Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Extended model description" with value "This tool is used to creates a "profile-smoothed" DEM from an input DEM.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 38 results starting with #1.

View (previous 500 | next 500) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Model:Hilltop flow routing  + (This tool produces a flow path for each hiThis tool produces a flow path for each hilltop pixel on a landscape, generating hillslope length and relief data at a hillslope scale. These data can be used to discriminate between linear and nonlinear sediment flux laws at a landscape scale.</br></br>The model requires an input DEM in float format and produces a series raster and plain text output files which can be visualized and analysed using code provided at: https://github.com/sgrieve/LH_Paper_Plotting</br></br>For detailed information about how to use this tool please refer to the documentation (http://www.geos.ed.ac.uk/~smudd/LSDTT_docs/html/basin_metrics.html).smudd/LSDTT_docs/html/basin_metrics.html).)
    • Model:DeltaClassification  + (This tool provides a method for extractingThis tool provides a method for extracting information on the nature and spatial extent of active geomorphic processes across deltas from the geometry of islands and the channels around them using machine learning. </br>The method consists of a two-step ensemble unsupervised machine learning algorithm that clusters islands into spatially continuous zones based on morphological metrics computed on remotely sensed imageryetrics computed on remotely sensed imagery)
    • Model:DrEICH algorithm  + (This tool uses chi river profile analysis This tool uses chi river profile analysis to predict channel head locations across a landscape and therefore allow the extraction of river networks. It is most suitable for use with high resolution LiDAR (1m) DEMs. The model requires an input DEM in float format and will output the extracted channel heads and networks, also in float format. For detailed information about how to use this tool please refer to the documentation (http://www.geos.ed.ac.uk/~smudd/LSDTT_docs/html/channel_heads.html)</br>and to the associated paper (http://onlinelibrary.wiley.com/doi/10.1002/2013WR015167/full)..wiley.com/doi/10.1002/2013WR015167/full).)
    • Model:RivMAP  + (This toolbox was constructed to help analyThis toolbox was constructed to help analyze changing river planforms (aerial views). Given a binary mask of a river, tools are provided to efficiently compute </br></br>- channel centerline </br>- banklines </br>- channel width (two methods) </br>- centerline direction </br>- centerline curvature </br></br>If multiple input mask images contain georeference information, a tool is provided to "stitch" the masks together--before or after analysis. Stitching can be done for both images and vectors of x,y coordinates. The mapping toolbox is required for this functionality.</br></br>If multiple masks (realizations) of the river are available, RivMAP includes tools to </br></br>- compute centerline migrated areas </br>- compute erosional and accretional areas </br>- identify cutoff areas and quantify cutoff length, chute length, and cutoff area </br>- generate channel belt boundaries and centerline </br>- measure and map changes (in width, migration areas or rates, centerline elongation, accreted/eroded areas) in space and time, accreted/eroded areas) in space and time)
    • Model:AgDegNormal  + (This workbook computes 1D bed variation inThis workbook computes 1D bed variation in rivers due to differential sediment transport. The sediment is assumed to be uniform with size D. All sediment transport is assumed to occur in a specified fraction of time during which the river is in flood, specified by an intermittency. A Manning-Strickler formulation is used for bed resistance. A generic relation of the general form of that due to Meyer-Peter and Muller is used for sediment transport. The flow is computed using the normal flow approximation.puted using the normal flow approximation.)
    • Model:AgDegNormalSub  + (This workbook computes the time evolution This workbook computes the time evolution of a river toward steady state as it flows into a subsiding basin. The subsidence rate s is assumed to be constant in time and space. The sediment is assumed to be uniform with size D. A Manning-Strickler formulation is used for bed resistance. A generic relation of the general form of that due to Meyer-Peter and Muller is used for sediment transport. The flow is computed using the normal flow approximation. The river is assumed to have a constant width.river is assumed to have a constant width.)
    • Model:Gvg3Dp  + (Three dimensional simulations of the Turbidity currents using DNS of incompressible Navier-Stokes and transport equations.)
