Browse wiki

From CSDMS
University of Exeter  +
Exeter, Devon  +
rolf.aalto@exeter.ac.uk  +
+44 7912 615156  +
United Kingdom  +
Creation date"Creation date" is a predefined property that corresponds to the date of the first revision of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
17:23:29, 9 January 2018  +
Last editor is"Last editor is" is a predefined property that contains the page name of the user who created the last revision and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
How continental-scale rivers respond to teHow continental-scale rivers respond to tectonics, climate, and sea level is not well represented in morphodynamic models. Lowland rivers respond to influences more complicated than mountain rivers, and their large spatial scales present modelling challenges. Tectonic deformation and resistant deposits/bedrock especially affects low gradient rivers and their slope, sinuosity, along-stream patterns of sediment transport capacity, channel patterns, floodplain construction, and valley development. During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. </br> Modelling key multi-directional processes controlling these rivers would illuminate system-scale morphodynamics, fluxes, and complexity in response to base level change, yet such problems are computationally formidable. Large environmental systems are characterized by strong process interdependency across domains, yet traditional supercomputers have slow nodal communications that stymies interconnectivity. </br> The newly developed Landscape-Linked Environmental Model (LLEM) utilizes massively parallel architectures (GPUs with >5000 cores and ~100x the interconnect bandwidth of CPU blades) to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per GPU) lowland dispersal systems covering large spatial and temporal scales. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology channel hydraulic geometry, dissection of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic flexure. LLEM also uses novel, ultra-fast Optane storage to reference a detailed 3D record of all stratigraphy (and associated biogeochemistry) that is created and destroyed.ogeochemistry) that is created and destroyed.  +
Modification date"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by <a target="_blank" rel="nofollow noreferrer noopener" class="external text" href="https://www.semantic-mediawiki.org/wiki/Help:Special_properties">Semantic MediaWiki</a>.
17:37:56, 9 January 2018  +