WOFOST-Publications
From CSDMS
References WOFOST
Total peer and non-peer reviewed publications |
106 |
Journal Articles |
86 |
Books |
0 |
Book sections |
4 |
References are automatically added
Add references
Peer reviewed reference(s) | Year | type | Cited |
---|---|---|---|
Peer reviewed reference(s) | Year | type | Cited |
Yokoyama, Yui; de Wit, Allard; Matsui, Tsutomu; Tanaka, Takashi S. T.; 2024. Accuracy and robustness of a plant-level cabbage yield prediction system generated by assimilating UAV-based remote sensing data into a crop simulation model. Precision Agriculture, 252685–2702. 10.1007/s11119-024-10192-3 | 2024 | Model application | 0 |
Chen, Jiameng; Zhang, Peiyan; Liu, Junming; Deng, Jingyuan; Su, Wei; Wang, Pengxin; Li, Ying; 2024. Study on the impact of low‐temperature stress on winter wheat based on multi‐model coupling. Food and Energy Security, 13. 10.1002/fes3.543 | 2024 | Model application | 1 |
S., Mohamed Naziq; N. K., Sathyamoorthy; Ga, Dheebakaran; S., Pazhanivelan; N., Vadivel; 2024. Coupled weather and crop simulation modeling for smart irrigation planning: a review. Water Supply, . 10.2166/ws.2024.170 | 2024 | Model application | 0 |
Xue, Jing; Ren, Li; 2024. Simulating the impact of subsurface pipe drainage systems on crop water productivity at a regional scale in the upper Yellow River Basin. Irrigation and Drainage, 73627–648. 10.1002/ird.2887 | 2024 | Model application | 0 |
Li, Guanghua; Chen, Wei; Cui, Yafeng; Wang, Han; Chi, Yanbing; 2024. The adaptability and irrigation constraints analysis of the WOFOST model for grain production in the Songhua River Basin. Journal of the Science of Food and Agriculture, . 10.1002/jsfa.13630 | 2024 | Model application | 0 |
Ren, Yiting; Li, Qiangzi; Du, Xin; Zhang, Yuan; Wang, Hongyan; Shi, Guanwei; Wei, Mengfan; 2023. Analysis of Corn Yield Prediction Potential at Various Growth Phases Using a Process-Based Model and Deep Learning. Plants, 12446. 10.3390/plants12030446 | 2023 | Model application | 10 |
Li, Xinlong; Tan, Junli; Li, Hong; Wang, Lili; Niu, Guoli; Wang, Xina; 2023. Sensitivity Analysis of the WOFOST Crop Model Parameters Using the EFAST Method and Verification of Its Adaptability in the Yellow River Irrigation Area, Northwest China. Agronomy, 132294. 10.3390/agronomy13092294 | 2023 | Model application | 1 |
Zhuo, Wen; Huang, Hai; Gao, Xinran; Li, Xuecao; Huang, Jianxi; 2023. An Improved Approach of Winter Wheat Yield Estimation by Jointly Assimilating Remotely Sensed Leaf Area Index and Soil Moisture into the WOFOST Model. Remote Sensing, 151825. 10.3390/rs15071825 | 2023 | Model application | 9 |
Dhillon, Maninder Singh; Kübert-Flock, Carina; Dahms, Thorsten; Rummler, Thomas; Arnault, Joel; Steffan-Dewenter, Ingolf; Ullmann, Tobias; 2023. Evaluation of MODIS, Landsat 8 and Sentinel-2 Data for Accurate Crop Yield Predictions: A Case Study Using STARFM NDVI in Bavaria, Germany. Remote Sensing, 151830. 10.3390/rs15071830 | 2023 | Model application | 6 |
Liu, Junyi; Hou, Xianpeng; Chen, Shuaiming; Mu, Yanhua; Huang, Hai; Wang, Hengbin; Liu, Zhe; Li, Shaoming; Zhang, Xiaodong; Zhao, Yuanyuan; Huang, Jianxi; 2023. A method for estimating yield of maize inbred lines by assimilating WOFOST model with Sentinel-2 satellite data. Frontiers in Plant Science, 14. 10.3389/fpls.2023.1201179 | 2023 | Model application | 1 |
