Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Meetingstatement of interest submit" with value "How continental-scale rivers respond to tectonics, climate, and sea level is not well represented in morphodynamic models. Lowland rivers respond to influences more complicated than mountain rivers, and their large spatial scales present modelling challenges. Tectonic deformation and resistant deposits/bedrock especially affects low gradient rivers and their slope, sinuosity, along-stream patterns of sediment transport capacity, channel patterns, floodplain construction, and valley development. During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling key multi-directional processes controlling these rivers would illuminate system-scale morphodynamics, fluxes, and complexity in response to base level change, yet such problems are computationally formidable. Large environmental systems are characterized by strong process interdependency across domains, yet traditional supercomputers have slow nodal communications that stymies interconnectivity. The newly developed Landscape-Linked Environmental Model (LLEM) utilizes massively parallel architectures (GPUs with >5000 cores and ~100x the interconnect bandwidth of CPU blades) to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per GPU) lowland dispersal systems covering large spatial and temporal scales. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology channel hydraulic geometry, dissection of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic flexure. LLEM also uses novel, ultra-fast Optane storage to reference a detailed 3D record of all stratigraphy (and associated biogeochemistry) that is created and destroyed.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Meeting application CTSP 2018-072  + (How continental-scale rivers respond to teHow continental-scale rivers respond to tectonics, climate, and sea level is not well represented in morphodynamic models. Lowland rivers respond to influences more complicated than mountain rivers, and their large spatial scales present modelling challenges. Tectonic deformation and resistant deposits/bedrock especially affects low gradient rivers and their slope, sinuosity, along-stream patterns of sediment transport capacity, channel patterns, floodplain construction, and valley development. During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. </br> Modelling key multi-directional processes controlling these rivers would illuminate system-scale morphodynamics, fluxes, and complexity in response to base level change, yet such problems are computationally formidable. Large environmental systems are characterized by strong process interdependency across domains, yet traditional supercomputers have slow nodal communications that stymies interconnectivity. </br> The newly developed Landscape-Linked Environmental Model (LLEM) utilizes massively parallel architectures (GPUs with >5000 cores and ~100x the interconnect bandwidth of CPU blades) to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per GPU) lowland dispersal systems covering large spatial and temporal scales. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology channel hydraulic geometry, dissection of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic flexure. LLEM also uses novel, ultra-fast Optane storage to reference a detailed 3D record of all stratigraphy (and associated biogeochemistry) that is created and destroyed.ogeochemistry) that is created and destroyed.)