    • Model:TopoFlow  + (TopoFlow is a powerful, spatially-distribuTopoFlow is a powerful, spatially-distributed hydrologic model with a user-friendly point-and-click interface. Its main purpose is to model many different physical processes in a watershed with the goal of accurately predicting how various hydrologic variables will evolve in time in response to climatic forcings. in time in response to climatic forcings.)
    • Model:TopoToolbox  + (TopoToolbox provides a set of Matlab functTopoToolbox provides a set of Matlab functions that support the analysis of relief and flow pathways in digital elevation models. The major aim of TopoToolbox is to offer stable and efficient analytical GIS utilities in a non-GIS environment in order to support the simultaneous application of GIS-specific and other quantitative methods. With version 2, TopoToolbox adds various tools specifically targeted at tectonic geomorphologists such as Chiplots and slopearea plots.ists such as Chiplots and slopearea plots.)
    • Model:Topography Data Component  + (Topography is a Python library to fetch anTopography is a Python library to fetch and cache NASA Shuttle Radar Topography Mission (SRTM) and JAXA Advanced Land Observing Satellite (ALOS) land elevation data using the OpenTopography REST API.</br></br>The Topography library provides access to the following global raster datasets:</br></br>* SRTM GL3 (90m)</br>* SRTM GL1 (30m)</br>* SRTM GL1 (30m, Ellipsoidal)</br>* ALOS World 3D (30m)</br>* ALOS World 3D (30m, Ellipsoidal)</br>* Global Bathymetry SRTM15+ V2.1</br>* NASADEM Global DEM</br>* Copernicus Global DSM 30m</br>* Copernicus Global DSM 90m</br></br>The library includes an API and CLI that accept the dataset type, a latitude-longitude bounding box, and the output file format. Data are downloaded from OpenTopography and cached locally. The cache is checked before downloading new data. Data from a cached file can optionally be loaded into an xarray DataArray using the experimental open_rasterio method.ing the experimental open_rasterio method.)
    • Model:Area-Slope Equation Calculator  + (Traditionally the Area-Slope equation (S=cA^alpha) is extracted from a catchment area vs. slope plot. This model calculate the Area-Slope constant and coefficient (alpha) for each pixel at the catchment as a function of its downslope neighbor.)
    • Model:OTTAR  + (Transiently evolving river-channel width aTransiently evolving river-channel width as a function of streambank properties, sediment in transport, and the hydrograph.</br></br>This model is designed to compute the rates of river-channel widening and narrowing based on changing hydrological regimes. It is currently designed for rivers with cohesive banks, with a critical shear stress for particle detachment and an erosion-rate coefficient.</br></br>OTTAR contains:</br>* The RiverWidth class, which contains methods to evolve the width of an alluvial river.</br>* The FlowDepthDoubleManning class, which is used to estimate flow depth from discharge, even with an evolving river-channel geometry.n with an evolving river-channel geometry.)
    • Model:Underworld2  + (Underworld2 is an open-source, particle-inUnderworld2 is an open-source, particle-in-cell finite element code tuned for large-scale geodynamics simulations. The numerical algorithms allow the tracking of history information through the high-strain deformation associated with fluid flow (for example, transport of the stress tensor in a viscoelastic, convecting medium, or the advection of fine-scale damage parameters by the large-scale flow). The finite element mesh can be static or dynamic, but it is not contrained to move in lock-step with the evolving geometry of the fluid. This hybrid approach is very well suited to complex fluids which is how the solid Earth behaves on a geological timescale.d Earth behaves on a geological timescale.)
    • Model:SinkFiller  + (Uses the Barnes et al (2014) algorithms toUses the Barnes et al (2014) algorithms to replace pits in a topography with flats, or optionally with very shallow gradient surfaces to allow continued draining.</br></br>This component is NOT intended for use iteratively as a model runs; rather, it is to fill in an initial topography. If you want to repeatedly fill pits as a landscape develops, you are after the LakeMapperBarnes component. If you want flow paths on your filled landscape, manually run a FlowDirector and FlowAccumulator for yourself.</br></br>The locations and depths etc. of the fills will be tracked, and properties are provided to access this information.s are provided to access this information.)