Dlamini, Luleka; Crespo, Olivier; van Dam, Jos; Kooistra, Lammert; 2023. A Global Systematic Review of Improving Crop Model Estimations by Assimilating Remote Sensing Data: Implications for Small-Scale Agricultural Systems. Remote Sensing, 154066. 10.3390/rs15164066 | 2023 | Model application | 5 |
Beyene, Awetahegn Niguse; Zeng, Hongwei; Wu, Bingfang; Zhu, Liang; Gebremicael, Tesfay Gebretsadkan; Zhang, Miao; Bezabh, Temesgen; 2022. Coupling remote sensing and crop growth model to estimate national wheat yield in Ethiopia. Big Earth Data, 618–35. 10.1080/20964471.2020.1837529 | 2022 | Model application | 11 |
Ji, Fujiang; Meng, Jihua; Cheng, Zhiqiang; Fang, Huiting; Wang, Yanan; 2022. Crop Yield Estimation at Field Scales by Assimilating Time Series of Sentinel-2 Data Into a Modified CASA-WOFOST Coupled Model. IEEE Transactions on Geoscience and Remote Sensing, 601–14. 10.1109/TGRS.2020.3047102 | 2022 | Model application | 21 |
Abebe, Gebeyehu; Tadesse, Tsegaye; Gessesse, Berhan; 2022. Assimilation of leaf Area Index from multisource earth observation data into the WOFOST model for sugarcane yield estimation. International Journal of Remote Sensing, 43698–720. 10.1080/01431161.2022.2027547 | 2022 | Model application | 14 |
Liu, Jiandong; Du, Jun; Liu, De-Li; Linderholm, Hans W.; Zhou, Guangsheng; Song, Yanling; Shen, Yanbo; Yu, Qiang; 2022. Spatial and Temporal Variations in the Potential Yields of Highland Barley in Relation to Climate Change in Three Rivers Region of the Tibetan Plateau from 1961 to 2020. Sustainability, 147719. 10.3390/su14137719 | 2022 | Model application | 1 |
Wang, Chengkun; Zhang, Nannan; Li, Mingzhe; Li, Li; Bai, Tiecheng; 2022. Pear Tree Growth Simulation and Soil Moisture Assessment Considering Pruning. Agriculture, 121653. 10.3390/agriculture12101653 | 2022 | Model application | 1 |
Pushpalatha, Raji; Shiny, R.; Kutty, Govindan; Dua, V. K.; Sunitha, S.; Santhosh Mithra, V. S.; Byju, G.; 2022. Testing of Cassava (Manihot esculenta) Varieties for Climate Resilience Under Kerala (India) Conditions. Agricultural Research, 1124–31. 10.1007/s40003-021-00547-x | 2022 | Model application | 0 |
Hensawang, Saruda; Injan, Sittisak; Varnakovida, Pariwate; Humphries, Usa; 2021. Predicting Rice Production in Central Thailand Using the WOFOST Model with ENSO Impact. Mathematical and Computational Applications, 2672. 10.3390/mca26040072 | 2021 | Model application | 2 |
Xu, Xin; Shen, Shuaijie; Xiong, Shuping; Ma, Xinming; Fan, Zehua; Han, Haiyang; 2021. Water Stress is a Key Factor Influencing the Parameter Sensitivity of the WOFOST Model in Different Agro-Meteorological Conditions. International Journal of Plant Production, 15231–242. 10.1007/s42106-021-00137-5 | 2021 | Model application | 5 |
Pushpalatha, Raji; Shiny, R.; Kutty, Govindan; Dua, V. K.; Sunitha, S.; Santhosh Mithra, V. S.; Byju, G.; 2021. Testing of Cassava (Manihot esculenta) Varieties for Climate Resilience Under Kerala (India) Conditions. Agricultural Research, . 10.1007/s40003-021-00547-x | 2021 | Model application | 2 |
