Search by property

From CSDMS

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "CSDMS meeting abstract presentation" with value "Coastal systems are an environmental sink for a wide range of materials of scientific interest, including sediments, nutrients, plastics, oils, seeds, and wood, to name only a few. Due to differences in material properties such as buoyancy, each of these materials are liable to have characteristic transport pathways which differ from the mean flow and each other, hydraulically “sorting” these materials in space. However, it remains difficult to quantify these differences in transport, due in part to the use of disparate models and approaches for each respective material. In this talk, I will advance a novel modeling framework for simulating the patterns of transport for a wide range of fluvially-transported materials using a single unified reduced-complexity approach, allowing us to compare and quantify differences in transport between materials. Using a hydrodynamic model coupled with the stochastic Lagrangian particle-routing model “dorado,” we are able to simulate at the process-level how local differences in material buoyancy lead to emergent changes in partitioning and nourishment in river deltaic systems. I will show some of the insights we have learned regarding the tendency for materials to be autogenically sorted in space, as well as progress we have made bridging between the process-level framework used in dorado and more physics-based approaches based on transport theory.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Presenters-0615  + (Coastal systems are an environmental sink Coastal systems are an environmental sink for a wide range of materials of scientific interest, including sediments, nutrients, plastics, oils, seeds, and wood, to name only a few. Due to differences in material properties such as buoyancy, each of these materials are liable to have characteristic transport pathways which differ from the mean flow and each other, hydraulically “sorting” these materials in space. However, it remains difficult to quantify these differences in transport, due in part to the use of disparate models and approaches for each respective material. In this talk, I will advance a novel modeling framework for simulating the patterns of transport for a wide range of fluvially-transported materials using a single unified reduced-complexity approach, allowing us to compare and quantify differences in transport between materials. Using a hydrodynamic model coupled with the stochastic Lagrangian particle-routing model “dorado,” we are able to simulate at the process-level how local differences in material buoyancy lead to emergent changes in partitioning and nourishment in river deltaic systems. I will show some of the insights we have learned regarding the tendency for materials to be autogenically sorted in space, as well as progress we have made bridging between the process-level framework used in dorado and more physics-based approaches based on transport theory.ased approaches based on transport theory.)