    • Model:WACCM-CARMA  + (WACCM is NCAR's atmospheric high-altitude model; CARMA is Brian Toon's aerosol microphysical sectional model. I'm studying sulfate aerosols in the UTLS region using this coupled model.)
    • Model:WASH123D  + (WASH123D is an integrated multimedia, multWASH123D is an integrated multimedia, multi-processes, physics-based computational watershed model of various spatial-temporal scales. The integrated multimedia includes:</br># dentric streams/rivers/canal/open channel,</br># overland regime (land surface),</br># subsurface media (vadose and saturated zones), and</br># ponds, lakes/reservoirs (small/shallow). </br></br>It also includes control structures such as weirs, gates, culverts, pumps, levees, and storage ponds and managements such as operational rules for pumps and control structures.</br>The WASH123D code consisted of eight modules to deal with multiple media:</br># 1-D River/Stream Networks,</br># 2-D Overland Regime,</br># 3-D Subsurface Media (both Vadose and Saturated Zones);</br># Coupled 1-D River/Stream Network and 2-D Overland Regime,</br># Coupled 2-D Overland Regime and 3-D Subsurface,</br># Coupled 3-D Subsurface and 1-D River Systems;</br># Coupled 3-D Subsurface Media, 2-D Overland, and 1-D River Network; and</br># Coupled 0-D Shallow Water Bodies and 1-D Canal Network.</br>For any of the above eight modules, flow only, transport only, or coupled flow and transport simulations can be carried out using WASH123D.lations can be carried out using WASH123D.)
    • Model:CVFEM Rift2D  + (We have developed a hybrid numerical modelWe have developed a hybrid numerical model at a continental scale via control volume finite element (finite volume) and regular finite element methods to evaluate the stress variation, pore pressure evolution, brine migration, solute transport and heat transfer in the subsurface formations in response to ice sheet loading of multiple glacial cycles. sheet loading of multiple glacial cycles.)
    • Model:Quad  + (We present a geometric model able to trackWe present a geometric model able to track the geomorphic boundaries that delimit the fluvial plain of fluvial-deltas: the shoreline and the alluvial-bedrock transition. By assuming a fluvial profile with a quadratic form, which satisfies the overall mass balance and the boundary conditions dictated by diffusive transport, we are able to provide a solution that accounts for general base-level changes.t accounts for general base-level changes.)
    • Model:Rescal-snow  + (When wind blows over snow, it self-organizWhen wind blows over snow, it self-organizes. This forms surface features, such as ripples and dunes, that alter the reflectivity and thermal conductivity of the snow.</br></br>Studying these features in the field is cold and challenging (we've tried), so we created rescal-snow to enable snow scientists to study snow features in controlled numerical experiments. We hope that this model will be useful to researchers in snow science, geomorphology, and polar climate.</br></br>Rescal-snow is able to simulate:</br>- Snow/sand grain erosion and deposition by wind</br>- Snowfall</br>- Time-dependent cohesion (snow sintering)</br>- Avalanches of loose grains</br></br>Rescal-snow is also designed for robust, reproducible science, and contains tools for high-performance computing, data management, and data analysis, including:</br>- Workflow tools for generating and running many simulations in parallel</br>- A python-based workflow that manages data and analysis at runtime</br></br>These processes, along with model input, output, performance and constraints, are discussed in detail in the project docs and readme. in detail in the project docs and readme.)
    • Model:WACCM Dust-Sulfur  + (Whole atmosphere module of sulfate aerosols with emphasis on stratospheric aerosols and dust.)
    • Model:ROMSBuilder  + (Why ROMSBuilder? ROMS extensively uses theWhy ROMSBuilder?</br>ROMS extensively uses the C preprocessor (cpp) during compilation to replace code statements, insert files into the code, and select relevant parts of the code depending on its directives. There are numerous cpp options that can be activated in header files for your specific application. The preprocessor reads the source file (*.F) and builds a target file (*.f90) according to activated cpp options.</br>CPP options can be set through the CMT config tab dialogs. ROMSBuilder generates the header file for compiling the new ROMS component from the tab dialog inputs.ROMS component from the tab dialog inputs.)