Gardner, A.S.; Maclean, I.M.D.; Gaston, K.J.; Bütikofer, L.; 2021. Forecasting future crop suitability with microclimate data. Agricultural Systems, 190103084. 10.1016/j.agsy.2021.103084 | 2021 | Model application | 16 |
Wu, Shangrong; Yang, Peng; Chen, Zhongxin; Ren, Jianqiang; Li, He; Sun, Liang; 2021. Estimating winter wheat yield by assimilation of remote sensing data with a four-dimensional variation algorithm considering anisotropic background error and time window. Agricultural and Forest Meteorology, 301108345. 10.1016/j.agrformet.2021.108345 | 2021 | Model application | 21 |
Kulig, Bogdan; Skowera, Barbara; Klimek-Kopyra, Agnieszka; Kołodziej, Stanisław; Grygierzec, Wiesław; 2020. The Use of the WOFOST Model to Simulate Water-Limited Yield of Early Potato Cultivars. Agronomy, 1081. 10.3390/agronomy10010081 | 2020 | Model application | 7 |
Zhao, B.; Liu, M.; Wu, J.; Liu, X.; Wu, L.; 2020. Parallel Computing for Obtaining Regional Scale Rice Growth Conditions Based on WOFOST and Satellite Images. IEEE Access, 8223675–223685. 10.1109/ACCESS.2020.3043003 | 2020 | Model application | 5 |
Cheng, Zhiqiang; Meng, Jihua; Shang, Jiali; Liu, Jiangui; Huang, Jianxi; Qiao, Yanyou; Qian, Budong; Jing, Qi; Dong, Taifeng; Yu, Lihong; 2020. Generating Time-Series LAI Estimates of Maize Using Combined Methods Based on Multispectral UAV Observations and WOFOST Model. Sensors, 206006. 10.3390/s20216006 | 2020 | Model application | 12 |
Mandal, Dipankar; Rao, Y.S.; 2020. SASYA: An integrated framework for crop biophysical parameter retrieval and within-season crop yield prediction with SAR remote sensing data. Remote Sensing Applications: Society and Environment, 20100366. 10.1016/j.rsase.2020.100366 | 2020 | Model application | 12 |
Quintero, Diego; Díaz, Eliécer; 2020. A comparison of two open-source crop simulation models for a potato crop. Agronomía Colombiana, 38. 10.15446/agroncolomb.v38n3.82525 | 2020 | Model application | 3 |
Zhuo, Wen; Huang, Jianxi; Gao, Xinran; Ma, Hongyuan; Huang, Hai; Su, Wei; Meng, Jihua; Li, Ying; Chen, Huailiang; Yin, Dongqin; 2020. Prediction of Winter Wheat Maturity Dates through Assimilating Remotely Sensed Leaf Area Index into Crop Growth Model. Remote Sensing, 122896. 10.3390/rs12182896 | 2020 | Model application | 24 |
Wu, Shangrong; Ren, Jianqiang; Chen, Zhongxin; Yang, Peng; Li, He; Liu, Jia; 2020. Evaluation of Winter Wheat Yield Simulation Based on Assimilating LAI Retrieved From Networked Optical and SAR Remotely Sensed Images Into the WOFOST Model. IEEE Transactions on Geoscience and Remote Sensing, 1–15. 10.1109/TGRS.2020.3038205 | 2020 | Model application | 14 |
Dhillon, Maninder Singh; Dahms, Thorsten; Kuebert-Flock, Carina; Borg, Erik; Conrad, Christopher; Ullmann, Tobias; 2020. Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany. Remote Sensing, 121819. 10.3390/rs12111819 | 2020 | Model application | 17 |
Meng, Jihua; Cheng, Zhiqiang; 2020. Improving the estimation of soil-available nutrients at the sub-field scale using time-series UAV observations. Remote Sensing Letters, 11739–747. 10.1080/2150704X.2020.1763498 | 2020 | Model application | 3 |
