Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Extended model description" with value "Calculates the logrithmic velocity distribution called from TRCALC". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Model:PsHIC  + (Calculate the hypsometric integral for each pixel at the catchment. Each pixel is considered a local outlet and the hypsometric integral is calculated according to the characteristics of its contributing area.)
  • Model:OceanWaves  + (Calculate wave-generated bottom orbital velocities from measured surface wave parameters. Also permits calculation of surface wave spectra from wind conditions, from which bottom orbital velocities can be determined.)
  • Model:SUSP  + (Calculates non-equilibrium suspended load transport rates of various size-density fractions in the bed)
  • Model:SVELA  + (Calculates shear velocity associated with grain roughness)
  • Model:BEDLOAD  + (Calculates the bedload transport rates and weights per unit area for each size-density. NB. Bedload transport of different size-densities is proportioned according to the volumes in the bed.)
  • Model:SETTLE  + (Calculates the constant terminal settling velocity of each size-density fraction's median size from Dietrich's equation.)
  • Model:ENTRAINH  + (Calculates the critical Shields Theta for the median size of a distribution and then calculates the critical shear stress of the ith, jth fraction using a hiding function)
  • Model:ENTRAIN  + (Calculates the critical shear stress for entrainment of the median size of each size-density fraction of a bed using Yalin and Karahan formulation, assuming no hiding)
  • Model:FLDTA  + (Calculates the flow velocity and depth based on the gradually varied flow equation of an open channel.)
  • Model:TURB  + (Calculates the gaussian or log-gaussian distribution of instantaneous shear stresses on the bed, given a mean and coefficient of variation.)
  • Model:LOGDIST  + (Calculates the logrithmic velocity distribution called from TRCALC)
  • Model:YANGs  + (Calculates the total sediment transport rate in an open channel assuming a median bed grain size)
  • Model:SuspSedDensityStrat  + (Calculation of Density Stratification EffeCalculation of Density Stratification Effects Associated with Suspended Sediment in Open Channels.</br></br>This program calculates the effect of sediment self-stratification on the streamwise velocity and suspended sediment concentration profiles in open-channel flow.</br></br>Two options are given. Either the near-bed reference concentration Cr can be specified by the user, or the user can specify a shear velocity due to skin friction u*s and compute Cr from the Garcia-Parker sediment entrainment relation.rcia-Parker sediment entrainment relation.)
  • Model:SubsidingFan  + (Calculation of Sediment Deposition in a Fan-Shaped Basin, undergoing Piston-Style Subsidence)
  • Model:DeltaBW  + (Calculator for 1D Subaerial Fluvial Fan-DeCalculator for 1D Subaerial Fluvial Fan-Delta with Channel of Constant Width. This model assumes a narrowly channelized 1D fan-delta prograding into standing water. The model uses a single grain size D, a generic total bed material load relation and a constant bed resistance coefficient. The channel is assumed to have a constant width. Water and sediment discharge are specified per unit width. The fan builds outward by forming a prograding delta front with an assigned foreset slope. The code employs a full backwater calculation.code employs a full backwater calculation.)
  • Model:DeltaNorm  + (Calculator for 1D Subaerial Fluvial Fan-DeCalculator for 1D Subaerial Fluvial Fan-Delta with Channel of Constant Width. This model assumes a narrowly channelized 1D fan-delta prograding into standing water. The model uses a single grain size D, a generic total bed material load relation and a constant bed resistance coefficient. The channel is assumed to have a constant width. Water and sediment discharge are specified per unit width. The fan builds outward by forming a prograding delta front with an assigned foreset slope. The code employs the normal flow approximation rather than a full backwater calculation. rather than a full backwater calculation.)
  • Model:CarboCAT  + (CarboCAT uses a cellular automata to model horizontal and vertical distributions of carbonate lithofacies)
  • Model:ChesROMS  + (ChesROMS is a community ocean modeling sysChesROMS is a community ocean modeling system for the Chesapeake Bay region being developed by scientists in NOAA, University of Maryland, CRC (Chesapeake Research Consortium) and MD DNR (Maryland Department of Natural Resources) supported by the NOAA MERHAB program. The model is built based on the Rutgers Regional Ocean Modeling System (ROMS, http://www.myroms.org/) with significant adaptations for the Chesapeake Bay.</br></br>The model is developed to provide a community modeling system for nowcast and forecast of 3D hydrodynamic circulation, temperature and salinity, sediment transport, biogeochemical and ecosystem states with applications to ecosystem and human health in the bay. Model validation is based on bay wide satellite remote sensing, real-time in situ measurements and historical data provided by Chesapeake Bay Program.</br></br>http://ches.communitymodeling.org/models/ChesROMS/index.phpnitymodeling.org/models/ChesROMS/index.php)
  • Model:Cliffs  + (Cliffs features: Shallow-Water approximatCliffs features: </br>Shallow-Water approximation;</br>Use of Cartesian or spherical (lon/lat) coordinates;</br>1D and 2D configurations;</br>Structured co-located grid with (optionally) varying spacing;</br>Run-up on land;</br>Initial conditions or boundary forcing;</br>Grid nesting with one-way coupling;</br>Parallelized with OpenMP;</br>NetCDF format of input/output data.</br></br>Cliffs utilizes VTCS-2 finite-difference scheme and dimensional splitting as in (Titov and Synolakis, 1998), and reflection and inundation computations as in (Tolkova, 2014). </br></br>References: </br>Titov, V.V., and C.E. Synolakis. Numerical modeling of tidal wave runup. J. Waterw. Port Coast. Ocean Eng., 124(4), 157–171 (1998)</br>Tolkova E. Land-Water Boundary Treatment for a Tsunami Model With Dimensional Splitting.</br>Pure and Applied Geophysics, 171(9), 2289-2314 (2014)plied Geophysics, 171(9), 2289-2314 (2014))
  • Model:Barrier Inlet Environment (BRIE) Model  + (Coastal barrier model that simulates storm overwash and tidal inlets and estimates coastal barrier transgression resulting from sea-level rise.)
  • Model:Detrital Thermochron  + (Code for estimating long-term exhumation histories and spatial patterns of short-term erosion from the detrital thermochronometric data.)