    • Model:XBeach  + (Xbeach is a two-dimensional model for waveXbeach is a two-dimensional model for wave propagation, long waves and mean flow, sediment transport and morphological changes of the nearshore area, beaches, dunes and backbarrier during storms. It is a public-domain model that has been developed with funding and support by the US Army Corps of Engineers, by a consortium of UNESCO-IHE, Deltares, Delft University of Technology and the University of Miami.of Technology and the University of Miami.)
    • Model:DbSEABED Data Component  + (bmi_dbseabed package (https://github.com/gbmi_dbseabed package (https://github.com/gantian127/bmi_dbseabed) provides a set of functions that allows downloading of the dataset from dbSEABED (https://instaar.colorado.edu/~jenkinsc/dbseabed/), a system for marine substrates datasets across the globe. bmi_dbseabed package also includes a Basic Model Interface (BMI), which converts the dbSEABED datasets into a reusable, plug-and-play data component for the PyMT modeling framework developed by Community Surface Dynamics Modeling System (CSDMS). Surface Dynamics Modeling System (CSDMS).)
    • Model:ESCAPE  + (eSCAPE is a parallel landscape evolution meSCAPE is a parallel landscape evolution model, built to simulate Earth surface dynamics at global scale and over geological times. The model is primarily designed to address problems related to geomorphology, hydrology, and stratigraphy, but it can also be used in related fields.</br></br>eSCAPE accounts for both hillslope processes (soil creep using linear diffusion) and fluvial incision (stream power law). It can be forced using spatially and temporally varying tectonics (vertical displacements) and climatic conditions (precipitation changes and/or sea-level fluctuations).on changes and/or sea-level fluctuations).)
    • Model:Gospl  + (gospl is able to simulate global-scale forgospl is able to simulate global-scale forward models of landscape evolution, dual-lithology (coarse and fine) sediment routing and stratigraphic history forced with deforming plate tectonics, paleotopographies and paleoclimate reconstructions. It relates the complexity of the triggers and responses of sedimentary processes from the complete sediment routing perspective accounting for different scenarii of plate motion, tectonic uplift/subsidence, climate, geodynamic and sedimentary conditions.te, geodynamic and sedimentary conditions.)
    • Model:NWIS Data Component  + (nwis package provides a set of functions tnwis package provides a set of functions that allows downloading of the National Water Information System (NWIS) for data analysis and visualization. nwis package includes a Basic Model Interface (BMI), which converts the NWIS dataset into a reusable, plug-and-play data component for Community Surface Dynamics Modeling System (CSDMS) modeling framework.odeling System (CSDMS) modeling framework.)
    • Model:NWM Data Component  + (nwm package provides a set of functions thnwm package provides a set of functions that allows downloading of the National Water Model (NWM) time series datasets for a river reach or a model grid. nwm package also includes a Basic Model Interface (BMI), which converts the dataset into a reusable, plug-and-play data component for the CSDMS modeling framework.omponent for the CSDMS modeling framework.)
    • Model:OlaFlow  + (olaFlow (formerly known as olaFoam) is a nolaFlow (formerly known as olaFoam) is a numerical model conceived as a continuation of the work in IHFOAM. Its development has been continuous from ihFoam (Jul 8, 2014 - Feb 11, 2016) and olaFoam (Mar 2, 2016 - Nov 25, 2017).</br></br>This free and open source project is committed to bringing the latest advances in the simulation of wave dynamics to the OpenFOAM® and FOAM-extend communities.</br></br>olaFlow includes a set of solvers and boundary conditions to generate and absorb water waves actively at the boundaries and to simulate their interaction with porous coastal structures.nteraction with porous coastal structures.)