Chen, Xuanjing; Strokal, Maryna; Kroeze, Carolien; Supit, Iwan; Wang, Mengru; Ma, Lin; Chen, Xinping; Shi, Xiaojun; 2020. Modeling the Contribution of Crops to Nitrogen Pollution in the Yangtze River. Environmental Science & Technology, 5411929–11939. 10.1021/acs.est.0c01333 | 2020 | Model application | 28 |
Ouko, O.R.J.; 2020. Agroforestry: A Triple Win for Mixed Farming Systems in Central Rift Valley, Ethiopia. Journal of Biology, Agriculture and Healthcare, . 10.7176/JBAH/10-4-01 | 2020 | Model application | 0 |
Tang, Yibo; Liu, Meiling; Liu, Xiangnan; Wu, Ling; Zhao, Bingyu; Wu, Chuanyu; 2020. Spatio-temporal Index Based on Time Series of Leaf Area Index for Identifying Heavy Metal Stress in Rice under Complex Stressors. International Journal of Environmental Research and Public Health, 172265. 10.3390/ijerph17072265 | 2020 | Model application | 8 |
de Wit, Allard; Boogaard, Hendrik; Fumagalli, Davide; Janssen, Sander; Knapen, Rob; van Kraalingen, Daniel; Supit, Iwan; van der Wijngaart, Raymond; van Diepen, Kees; 2019. 25 years of the WOFOST cropping systems model. Agricultural Systems, 168154–167. 10.1016/j.agsy.2018.06.018 | 2019 | Model overview | 249 |
Zhuo, Wen; Huang, Jianxi; Li, Li; Zhang, Xiaodong; Ma, Hongyuan; Gao, Xinran; Huang, Hai; Xu, Baodong; Xiao, Xiangming; 2019. Assimilating Soil Moisture Retrieved from Sentinel-1 and Sentinel-2 Data into WOFOST Model to Improve Winter Wheat Yield Estimation. Remote Sensing, 111618. 10.3390/rs11131618 | 2019 | Model application | 85 |
Zhou, Gaoxiang; Liu, Xiangnan; Liu, Ming; 2019. Assimilating Remote Sensing Phenological Information into the WOFOST Model for Rice Growth Simulation. Remote Sensing, 11268. 10.3390/rs11030268 | 2019 | Model application | 28 |
Bai, Tiecheng; Wang, Shanggui; Meng, Wenbo; Zhang, Nannan; Wang, Tao; Chen, Youqi; Mercatoris, Benoit; 2019. Assimilation of Remotely-Sensed LAI into WOFOST Model with the SUBPLEX Algorithm for Improving the Field-Scale Jujube Yield Forecasts. Remote Sensing, 111945. 10.3390/rs11161945 | 2019 | Model application | 12 |
Li, Daoliang; Ma, Shangjie; Pei, Zhiyuan; He, Yajuan; 2019. Study on Simulation of Rice Yield with WOFOST in Heilongjiang Province. , 50940–51. [1] | 2019 | Model application | 1 |
Bai, Tiecheng; Zhang, Nannan; Chen, Youqi; Mercatoris, Benoit; 2019. Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes. Sustainability, 111466. 10.3390/su11051466 | 2019 | Model application | 10 |
Song, Yanling; Wang, Chunyi; Linderholm, Hans W.; Tian, Jinfeng; Shi, Ying; Xu, Jinxia; Liu, Yanju; 2019. Agricultural Adaptation to Global Warming in the Tibetan Plateau. International Journal of Environmental Research and Public Health, 163686. 10.3390/ijerph16193686 | 2019 | Model application | 14 |
Ko, Jonghan; Tim Ng, Chi; Jeong, Seungtaek; Kim, Jun-Hwan; Lee, Byunwoo; Kim, Han-Yong; 2019. Impacts of regional climate change on barley yield and its geographical variation in South Korea. International Agrophysics, 3381–96. 10.31545/intagr/104398 | 2019 | Model application | 17 |
