Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Extended model description" with value "The Green-Ampt method of infiltration estimation.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:ApsimX  + (The Agricultural Production Systems sIMulaThe Agricultural Production Systems sIMulator (APSIM) is internationally recognized as a highly advanced simulator of agricultural systems. It contains a suite of modules which enable the simulation of systems that cover a range of plant, animal, soil, climate and management interactions. APSIM is undergoing continual development, with new capability added to regular releases of official versions. Its development and maintenance is underpinned by rigorous science and software engineering standards. The APSIM Initiative has been established to promote the development and use of the science modules and infrastructure software of APSIM.ules and infrastructure software of APSIM.)
  • Model:GISS AOM  + (The Atmosphere-Ocean Model is a computer pThe Atmosphere-Ocean Model is a computer program that simulates the Earth's climate in three dimensions on a gridded domain. The Model requires two kinds of input, specified parameters and prognostic variables, and generates two kinds of output, climate diagnostics and prognostic variables. The specified input parameters include physical constants, the Earth's orbital parameters, the Earth's atmospheric constituents, the Earth's topography, the Earth's surface distribution of ocean, glacial ice, or vegetation, and many others. The time varying prognostic variables include fluid mass, horizontal velocity, heat, water vapor, salt, and subsurface mass and energy fields.lt, and subsurface mass and energy fields.)
  • Model:CEM  + (The Coastline Evolution Model (CEM) addresThe Coastline Evolution Model (CEM) addresses predominately sandy, wave-dominated coastlines on time-scales ranging from years to millenia and on spatial scales ranging from kilometers to hundreds of kilometers. Shoreline evolution results from gradients in wave-driven alongshore sediment transport. At its most basic level, the model follows the standard 'one-line' modeling approach, where the cross-shore dimension is collapsed into a single data point. However, the model allows the plan-view shoreline to take on arbitrary local orientations, and even fold back upon itself, as complex shapes such as capes and spits form under some wave climates (distributions of wave influences from different approach angles). The model can also represent the geology underlying the sandy coastline and shoreface in a simplified manner and enables the simulation of coastline evolution when sediment supply from an eroding shoreface may be constrained. CEM also supports the simulation of human manipulations to coastline evolution through beach nourishment or hard structures.ough beach nourishment or hard structures.)
  • Model:CVPM  + (The Control Volume Permafrost Model (CVPM)The Control Volume Permafrost Model (CVPM) is a modular heat-transfer modeling system designed for scientific and engineering studies in permafrost terrain, and as an educational tool. CVPM implements the nonlinear heat-transfer equations in 1-D, 2-D, and 3-D cartesian coordinates, as well as in 1-D radial and 2-D cylindrical coordinates. To accommodate a diversity of geologic settings, a variety of materials can be specified within the model domain, including: organic-rich materials, sedimentary rocks and soils, igneous and metamorphic rocks, ice bodies, borehole fluids, and other engineering materials. Porous materials are treated as a matrix of mineral and organic particles with pore spaces filled with liquid water, ice, and air. Liquid water concentrations at temperatures below 0°C due to interfacial, grain-boundary, and curvature effects are found using relationships from condensed matter physics; pressure and pore-water solute effects are included. A radiogenic heat-production term allows simulations to extend into deep permafrost and underlying bedrock. CVPM can be used over a broad range of depth, temperature, porosity, water saturation, and solute conditions on either the Earth or Mars. The model is suitable for applications at spatial scales ranging from centimeters to hundreds of kilometers and at timescales ranging from seconds to thousands of years. CVPM can act as a stand-alone model, the physics package of a geophysical inverse scheme, or serve as a component within a larger earth modeling system that may include vegetation, surface water, snowpack, atmospheric or other modules of varying complexity.ic or other modules of varying complexity.)
  • Model:CREST  + (The Coupled Routing and Excess STorage (CRThe Coupled Routing and Excess STorage (CREST) distributed hydrological model is a hybrid modeling strategy that was recently developed by the University of Oklahoma (http://hydro.ou.edu) and NASA SERVIR Project Team. CREST simulates the spatiotemporal variation of water and energy fluxes and storages on a regular grid with the grid cell resolution being user-defined, thereby enabling global- and regional-scale applications. The scalability of CREST simulations is accomplished through sub-grid scale representation of soil moisture storage capacity (using a variable infiltration curve) and runoff generation processes (using linear reservoirs). The CREST model was initially developed to provide online global flood predictions with relatively coarse resolution, but it is also applicable at small scales, such as single basins. This README file and the accompanying code concentrates on and tests the model at the small scale. The CREST Model can be forced by gridded potential evapotranspiration and precipitation datasets such as, satellite-based precipitation estimates, gridded rain gauge observations, remote sensing platforms such as weather radar, and quantitative precipitation forecasts from numerical weather prediction models. The representation of the primary water fluxes such as infiltration and routing are closely related to the spatially variable land surface characteristics (i.e., vegetation, soil type, and topography). The runoff generation component and routing scheme are coupled, thus providing realistic interactions between atmospheric, land surface, and subsurface water.heric, land surface, and subsurface water.)
