and coupled land-surface processes including the land-energy budget, biogeochemistry and snow (via CLM). It is multi-platform and runs with a common I/O structure from laptop to supercomputer. ParFlow is the result of a long, multi-institutional development history and is now a collaborative effort between CSM, LLNL, UniBonn and UCB. ParFlow has been coupled to the mesoscale, meteorological code ARPS and the NCAR code WRF. +
Physically-based fully-distributed hydrologic models try to simulate hydrologic state variables in space and time while using information regarding heterogeneity in climate, land use, topography and hydrogeology. However incorporating a large number of physical data layers in the hydrologic model requires intensive data development and topology definitions. +
T
Plot scale, spatially implicit model of tree throw on hillslopes. We couple an existing forest growth model with a couple simple equations for the transport of sediment caused by tree fall. +
P
Potential Evapotranspiration Component calculates spatially distributed potential evapotranspiration based on input radiation factor (spatial distribution of incoming radiation) using chosen method such as constant or Priestley Taylor. Ref: Xiaochi et. al. 2013 for 'Cosine' method and ASCE-EWRI Task Committee Report Jan 2005 for 'PriestleyTaylor' method.
Note: Calling 'PriestleyTaylor' method would generate/overwrite shortwave & longwave radiation fields. +
S
B
Program for backwater calculations in open channel flow +
F
Provides the FlowAccumulator component which accumulates flow and calculates drainage area. FlowAccumulator supports multiple methods for calculating flow direction. Optionally a depression finding component can be specified and flow directing, depression finding, and flow routing can all be accomplished together. +
Q
QDSSM is a 3D cellular, forward numerical model coded in Fortran90 that simulates landscape evolution and stratigraphy as controlled by changes in sea-level, subsidence, discharge and bedload flux. The model includes perfect and imperfect sorting modules of grain size and allows stratigraphy to be build over time spans of 1000 to million of years. +
QTCMs are models of intermediate complexity suitable for the modeling of tropical climate and its variability. It occupies a niche among climate models between complex general circulation models and simple models. +
QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987). Q2K is similar to Q2E in the following respects:
One dimensional. The channel is well-mixed vertically and laterally.
* Steady state hydraulics. Non-uniform, steady flow is simulated.
* Diurnal heat budget. The heat budget and temperature are simulated as a function of meteorology on a diurnal time scale.
* Diurnal water-quality kinetics. All water quality variables are simulated on a diurnal time scale.
* Heat and mass inputs. Point and non-point loads and abstractions are simulated. +
S
QuickChi enables the rapid analysis of stream profiles at the global scale from SRTM data. +
G
Quickly generates input files for and runs GSFLOW, the USGS integrated groundwater--surface-water model, and can be used to visualize the outputs of GSFLOW. +
R
RCPWAVE is a 2D steady state monocromatic short wave model for simulating wave propagation over arbitrary bahymetry. +
REF/DIF is a phase-resolving parabolic refraction-diffraction model for ocean surface wave propagation. It was originally developed by Jim Kirby and Tony Dalrymple starting in 1982, based on Kirby's dissertation work. This work led to the development of REF/DIF 1, a monochromatic wave model. +
REM mechanistically simulates channel bed aggradation/degradation and channel widening in river networks. It has successfully been applied to alluvial river systems to simulate channel change over annual and decadal time scales. REM is also capable of running Monte Carlo simulations (in parallel to reduce computational time) to quantify uncertainty in model predictions. +
RHESSys is a GIS-based, hydro-ecological modelling framework designed to simulate carbon, water, and nutrient fluxes. By combining a set of physically-based process models and a methodology for partitioning and parameterizing the landscape, RHESSys is capable of modelling the spatial distribution and spatio-temporal interactions between different processes at the watershed scale. +
ROMS is a Free-surface, terrain-following, orthogonal curvilinear, primitive equations ocean model. Its dynamical kernel is comprised of four separate models including the nonlinear, tangent linear, representer tangent linear, and adjoint models. It has multiple model coupling (ESMF, MCT) and multiple grid nesting (composed, mosaics, refinement) capabilities. The code uses a coarse-grained parallelization with both shared-memory (OpenMP) and distributed-memory (MPI) paradigms coexisting together and activated via C-preprocessing. +
U
ROMS is a Free-surface, terrain-following, orthogonal curvilinear, primitive equations ocean model. Its dynamical kernel is comprised of four separate models including the nonlinear, tangent linear, representer tangent linear, and adjoint models. It has multiple model coupling (ESMF, MCT) and multiple grid nesting (composed, mosaics, refinement) capabilities. The code uses a coarse-grained parallelization with both shared-memory (OpenMP) and distributed-memory (MPI) paradigms coexisting together and activated via C-preprocessing. +
H
RaVENS: Rain and Variable Evapotranspiration, Nieve, and Streamflow
Simple "conceptual" hydrological model that may include an arbitrary number of linked linear reservoirs (soil-zone water, groundwater, etc.) as well as snowpack (accumulation from precipitation with T<0; positive-degree-day melt) and evapotranspiration (from external input or Thorntwaite equation).
It also includes a water-balance component to adjust ET (typically the least known input) to ensure that P - Q - ET = 0 over the course of a water year.
Other components plot data and compute the NSE (Nash–Sutcliffe model efficiency coefficient). +