Xu, Zhao; Zhao, Shuang; Qian, Xu; 2019. Extracting heavy metal stress indicators from remote sensing imagery using WOFOST model and wavelet packet decomposition algorithm. IOP Conference Series: Materials Science and Engineering, 592012056. 10.1088/1757-899X/592/1/012056 | 2019 | Model application | 0 |
Cheng, Zhiqiang; Meng, Jihua; Shang, Jiali; Liu, Jiangui; Qiao, Yanyou; Qian, Budong; Jing, Qi; Dong, Taifeng; 2019. Improving Soil Available Nutrient Estimation by Integrating Modified WOFOST Model and Time-Series Earth Observations. IEEE Transactions on Geoscience and Remote Sensing, 572896–2908. 10.1109/TGRS.2018.2878382 | 2019 | Model application | 13 |
Pinto, Victor Meriguetti; van Dam, Jos C.; de Jong van Lier, Quirijn; Reichardt, Klaus; 2019. Intercropping Simulation Using the SWAP Model: Development of a 2×1D Algorithm. Agriculture, 9126. 10.3390/agriculture9060126 | 2019 | Model application | 9 |
Cheng, Zhiqiang; Meng, Jihua; Qiao, Yanyou; Wang, Yiming; Dong, Wenquan; Han, Yanxin; 2018. Preliminary Study of Soil Available Nutrient Simulation Using a Modified WOFOST Model and Time-Series Remote Sensing Observations. Remote Sensing, 1064. 10.3390/rs10010064 | 2018 | Model application | 21 |
Roberts, Jamie; 2018. Seasonal and subseasonal forecasts : overview and applications for economics. , . 10.7289/V5/SG-NCRL-18-17 | 2018 | Model application | 0 |
Ogutu, Geoffrey E.O.; Franssen, Wietse H.P.; Supit, Iwan; Omondi, P.; Hutjes, Ronald W.A.; 2018. Probabilistic maize yield prediction over East Africa using dynamic ensemble seasonal climate forecasts. Agricultural and Forest Meteorology, 250243–261. 10.1016/j.agrformet.2017.12.256 | 2018 | Model application | 48 |
Liu, Tianjiao; Liu, Xiangnan; Liu, Meiling; Wu, Ling; 2018. Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology. Sensors, 18860. 10.3390/s18030860 | 2018 | Model application | 14 |
Zhu, Jiangxu; Zeng, Wenzhi; Ma, Tao; Lei, Guoqing; Zha, Yuanyuan; Fang, Yuanhao; Wu, Jingwei; Huang, Jiesheng; 2018. Testing and Improving the WOFOST Model for Sunflower Simulation on Saline Soils of Inner Mongolia, China. Agronomy, 8172. 10.3390/agronomy8090172 | 2018 | Model application | 10 |
Zhao, Shuang; Qian, Xu; Liu, Xiangnan; Xu, Zhao; 2018. Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice. Sensors, 181230. 10.3390/s18041230 | 2018 | Model application | 3 |
Abadi, F. R.; Tastra, I. K.; Koentjoro, B. S.; 2018. Preliminary Study of WOFOST Crop Simulation in Its Prospect for Soybean (Glycine max L.) Optimum Harvest Time and Yield Gap Analysis in East Java. AGRIVITA Journal of Agricultural Science, 40. 10.17503/agrivita.v40i3.1832 | 2018 | Model application | 2 |
Wang, Dongmin; Liu, Xiangnan; 2018. Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice. International Journal of Environmental Research and Public Health, 15461. 10.3390/ijerph15030461 | 2018 | Model application | 2 |
Eweys, Omar Ali; Elwan, Abeer A.; Borham, Taha I.; 2017. Integrating WOFOST and Noah LSM for modeling maize production and soil moisture with sensitivity analysis, in the east of The Netherlands. Field Crops Research, 210147–161. 10.1016/j.fcr.2017.06.004 | 2017 | Model application | 21 |
Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.; 2017. Grain Yield Observations Constrain Cropland CO 2 Fluxes Over Europe: YIELD DATA CONSTRAINS CROP CO 2 EXCHANGE. Journal of Geophysical Research: Biogeosciences, 1223238–3259. 10.1002/2017JG003937 | 2017 | Model application | 6 |
Jin, Ming; Liu, Xiangnan; Wu, Ling; Liu, Meiling; 2017. Distinguishing Heavy-Metal Stress Levels in Rice Using Synthetic Spectral Index Responses to Physiological Function Variations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1075–86. 10.1109/JSTARS.2016.2529647 | 2017 | Model application | 11 |
Zhou, Gaoxiang; Liu, Xiangnan; Zhao, Shuang; Liu, Ming; Wu, Ling; 2017. Estimating FAPAR of Rice Growth Period Using Radiation Transfer Model Coupled with the WOFOST Model for Analyzing Heavy Metal Stress. Remote Sensing, 9424. 10.3390/rs9050424 | 2017 | Model application | 25 |
, ; 2017. Extraction of Rice Heavy Metal Stress Signal Features Based on Long Time Series Leaf Area Index Data Using Ensemble Empirical Mode Decomposition. International Journal of Environmental Research and Public Health, 141018. 10.3390/ijerph14091018 | 2017 | Model application | 25 |
Cheng, Zhiqiang; Meng, Jihua; Wang, Yiming; 2016. Improving Spring Maize Yield Estimation at Field Scale by Assimilating Time-Series HJ-1 CCD Data into the WOFOST Model Using a New Method with Fast Algorithms. Remote Sensing, 8303. 10.3390/rs8040303 | 2016 | Model application | 62 |
Liu, Ming; Liu, Xiangnan; Liu, Meiling; Liu, Feng; Jin, Ming; Wu, Ling; 2016. Root mass ratio: index derived by assimilation of synthetic aperture radar and the improved World Food Study model for heavy metal stress monitoring in rice. Journal of Applied Remote Sensing, 10026038. 10.1117/1.JRS.10.026038 | 2016 | Model application | 5 |
Tao, Sulin; Shen, Shuanghe; Li, Yuhong; Wang, Qi; Gao, Ping; Mugume, Isaac; 2016. Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar. Sustainability, 8214. 10.3390/su8030214 | 2016 | Model application | 22 |
Huang, Zhi; Liu, Xiangnan; Jin, Ming; Ding, Chao; Jiang, Jiale; Wu, Ling; 2016. Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model. Sensors, 16340. 10.3390/s16030340 | 2016 | Model application | 10 |
Li, Daoliang; Li, Zhenbo; Ma, Shangjie; Pei, Zhiyuan; He, Yajuan; Wang, Lianlin; Ma, Zhiping; 2016. Simulation of Winter Wheat Yield with WOFOST in County Scale. , 478161–172. [2] | 2016 | Model application | 0 |
Liu, Feng; Liu, Xiangnan; Wu, Ling; Xu, Zhao; Gong, Lu; 2016. Optimizing the Temporal Scale in the Assimilation of Remote Sensing and WOFOST Model for Dynamically Monitoring Heavy Metal Stress in Rice. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 91685–1695. 10.1109/JSTARS.2015.2499258 | 2016 | Model application | 9 |
Ahuja, Lajpat R.; Ma, Liwang; Lascano, Robert J.; Ahuja, L.R.; Saseendran, S.A.; Fang, Q.X.; Nielsen, David C.; Wang, Enli; Colaizzi, Paul D.; 2015. Syntheses of the Current Model Applications for Managing Water and Needs for Experimental Data and Model Improvements to Enhance these Applications. , 399–437. [3] | 2015 | Model application | 13 |
Liu, Feng; Liu, Xiangnan; Zhao, Liting; Ding, Chao; Jiang, Jiale; Wu, Ling; 2015. The Dynamic Assessment Model for Monitoring Cadmium Stress Levels in Rice Based on the Assimilation of Remote Sensing and the WOFOST Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 81330–1338. 10.1109/JSTARS.2014.2371058 | 2015 | Model application | 31 |