  • Model:Cross Shore Sediment Flux  + (The Cross-Shore Sediment Flux model addresThe Cross-Shore Sediment Flux model addresses predominately sandy, wave-dominated coastlines on time-scales ranging from years to millenia and on spatial scales ranging from kilometers to tens of kilometers using a range of wave parameters as inputs. It calculates the cross-shore sediment flux using both shallow water wave assumptions and full Linear Airy wave Theory. An equilibrium profile is also created. Using the Exner equation, we develop an advection diffusion equation that describes the evolution of profile through time. A morphodynamic depth of closure can be estimated for each input wave parameter.e estimated for each input wave parameter.)
  • Model:DLBRM  + (The DLBRM is a distributed, physically based, watershed hydrology model that subdivides a watershed into a 1 km2 grid network and simulates hydrologic processes for the entire watershed sequentially.)
  • Model:SWMM  + (The EPA Storm Water Management Model (SWMMThe EPA Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and generate runoff and pollutant loads. The routing portion of SWMM transports this runoff through a system of pipes, channels, storage/treatment devices, pumps, and regulators. SWMM tracks the quantity and quality of runoff generated within each subcatchment, and the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period comprised of multiple time steps.n period comprised of multiple time steps.)
  • Model:GeoTiff Data Component  + (The GeoTiff data component, pymt_geotiff, The GeoTiff data component, pymt_geotiff, is a Python Modeling Toolkit (pymt) library for accessing data (and metadata) from a GeoTIFF file, through either a local filepath or a remote URL.</br></br>The pymt_geotiff component provides BMI-mediated access to GeoTIFF data as a service, allowing them to be coupled in pymt with other data or model components that expose a BMI.ata or model components that expose a BMI.)
  • Model:GrainHill  + (The Grain Hill model provides a computatioThe Grain Hill model provides a computational framework with which to study slope forms that arise from stochastic disturbance and rock weathering events. The model operates on a hexagonal lattice, with cell states representing fluid, rock, and grain aggregates that are either stationary or in a state of motion in one of the six cardinal lattice directions. Cells representing near-surface soil material undergo stochastic disturbance events, in which initially stationary material is put into motion. Net downslope transport emerges from the greater likelihood for disturbed material to move downhill than to move uphill. Cells representing rock undergo stochastic weathering events in which the rock is converted into regolith. The model can reproduce a range of common slope forms, from fully soil mantled to rocky or partially mantled, and from convex-upward to planar shapes. An optional additional state represents large blocks that cannot be displaced upward by disturbance events. With the addition of this state, the model captures the morphology of hogbacks, scarps, and similar features. In its simplest form, the model has only three process parameters, which represent disturbance frequency, characteristic disturbance depth, and baselevel lowering rate, respectively. Incorporating physical weathering of rock adds one additional parameter, representing the characteristic rock weathering rate. These parameters are not arbitrary but rather have a direct link with corresponding parameters in continuum theory. The GrainHill model includes the GrainFacetSimulator, which represents an evolving normal-fault facet with a 60-degree-dipping fault.ault facet with a 60-degree-dipping fault.)
  • Model:GridMET Data Component  + (The GridMET data component is an API, CLI,The GridMET data component is an API, CLI, and BMI for fetching and caching daily gridMET (http://www.climatologylab.org/gridmet.html) CONUS meteorological data. Variables include:</br></br>* maximum temperature</br>* minimum temperature</br>* precipitation accumulation</br></br>GridMET provides BMI-mediated access to gridMET data as a service, allowing it to be coupled with other components that expose a BMI.d with other components that expose a BMI.)
  • Model:GroundwaterDupuitPercolator  + (The GroundwaterDupuitPercolator is approprThe GroundwaterDupuitPercolator is appropriate for modeling shallow groundwater flow where the vertical component of flow is negligible. Where the groundwater table approaches the land surface, it calculates seepage that can be routed using other Landlab components. It can be implemented on both regular (e.g. rectangular and hexagonal) and irregular grids determined by the user. Recharge, hydraulic conductivity, and porosity may be specified as single values uniform over the model domain, or as vectors on the nodes (recharge, porosity) or links (hydraulic conductivity) of the grid. Link hydraulic conductivity can also be specified from a two-dimensional hydraulic conductivity tensor using an included function. For mass balance calculations, the model includes methods to determine the total groundwater storage on the grid domain, the total recharge flux in, and total groundwater and surface water fluxes leaving through the boundaries.ter fluxes leaving through the boundaries.)