    • Model:Physprop  + (physical property, velocity modeling and synthetic seismic modeling)
    • Model:PyRiverBed  + (placeholder)
    • Model:PyDeltaRCM  + (pyDeltaRCM is the Python version of DeltaRpyDeltaRCM is the Python version of DeltaRCM (https://csdms.colorado.edu/wiki/Model:DeltaRCM) by Man Liang (also available from the CSDMS model repository). This version is a WMT component but can also be run as a stand-alone model (see README.md).</br>DeltaRCM is a parcel-based cellular flux routing and sediment transport model for the formation of river deltas, which belongs to the broad category of rule-based exploratory models. It has the ability to resolve emergent channel behaviors including channel bifurcation, avulsion and migration. Sediment transport distinguishes two types of sediment: sand and mud, which have different transport and deposition/erosion rules. Stratigraphy is recorded as the sand fraction in layers.</br>Best usage of DeltaRCM is the investigation of autogenic processes in response to external forcings.rocesses in response to external forcings.)
    • Model:ERA5 Data Component  + (pymt_era5 is a package that converts ERA5 pymt_era5 is a package that converts ERA5 datasets (https://confluence.ecmwf.int/display/CKB/ERA5) into a reusable, plug-and-play data component for PyMT modeling framework developed by Community Surface Dynamics Modeling System (CSDMS). This allows ERA5 datasets (currently support 3 dimensional data) to be easily coupled with other datasets or models that expose a Basic Model Interface.odels that expose a Basic Model Interface.)
    • Model:ROMS Data Component  + (pymt_roms is a package that converts the Rpymt_roms is a package that converts the ROMS model (https://www.myroms.org/) datasets into a reusable, plug-and-play data component for PyMT modeling framework developed by Community Surface Dynamics Modeling System (CSDMS). This allows ROMS model datasets to be easily coupled with other datasets or models that expose a Basic Model Interface.odels that expose a Basic Model Interface.)
    • Model:SoilGrids Data Component  + (soilgrids package provides a set of functisoilgrids package provides a set of functions that allow downloading of the global gridded soil information from SoilGrids https://www.isric.org/explore/soilgrids, a system for global digital soil mapping to map the spatial distribution of soil properties across the globe. soilgrids package includes a Basic Model Interface (BMI), which converts the SoilGrids dataset into a reusable, plug-and-play data component for Community Surface Dynamics Modeling System (CSDMS) modeling framework.odeling System (CSDMS) modeling framework.)
    • Model:StreamPowerSmoothThresholdEroder  + (stream_power_smooth_threshold.py: Defines the StreamPowerSmoothThresholdEroder, which is derived from FastscapeEroder. StreamPowerSmoothThresholdEroder uses a mathematically smooth threshold formulation, rather than one with a singularity.)
    • Model:Delft3D  + (wave-current interaction, (non) hydrostatiwave-current interaction, (non) hydrostatic flow (2D/3D), salinity, temperature, (non) cohesive sediment transport, morphology, bed stratigraphy, water quality, ecology, structures & control, particle tracking, curvilinear multi-domain mesh in cartesian or spheric coord., online visualization, GUI. or spheric coord., online visualization, GUI.)
    • Model:GEOMBEST-Plus  + (“GEOMBEST-Plus” (Geomorphic Model of Barri“GEOMBEST-Plus” (Geomorphic Model of Barrier, Estuarine, and Shoreface Translations) is a new morphological-behaviour model that simulates the evolution of coastal morphology and stratigraphy, resulting from changes in sea level, and sediment volume within the shoreface, barrier and estuary. GEOMBEST-Plus differs from other large-scale behaviour models (e.g. Bruun, 1962; Dean and Maumeyer, 1983; Cowell et al., 1995; Niedoroda et al., 1995, Stive & de Vriend, 1995 and Storms et al., 2002) by relaxing the assumption that the initial substrate (i.e stratigraphy) is comprised of an unlimited supply of unconsolidated material (typically sand). The substrate is instead defined by distinct stratigraphic units characterized by their erodibility and sediment composition. Additionally, GEOMBEST-Plus differs from its predecessor (GEOMBEST) by adding in a dynamic stratigraphic unit for a backbarrier marsh. Accordingly, the effects of geological framework on morphological evolution and shoreline translation can be simulated.on and shoreline translation can be simulated.)