Kassie, B.T.; Van Ittersum, M.K.; Hengsdijk, H.; Asseng, S.; Wolf, J.; Rötter, R.P.; 2014. Climate-induced yield variability and yield gaps of maize (Zea mays L.) in the Central Rift Valley of Ethiopia. Field Crops Research, 16041–53. 10.1016/j.fcr.2014.02.010 | 2014 | Model application | 107 |
Ma, Guannan; Huang, Jianxi; Wu, Wenbin; Fan, Jinlong; Zou, Jinqiu; Wu, Sijie; 2013. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Mathematical and Computer Modelling, 58634–643. 10.1016/j.mcm.2011.10.038 | 2013 | Model application | 132 |
Ma, Hongyuan; Huang, Jianxi; Zhu, Dehai; Liu, Junming; Su, Wei; Zhang, Chao; Fan, Jinlong; 2013. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST–ACRM model with Ensemble Kalman Filter. Mathematical and Computer Modelling, 58759–770. 10.1016/j.mcm.2012.12.028 | 2013 | Model application | 76 |
Wang, Jing; Li, Xin; Lu, Ling; Fang, Feng; 2013. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environmental Modelling & Software, 48171–182. 10.1016/j.envsoft.2013.06.007 | 2013 | Model application | 157 |
Tripathy, Rojalin; Chaudhari, Karshan N.; Mukherjee, Joydeep; Ray, Shibendu S.; Patel, N. K.; Panigrahy, Sushma; Parihar, Jai Singh; 2013. Forecasting wheat yield in Punjab state of India by combining crop simulation model WOFOST and remotely sensed inputs. Remote Sensing Letters, 419–28. 10.1080/2150704X.2012.683117 | 2013 | Model application | 35 |
Wang, Jing; Li, Xin; Lu, Ling; Fang, Feng; 2013. Estimating near future regional corn yields by integrating multi-source observations into a crop growth model. European Journal of Agronomy, 49126–140. 10.1016/j.eja.2013.03.005 | 2013 | Model application | 73 |
Liu, Buchun; Mei, Xurong; Lv, Guohua; Yang, Youlu; Bai, Meilan; Wu, Yongfeng; Song, Jiqing; Bai, Wenbo; 2012. The maize evapotranspiration in the background of climate change: a case study in arid area. Hydrological Processes, 26633–639. 10.1002/hyp.8161 | 2012 | Model application | 3 |
Song, Yanling; Zhao, Yanxia; 2012. Effects of drought on winter wheat yield in north China during 2012–2100. Acta Meteorologica Sinica, 26516–528. 10.1007/s13351-012-0410-4 | 2012 | Model application | 14 |
Jia, Yangwen; 2011. Coupling crop growth and hydrologic models to predict crop yield with spatial analysis technologies. Journal of Applied Remote Sensing, 5053537. 10.1117/1.3609844 | 2011 | Model application | 17 |
Chaudhari, K.N.; Tripathy, R.; Patel, N.K.; 2010. Spatial wheat yield prediction using crop simulation model, GIS, remote sensing and ground observed data. Journal of Agrometeorology, 12174–180. 10.54386/jam.v12i2.1300 | 2010 | Model application | 1 |
PogačAr, Tjaša; Kajfež-Bogataj, Lučka; 2009. WOFOST: model za napovedovanje pridelka - 2. del. Acta agriculturae Slovenica, 93. 10.14720/aas.2009.93.2.15048 | 2009 | Model application | 0 |
Govindarajan, S.; Ambujam, N. K.; Karunakaran, K.; 2008. Estimation of paddy water productivity (WP) using hydrological model: an experimental study. Paddy and Water Environment, 6327–339. 10.1007/s10333-008-0131-0 | 2008 | Model application | 27 |