  • Model:HBV  + (The HBV model (Bergström, 1976, 1992), alsThe HBV model (Bergström, 1976, 1992), also known as Hydrologiska Byråns Vattenbalansavdelning, is a rainfall-runoff model, which includes conceptual numerical descriptions of hydrological processes at the catchment scale. There are many versions created over the years in various coding languages. This description points to the work of John Craven, which is a python implementation of the HBV Hydrological Model, based on matlab code of the work of Professor Amir AghaKouchak at the University of California Irvine.ak at the University of California Irvine.)
  • Model:HyLands  + (The HyLands Landscape Evolution Model is bThe HyLands Landscape Evolution Model is built using the Landlab software package. The HyLands model builds on three new components: water and sediment is routed using the PriorityFloodFlowRouter, fluvial erosion and sediment transport is calculated using the SpaceLargeScaleEroder while bedrock landsliding and sediment runout is calculated using the BedrockLandslider. These and all other Landlab components used in this paper are part of the open source Landlab modeling framework, version 2.5.0 (Barnhart et al., 2020a; Hobley et al., 2017), which is part of the Community Surface Dynamics Modeling System (Tucker et al., 2021). Source code for the Landlab project is housed on GitHub: http://github.com/landlab/landlab (last access: 17 August 2022). Documentation, installation, instructions, and software dependencies for the entire Landlab project can be found at http://landlab.github.io/ (last access: 17 August 2022). A user manual with an accompanying Jupyter notebooks is available from https://github.com/BCampforts/hylands_modeling (last access: 17 August 2022). The Landlab project is tested on recent-generation Mac, Linux, and Windows platforms. The Landlab modeling framework is distributed under a MIT open-source license. The latest version of the Landlab software package, including the components developed for the HyLands model is archived at: https://doi.org/10.5281/zenodo.6951444 (last access: 17 August 2022).odo.6951444 (last access: 17 August 2022).)
  • Model:HEBEM  + (The Hydrologically Enhanced Basin EvolutioThe Hydrologically Enhanced Basin Evolution Model (HEBEM) is a combined hydrologic/geomorphic model. The hydrologic model simulates precipitation with variability, infiltration, evapotranspiration, overland flow, and groundwater flow, thus producing a spatially and temporally varying water discharge Q that drives fluvial processes in the land surface. The geomorphic model accounts for tectonic forcing, hillslope processes, erosion, and sediment transport. The combined model uses multiple time steps for hydrologic and geomorphic processes. Due to its hydrologic representation, the model is able to investigate the interaction between hydrology and geomorpholgy.action between hydrology and geomorpholgy.)
  • Model:Instructed Glacier Model  + (The Instructed Glacier Model (IGM) simulatThe Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling through mass conservation to predict the evolution of glaciers and icefields. The specificity of IGM is that it models the ice flow by a neural network, which is trained with ice flow physical models. Doing so permits to speed-up and facilitate considerably the implementation of the forward model and the inverse model required to assimilate data.inverse model required to assimilate data.)
  • Model:ILAMB  + (The International Land Model Benchmarking The International Land Model Benchmarking (ILAMB) project is a model-data intercomparison and integration project designed to improve the performance of land models and, in parallel, improve the design of new measurement campaigns to reduce uncertainties associated with key land surface processes. Building upon past model evaluation studies, the goals of ILAMB are to:</br></br>* develop internationally accepted benchmarks for land model performance, promote the use of these benchmarks by the international community for model intercomparison,</br>* strengthen linkages between experimental, remote sensing, and climate modeling communities in the design of new model tests and new measurement programs, and</br>* support the design and development of a new, open source, benchmarking software system for use by the international community.em for use by the international community.)
  • Model:Drainage Density  + (The Landlab Drainage Density component calThe Landlab Drainage Density component calculates landscape-averaged drainage density, defined as the inverse of the mean distance from any pixel to the nearest channel. The component follows the approach defined in Tucker et al (2001, Geomorphology). The drainage density component does not find channel heads, but takes a user-defined channels mask.s, but takes a user-defined channels mask.)
  • Model:ErosionDeposition  + (The Landlab ErosionDeposition component caThe Landlab ErosionDeposition component calculates fluvial erosion and deposition of a single substrate as derived by Davy and Lague (2009, Journal of Geophysical Research). Mass is simultaneously conserved in two reservoirs: the bed and the water column. ErosionDeposition dynamically transitions between detachment-limited and transport-limited behavior, but is limited to erosion of a single substrate (e.g., sediment or bedrock but not both). (e.g., sediment or bedrock but not both).)
  • Model:OverlandFlow  + (The Landlab OverlandFlow component is baseThe Landlab OverlandFlow component is based on a simplified inertial approximation of the shallow water equations, following the solution of de Almeida et al. (2012). This explicit two-dimensional hydrodynamic algorithm simulates a flood wave across a model domain, where water discharge and flow depth are calculated at all locations within a structured (raster) grid. This component generates a hydrograph at all grid locations, and allows for flow to move in one of the four cardinal directions (D4) into/out of a given model node.tions (D4) into/out of a given model node.)