Reference:Reference-026517: Difference between revisions
From CSDMS
m Text replacement - "|Semantic_ID=699f93fbb6018be7a16336c08ff66579af2bdcc1" to "|Semantic_ID=699f93fbb6018be7a16336c08ff66579af2bdcc1 |CorpusID=255736130" |
m Text replacement - " |CorpusID=" to " |CorpusID=" |
||
| Line 16: | Line 16: | ||
|PublicationClusterID=0 | |PublicationClusterID=0 | ||
|MS_PublicationClusterID=0 | |MS_PublicationClusterID=0 | ||
|Semantic_ID=699f93fbb6018be7a16336c08ff66579af2bdcc1 |CorpusID=255736130 | |Semantic_ID=699f93fbb6018be7a16336c08ff66579af2bdcc1 | ||
|CorpusID=255736130 | |||
|PublicationWhatKindOf=a module application description | |PublicationWhatKindOf=a module application description | ||
|PublicationNrofModels=a single module | |PublicationNrofModels=a single module | ||
Revision as of 09:26, 1 October 2024
| Author(s) | Zhong, Xiaohui; Ma, Zhijian; Yao, Yichen; Xu, Lifei; Wu, Yuan; Wang, Zhibin; | |
| BibType | journalArticle | |
| Title | WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer | |
| Editors | ||
| Year | 2023-01-06 | |
| Journal | Geoscientific Model Development | |
| Booktitle | None | |
| Volume | 16 | |
| Pages | 199–209 | |
| URL | https://gmd.copernicus.org/articles/16/199/2023/ | |
| DOI | 10.5194/gmd-16-199-2023 | |
| ISBN | ||
| Note | Auto downloaded ref at: 2024-09-05
| |
| |
||
| Highlighted paper on group site | ||
| Highlight text | ||
| Highlight image | ||
| Which groups | ||
| Feature reference | No | |
| PublicationClusterID | 0 | |
| MS_PublicationClusterID | 0 | |
| Semantic_ID | 699f93fbb6018be7a16336c08ff66579af2bdcc1 | |
| Nr of citations | 13 | |
| Sort of publication | a module application description | |
| Sort of model publication | a single module | |
| Is the CSDMS HPC used | No | |
| If HPC is used, for what project was it?: | ||
| Associated simulation movie if any: |
| |
| Model(s) discussed: | WRF
|