de Wit, A.J.W.; van Diepen, C.A.; 2007. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agricultural and Forest Meteorology, 14638–56. 10.1016/j.agrformet.2007.05.004 | 2007 | Model application | 291 |
Pauwels, Valentijn R. N.; Verhoest, Niko E. C.; De Lannoy, Gabriëlle J. M.; Guissard, Vincent; Lucau, Cozmin; Defourny, Pierre; 2007. Optimization of a coupled hydrology-crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter: ASSIMILATION OF LAI AND SOIL MOISTURE. Water Resources Research, 43. 10.1029/2006WR004942 | 2007 | Model application | 146 |
Song, Yanling; Chen, Deliang; Dong, Wenjie; 2006. Influence of climate on winter wheat productivity in different climate regions of China, 1961–2000. Climate Research, 32219–227. 10.3354/cr032219 | 2006 | Model application | 26 |
Nassiri, M.; Koocheki, A.; Kamali, G. A.; Shahandeh, H.; 2006. Potential impact of climate change on rainfed wheat production in Iran: (Potentieller Einfluss des Klimawandels auf die Weizenproduktion unter Rainfed-Bedingungen im Iran). Archives of Agronomy and Soil Science, 52113–124. 10.1080/03650340600560053 | 2006 | Model application | 57 |
Yu-Ping, M. A.; Shi-Li, Wang; Li, Zhang; Ying-Yu, H. O. U.; 2005. A PRELIMINARY STUDY ON THE RE-INITIALIZATION/RE-PARAMETERIZATION OF A CROP MODEL BASED ON REMOTE SENSING DATA. Chinese Journal of Plant Ecology, 29918. 10.17521/cjpe.2005.0127 | 2005 | Model application | 5 |
Pohlert, Thorsten; 2004. Use of empirical global radiation models for maize growth simulation. Agricultural and Forest Meteorology, 12647–58. 10.1016/j.agrformet.2004.05.003 | 2004 | Model application | 67 |
de Wit, A.J.W.; Boogaard, H.L.; van Diepen, C.A.; 2004. Using NOAA–AVHRR estimates of land surface temperature for regional agrometeorogical modelling. International Journal of Applied Earth Observation and Geoinformation, 5187–204. 10.1016/j.jag.2004.03.003 | 2004 | Model application | 19 |
Wokabi, S. M.; 2003. Effectiveness of the Wofost Simulation Model to Predict Maize Yield Gaps on the Eastern Slopes of Mt Kenya. East African Agricultural and Forestry Journal, 69139–147. 10.4314/eaafj.v69i2.1815 | 2003 | Model application | 1 |
Foltescu, Valentin L; 2000. Prediction of crop yield in Sweden based on mesoscale meteorological analysis. Meteorological Applications, 7313–321. 10.1017/S1350482700001687 | 2000 | Model application | 5 |
Wolf, J; Vandiepen, C; 1994. Effects of climate change on silage maize production potential in the European community. Agricultural and Forest Meteorology, 7133–60. 10.1016/0168-1923(94)90099-X | 1994 | Model application | 20 |
Diepen, C.A.; Wolf, J.; Keulen, H.; Rappoldt, C.; 1989. WOFOST: a simulation model of crop production. Soil Use and Management, 516–24. 10.1111/j.1475-2743.1989.tb00755.x | 1989 | Model overview | 673 |
Keulen, H. van; Wolf, J.; 1986. Modelling of agricultural production : weather, soils and crops.. , . [4] | 1986 | Model overview | 308 |
Citations
<graph>{{safesubst:#invoke:Graph|chartWrapper}}</graph>
Nr. of publications: | 106 |
Total citations: | 3492 |
h-index: | 24 |
m-quotient: | 0.6 |
Publications per year
<graph>{{safesubst:#invoke:Graph|chartWrapper}}</graph>