Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract presentation" with value "Landscape evolution involves manifold processes from different disciplines, including geology, geomorphology and ecohydrology, often interacting nonlinearly at different space-time scales. While this gives rise to fascinating patterns of interconnected networks of ridges and valleys, it also challenges Landscape Evolution Models (LEMs), which typically rely on long-term numerical simulations and mostly have only current topographies for comparison. While adding process complexity (and presumably realism) is certainly useful to overcome some of these challenges, is also exacerbates issues related to proper calibration and simulation. This talk advocates more focus on the theoretical analysis of LEMs to alleviate some of these issues. By focusing on the essential elements that distinguish landscape evolution, the resulting minimalist LEMs become more amenable to dimensional analysis and other methods of nonlinear field equations, used for example in fluid mechanics and turbulence, offering fertile ground to sharpen model formulation (i.e., the stream-power erosion term), unveil distinct dynamic regimes (e.g., unchannelized, from incipient valley formation, transitional and statistically self-similar fractal regime), and properly formulate questions related to the existence of steady state solution (as opposed to a situation of space time chaos, similar to a geomorphological turbulence). We also discuss benchmarks for evaluating numerical simulation and novel avenues for numerical methods, as well as ways to bridge between spatially discrete models (i.e., river networks) and continuous, partial-differential-equation models.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Presenters-0645  + (Landscape evolution involves manifold procLandscape evolution involves manifold processes from different disciplines, including geology, geomorphology and ecohydrology, often interacting nonlinearly at different space-time scales. While this gives rise to fascinating patterns of interconnected networks of ridges and valleys, it also challenges Landscape Evolution Models (LEMs), which typically rely on long-term numerical simulations and mostly have only current topographies for comparison. While adding process complexity (and presumably realism) is certainly useful to overcome some of these challenges, is also exacerbates issues related to proper calibration and simulation.</br>This talk advocates more focus on the theoretical analysis of LEMs to alleviate some of these issues. By focusing on the essential elements that distinguish landscape evolution, the resulting minimalist LEMs become more amenable to dimensional analysis and other methods of nonlinear field equations, used for example in fluid mechanics and turbulence, offering fertile ground to sharpen model formulation (i.e., the stream-power erosion term), unveil distinct dynamic regimes (e.g., unchannelized, from incipient valley formation, transitional and statistically self-similar fractal regime), and properly formulate questions related to the existence of steady state solution (as opposed to a situation of space time chaos, similar to a geomorphological turbulence). We also discuss benchmarks for evaluating numerical simulation and novel avenues for numerical methods, as well as ways to bridge between spatially discrete models (i.e., river networks) and continuous, partial-differential-equation models.ous, partial-differential-equation models.)