Reference:Reference-005313: Difference between revisions
From CSDMS
m Text replacement - " |Semantic_ID" to " |Semantic_ID" |
m Text replacement - "|Semantic_ID=1fe749e4d7930e7f795afa62bff750950cdc327c" to "|Semantic_ID=1fe749e4d7930e7f795afa62bff750950cdc327c |CorpusID=210873859" |
||
Line 16: | Line 16: | ||
|PublicationClusterID=0 | |PublicationClusterID=0 | ||
|MS_PublicationClusterID=3000866803 | |MS_PublicationClusterID=3000866803 | ||
|Semantic_ID=1fe749e4d7930e7f795afa62bff750950cdc327c | |Semantic_ID=1fe749e4d7930e7f795afa62bff750950cdc327c |CorpusID=210873859 | ||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module |
Revision as of 16:56, 30 September 2024
Author(s) | Mulnaes, Daniel; Porta, Nicola; Clemens, Rebecca; Apanasenko, Irina; Reiners, Jens; Gremer, Lothar; Neudecker, Philipp; Smits, Sander H. J.; Gohlke, Holger; |
BibType | journalArticle |
Title | TopModel: Template-Based Protein Structure Prediction at Low Sequence Identity Using Top-Down Consensus and Deep Neural Networks |
Editors | |
Year | 2020-03-10 |
Journal | Journal of Chemical Theory and Computation |
Booktitle | |
Volume | 16 |
Pages | 1953–1967 |
URL | https://pubs.acs.org/doi/10.1021/acs.jctc.9b00825 |
DOI | 10.1021/acs.jctc.9b00825 |
ISBN | |
Note | Auto downloaded ref at: 2020-06-26
|
|
|
Feature reference | No |
PublicationClusterID | 0 |
MS_PublicationClusterID | 3000866803 |
Semantic_ID | 1fe749e4d7930e7f795afa62bff750950cdc327c |
Nr of citations | 38 |
Sort of publication | a module application description |
Sort of model publication | a single module |
Is the CSDMS HPC used | No |
If HPC is used, for what project was it?: | |
Associated simulation movie if any: |
|
Model(s) discussed: | TOPMODEL |