2019 CSDMS meeting-115


Log in (or create account for non-CSDMS members)
Forgot username? Search or email:CSDMSweb@colorado.edu

Browse  abstracts

Machine learning for climate prediction

Kelly Kochanski, University of Colorado, Boulder Boulder Colorado, United States. kelly.kochanski@colorado.edu

Kelly Kochanski CSDMS Conference Poster final.png

Recent trends in Earth system modeling, climate data collection, and computing architecture have opened new opportunities for machine learning to improve ESMs. First, new and cheaper satellites are generating large volumes of observational data (e.g. Arctic and Antarctic DEMs), and massive climate modeling projects are generating large volumes of simulated climate data (e.g. CMIP5, CMIP6, CESM-LE). Second, machine learning applications are driving the design of next-generation computing architectures that will accelerate applications like neural nets without ameliorating the computational bottlenecks (ref: NOAA HPC position paper) that limit existing climate models. Third, the climate science community is becoming increasingly familiar with machine learning techniques. Here, I summarize opportunities for CSDMS practitioners to use machine learning techniques to improve Earth system and Earth surface models.